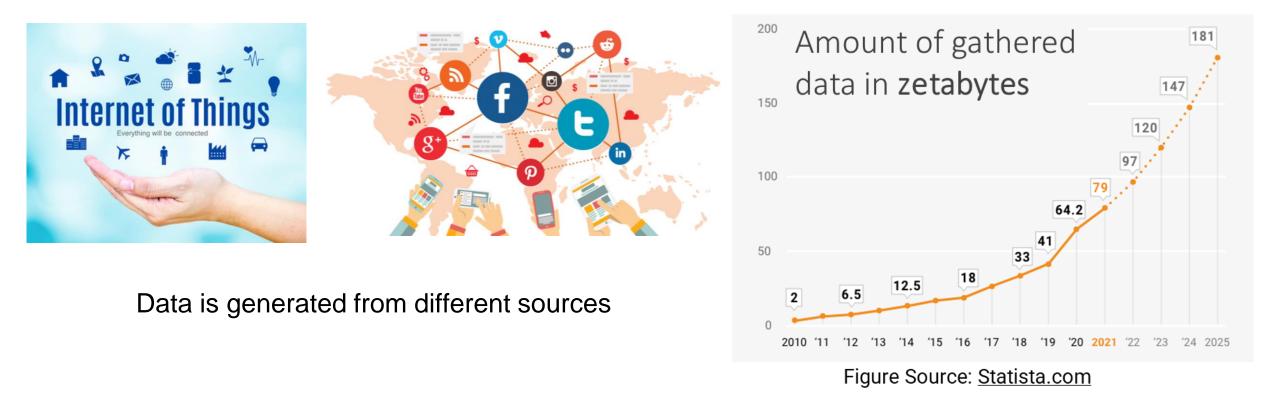


Table Discovery and Integration in Data Lakes


Aamod Khatiwada

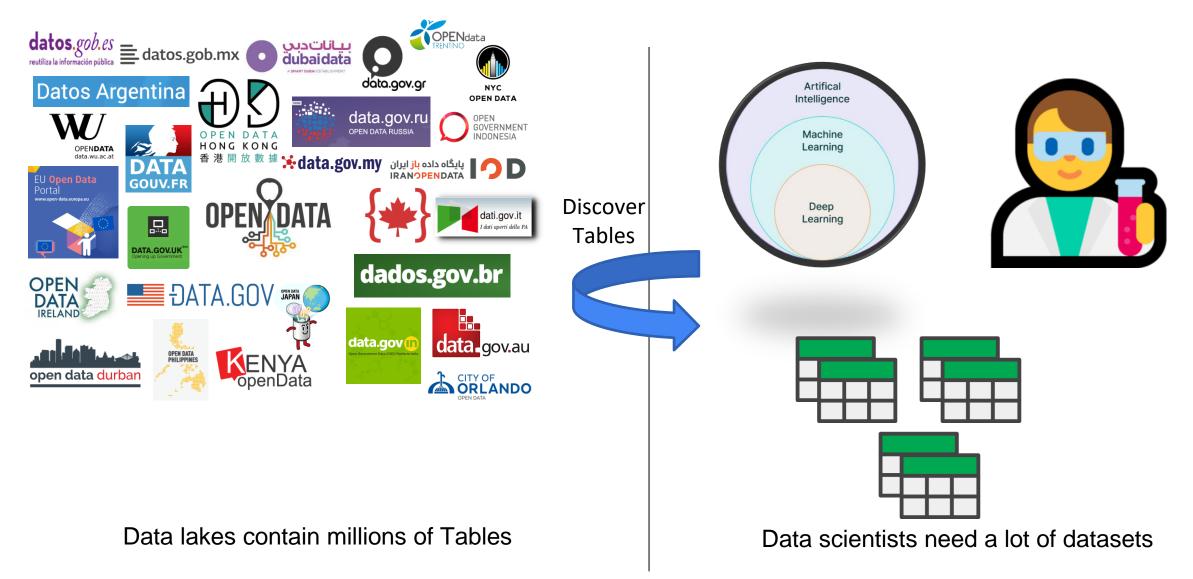
Fourth Year PhD Candidate

Northeastern University, Khoury College of Computer Sciences, Boston

Advised by: Prof. Renée J. Miller

Data, lots of data...

Efficient pre-processing, cleaning and storing of data became challenging due to generation volume.


How can we manage and store such a huge amount of data?

Data Lakes

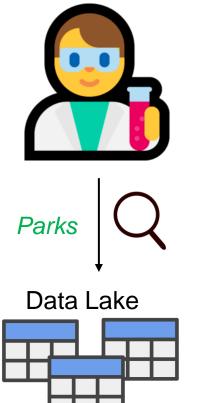

- Data lakes: Centralized repositories designed to store large amounts of data.¹
- Governments release public datasets in open data lakes.
- Enterprises have their own data lakes.

Table Discovery from Data Lakes

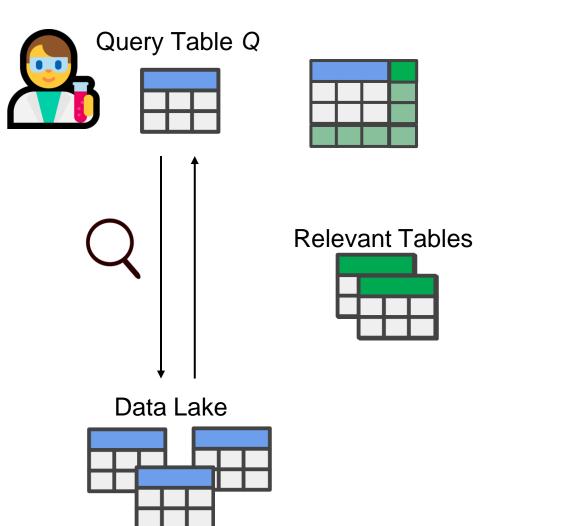
Data scientists can find the datasets within data lakes and use them for their tasks.

Suppose a data scientist wants to find table about parks

Suppose a data scientist wants to find table about parks

- Manual Search over whole data lake?
 - Not possible due to enormous data lake size.

Suppose a data scientist wants to find table about parks



- Keyword search over metadata: Discover tables relevant to given keywords [1]
 - Data lakes generally lack proper data semantics (meaning).
 - Misses relevant tables and/or returns irrelevant tables.

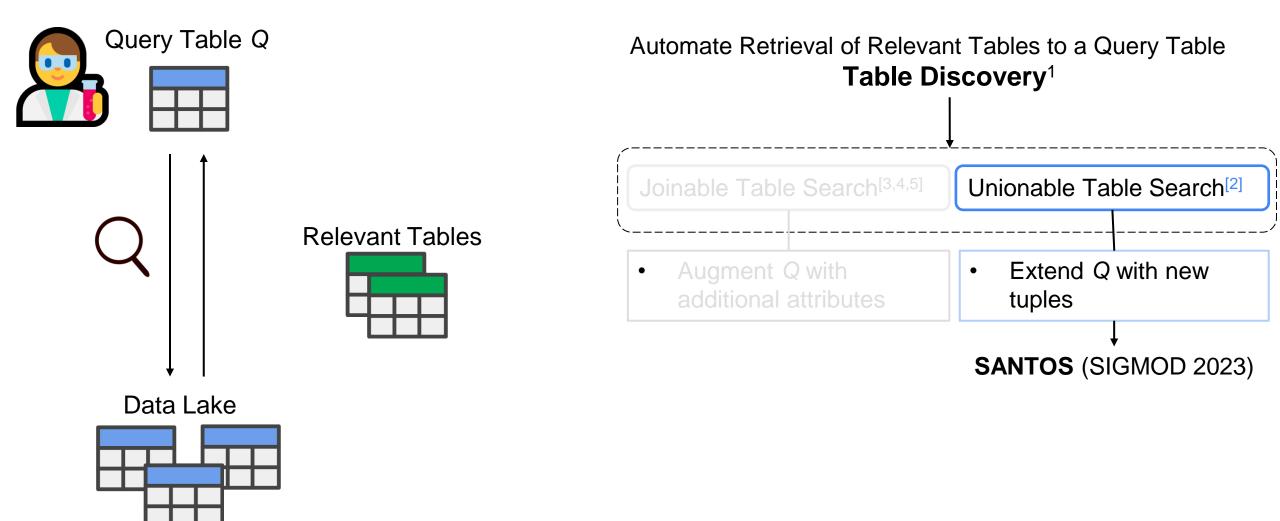
			Unrelia	able meta	data		Inconsistent values	Missing Data
A real data lake table [2	2]			<u> </u>				1
017 GradeX Crossings Inventory	Unnamed: 1	Unnamed: 2	Unnamed: 3	Unnamed: 4	Unnamed: 5	Unnamed: 6	5 Unnamed: 7 Unnamed: 8	Unnamed: 9 Uni amed: 10
1	17568	CN	PAC	BC	Public	F	71.94 Yale	
2	7940	CN	ONT	ON	Public	F	64.74 Kingston - CN	
3	7930	CN	ONT	ON	Public	F	53.82 Kingston - CN	
4	22103	СР	ONT	Ontario 🥌	Public	F	17.35 Galt	
5	30450	СР	PNR	SK	Public	F	3.37 Wilkie	
6	7917	CN	ONT	ON	Public	F	34.72 Kingston - CN	
7	7920	CN	ONT	ON	Public	F	37.54 Kingston - CN	
8	5039	CN	ONT	ON	Public	F	77.36 Dundas	
9	5048	CN	ONT	ON	Public	F	77.51 Dundas	
10	7902	CN	ONT	ON	Public	F	17.52 Kingston - CN	
11	35213	СР	PNR	MB	Public	F	4.54 Emerson	
12	4861	CN	QUE	QC	Public	F	117.22 Drummondville	
13	14506	VIA	ONT	ON	Public	F	3.26 Smiths Falls	

Brickley, Burgess and Noy. Google Dataset Search: Building a search engine for datasets in an open Web ecosystem. WWW 2019
 Nargesian, Zhu, Pu and Miller. Table Union Search on Open Data. PVLDB 2018

Table as a Query

[1] Castelo, Rampin, Santos, Bessa, Chirigati and Freire. Auctus: A dataset search engine for data discovery and augmentation. PVLDB 2021

[2] Nargesian, Zhu, Pu and Miller. Table Union Search on Open Data. PVLDB 2018


[3] Santos, Bessa, Musco and Freire. A Sketch-based Index for Correlated Dataset Search. ICDE 2022

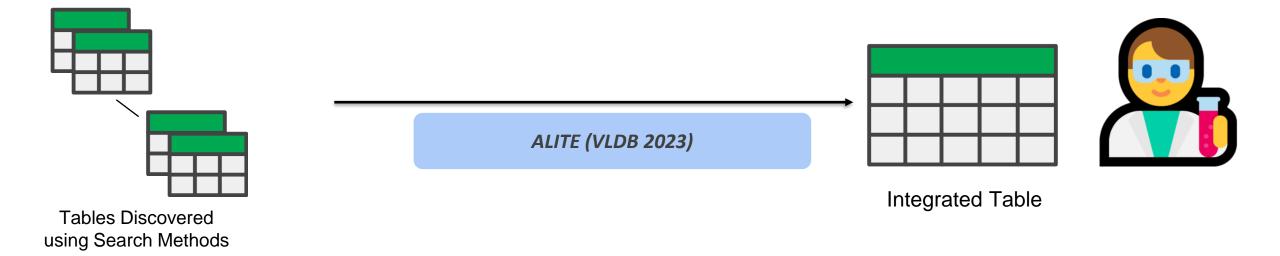
[4] Zhu, Deng, Nargesian and Miller. JOSIE: Overlap set similarity search for finding joinable tables in data lakes. SIGMOD 2019

[5] Zhu, Nargesian, Pu and Miller. LSH ensemble: Internet-scale domain search. PVLDB 2016

Automate Retrieval of Relevar Table Di	
Y	
Joinable Table Search ^[3,4,5]	Unionable Table Search ^[2]
 Augment Q with additional attributes 	 Extend Q with new tuples

Table as a Query

[1] Castelo, Rampin, Santos, Bessa, Chirigati and Freire. Auctus: A dataset search engine for data discovery and augmentation. PVLDB 2021

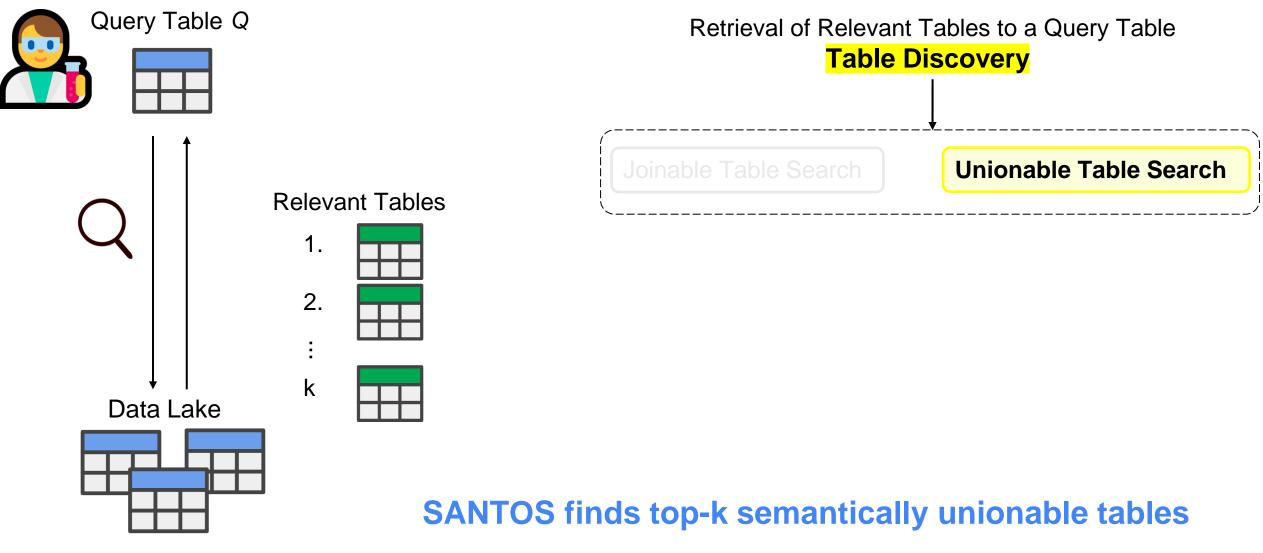

[2] Nargesian, Zhu, Pu and Miller. Table Union Search on Open Data. PVLDB 2018

[3] Santos, Bessa, Musco and Freire. A Sketch-based Index for Correlated Dataset Search. ICDE 2022

[4] Zhu, Deng, Nargesian and Miller. JOSIE: Overlap set similarity search for finding joinable tables in data lakes. SIGMOD 2019

[5] Zhu, Nargesian, Pu and Miller. LSH ensemble: Internet-scale domain search. PVLDB 2016

Integrating the Discovered Tables


- How can we integrate the discovered tables into a single table?
 - Integration provides a unified view of data.
 - Integration allows data scientists to run queries that go beyond a single table.

We present ALITE as a solution to integrate the set of discovered tables.

Outline

- Motivation
- Table discovery using SANTOS
- Table integration using ALITE
- DIALITE

SANTOS: Relationship-based Semantic Table Union Search

for a given query table.

SANTOS: Relationship-based Semantic Table Union Search

Data Scientist's table (Query Table)

Park Name	Supervisor	City	Country
River Park	Vera Onate	⊢resno	USA
West Lawn Park	Paul Veliotis	Chicago	USA

(a) A table about parks

Data lake tables (Candidate unionable Tables)

Park Name	Film Title	Park Location	Park Phone	Park City	Film Director	Film Studio
Chippewa Park	Bee Movie	6748 N. Sacramento Ave.	773 731-0380	Соок	Simon J. Smith	Dreamworks
Lawler Park	Сосо	5210 W. 64 th St.	773 284-7328	Riverside	Adrian Molina	Pixar

(b) A table about films shown in different parks

Person	Occupation	Birthplace	Country	Park Name
James Taylor	aylor Singer		USA	Central Park
Anthony Pelissier	Anthony Pelissier Film Director		UK	Cairngorms National Park
Akram Afif	Football Player	Doha	Qatar	Aspire Park
Ivan A. Getting	Physicist	NYC	USA	El Segundo Park
Abby May	Social Worker	Boston	USA	Fenway Park
Stevie Ray Vaughan	Singer	Texas	USA	Chastain Park

(c) A table about people

- Assume, the data scientist is collecting Park information for certain analysis.
- The data scientist wants to add rows (i.e., unionable tables).

Metadata may be inconsistent or imprecise!

Existing Methods

Data Scientist's table (Query Table)

Park Name	Supervisor	City	Country	
River Park	Vera Onate	Fresno	USA	
West Lawn Park	Paul Veliotis	Chicago	USA	

(a) A table about parks

Data lake tables (Candidate unionable Tables)

	Park Name	Film Title	Park Location	Park Phone	Park City	Film Director	Film Studio
С	Chippewa Park	Bee Movie	6748 N. Sacramento Ave.	773 731-0380	Cook	Simon J. Smith	Dreamworks
	Lawler Park	Сосо	5210 W. 64 th St.	773 284-7328	Riverside	Adrian Molina	Pixar

(b) A table about films shown in different parks

Person	Occupation	Birthplace	Country	Park Name
James Taylor	es Taylor Singer		USA	Central Park
Anthony Pelissier	Film Director	Barnet	UK	Cairngorms National Park
Akram Afif	Football Player	Doha	Qatar	Aspire Park
Ivan A. Getting	Physicist	NYC	USA	El Segundo Park
Abby May	Social Worker	Boston	USA	Fenway Park
Stevie Ray Vaughan	Singer	Texas	USA	Chastain Park

(c) A table about people

• Higher the number of unionable columns with better match, better is the table unionability.

Table b: two unionable columns (Park Name ∪ Park Name, City ∪ Park City) Table c: four unionable columns (Supervisor ∪ Person, City ∪ Birthplace, Country ∪ Country, Park Name ∪ Park Name)

Hence, Table (c) is considered as the better match!!!

[1] Nargesian, Zhu, Pu and Miller. Table Union Search on Open Data. PVLDB 2018
 [2] Bogatu, Fernandes, Paton and Konstantinou. Dataset Discovery in Data Lakes. ICDE 2020

Existing Methods [1,2]:

Look for unionable columns.

Existing Methods

Data Scientist's table (Query Table)

Data lake tables (Candidate unionable Tables)

Park Name	Supervisor	City	Country		Park Name	Film Title	F	Park Location	P	ark Phone	Park City	Film Director	Film S
River Park	Vera Onate	Fresno	USA		Chippewa Park	Bee Movie	6748 I	N. Sacramento	Ave. 77	3 731-0380	Cook	Simon J. Smith	Dreamv
West Lawn Park	Paul Veliotis	Chicago	USA		Lawler Park	Сосо	5	5210 W. 64 th St.	77	3 284-7328	Riverside	Adrian Molina	Pixa
(a) A table about parks (b) A table about films shown in different parks													
						Person		Occupation	Birthpl	ace Count	try	Park Name	
						James Taylo	or	Singer	Bosto	on USA	\	Central Park	
					An	nthony Peliss	sier	Film Director	Barne	et UK	Cairng	orms National Pa	ark
						Akram Afif	F	Football Player	Doha	a Qata	ır	Aspire Park	
						van A. Gettin	ng	Physicist	NYC	C USA	N El	Segundo Park	
						Abby May		Social Worker	Bosto	on USA	N I	Fenway Park	
					Stev	vie Ray Vaug	ghan	Singer	Теха	is USA		Chastain Park	
								(c) A tab	le ab	out peo	ple		

Existing Methods

Data Scientist's table (Query Table)

Park Name	Supervisor	City	Country
River Park	Vera Onate	Fresno	USA
West Lawn Park	Paul Veliotis	Chicago	USA
Central Park	James Taylor	Boston	USA
Cairngorms National Park			UK

Data lake tables (Candidate unionable Tables)

Park I	Name	Film Title	Park Location	Park Phone	Park City	Film Director	Film Studio
Chippew	wa Park	Bee Movie	6748 N. Sacramento Ave.	773 731-0380	Cook	Simon J. Smith	Dreamworks
Lawle	r Park	Сосо	5210 W. 64 th St.	773 284-7328	Riverside	Adrian Molina	Pixar

(b) A table about films shown in different parks

(a) A table about parks

False unioning adds erroneous tuples!!

Person	Person Occupation		Country	Park Name
James Taylor	iylor Singer		USA	Central Park
Anthony Pelissier	Anthony Pelissier Film Director		UK	Cairngorms National Park
Akram Afif	Football Player	Doha	Qatar	Aspire Park
Ivan A. Getting	Physicist	NYC	USA	El Segundo Park
Abby May	Social Worker	Boston	USA	Fenway Park
Stevie Ray Vaughan	Singer	Texas	USA	Chastain Park

(c) A table about people

Table (c) is not primarily about parks.

Hence, Column semantics is not enough to infer table unionability.

SANTOS Model

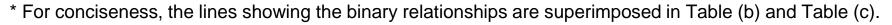
Data Scientist's table (Query Table)

Park Name	Supervisor	City	Country
River Park	Vera Onate	Fresno	USA
West Lawn Park	Paul Veliotis	Chicago	USA

(a) A table about parks

Data lake tables (Candidate unionable Tables)

Park Name	Film Title	Park Location	Park Phone	Park City	Film Director	Film Studio
Chippewa Park	Bee Movie	6748 N. Sacramento Ave.	773 731-0380	Cook	Simon J. Smith	Dreamworks
Lawler Park	Сосо	5210 W. 64 th St.	773 284-7328	Riverside	Adrian Molina	Pixar


(b) A table about films shown in different parks

Person	Occupation	Birthplace	Country	Park Name
James Taylor	Singer	Boston	USA	Central Park
Anthony Pelissier	Film Director	Barnet	UK	Cairngorms National Park
Akram Afif	Football Player	Doha	Qatar	Aspire Park
Ivan A. Getting	Physicist	NYC	USA	El Segundo Park
Abby May	Social Worker	Boston	USA	Fenway Park
Stevie Ray Vaughan	Singer	Texas	USA	Chastain Park

(c) A table about people

"Along with column semantics,

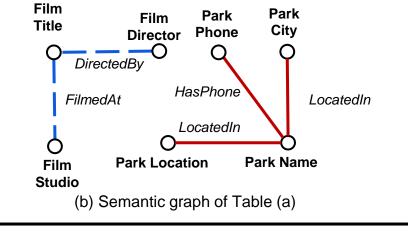
we consider the **binary relationships** between the column pairs."

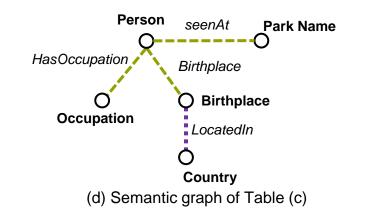
Contributions

- SANTOS: a new technique for table union search that leverages semantics of columns **and binary relationships** between columns.
- SANTOS uses both an external KB and a novel data-driven synthesized KB to find column and relationship semantics.

SANTOS Model

- We represent all tables in the form of semantic graphs.
 - Nodes: Columns
 - Edges: Relationships between the columns

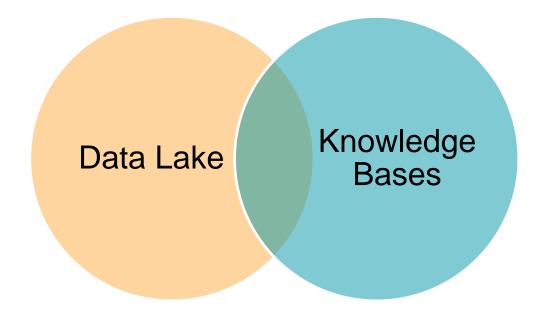

		1-				<u> </u>	
	Park Name	Film Title	Park Location	Park Phone	Park City	Film Director	Film Studio
	Chippewa Park	Bee Movie	6748 N. Sacramento Ave.	773 731-0380	Cook	Simon J. Smith	Dreamworks
	Lawler Park	Сосо	5210 W. 64 th St.	773 284-7328	Riverside	Adrian Molina	Pixar
I							


(a) A table about films shown in different parks

[
Person	Occupation	Birthplace	Country	Park Name		
James Taylor	Singer	Boston	USA	Central Park		
Anthony Pelissier	Film Director	Barnet	UK	Cairngorms National Park		
Akram Afif	Football Player	Doha	Qatar	Aspire Park		
Ivan A. Getting	Physicist	NYC	USA	El Segundo Park		
Abby May	Social Worker	Boston	USA	Fenway Park		
Stevie Ray Vaughan	Singer	Texas	USA	Chastain Park		

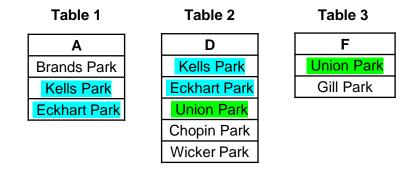
(c) A table about People

Unionability considers both column semantics and the semantics of binary relationship between the columns.

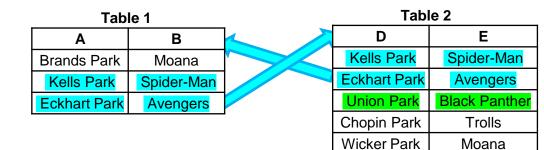

19

Creation of Semantic Graph

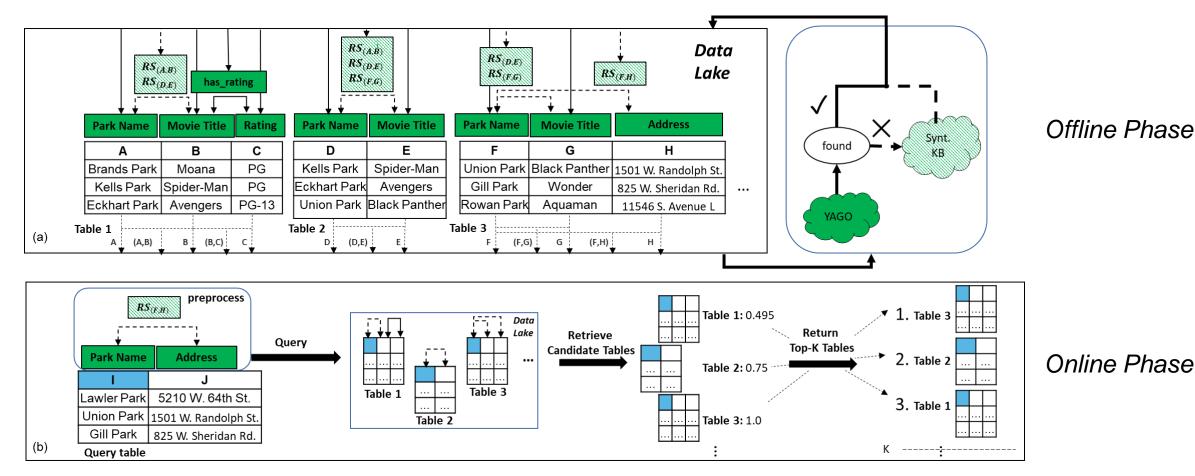
- Using External Knowledge Base (YAGO):
 - Nodes: Types in the Knowledge Bases (KBs)
 - Edges: Relationships in the KBs
 - Each node and edge are assigned with confidence scores.


Knowledge Base Coverage Problem

- Knowledge Bases cover limited entities in the Data lake.
- Hence, relying solely on them is not effective.
- **Solution:** Create a data driven synthesized Knowledge base using the data lake itself.


Creating Synthesized Semantic Graph

- Synthesized Column Semantics
 - Assumption 1:
 - All values in a column are of same types
 - Assumption 2:
 - Two columns are possibly of the same type if they have overlapping values
 - Concept:
 - Assign a synthesized column semantics to each column even if we do not know their names
 - Assign a confidence score to each type.



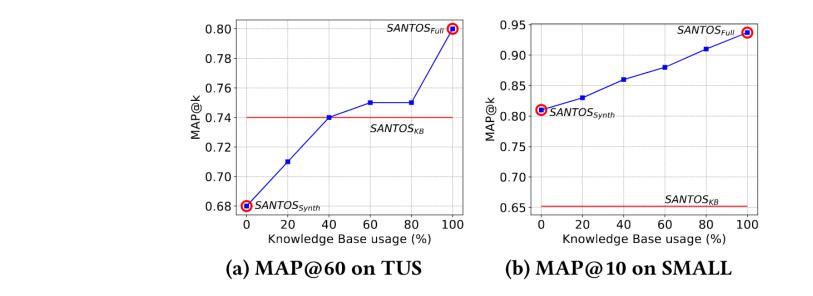
Creating Synthesized Semantic Graph

- Synthesized Relationship Semantics
 - Assumption 1:
 - The column pairs in a functional relationship have a possible relationship
 - Assumption 2:
 - Two column pairs having overlapping value pairs possibly have same relationship
 - Concept:
 - Assign a synthesized relationship semantics to each column pair in a functional relationship even if we do not know their names
 - Assign a confidence score to each relationship.

SANTOS overall Pipeline

- Offline phase: Create semantic graphs for data lake tables and index them.
- **Online phase:** Find column semantics and relationship semantics for query table and then query the index to find top-k unionable data lake tables.

Experimental Setup: Major Questions


- 1. How important is the relationship semantics in searching for the top-k unionable tables?
- 2. How important are SANTOS components in searching for the top-k unionable tables?
- 3. How scalable is SANTOS in searching for the top-k unionable tables?

Experimental Setup: Baselines

- D³L [2]
 - Column-based Baseline: find related tables based on 5 metrics
 - Column names, value overlap, formatting, word embeddings, domain distributions
- TURL [3]
 - Baseline: representation learning over web tables for column type annotation and relation extraction tasks

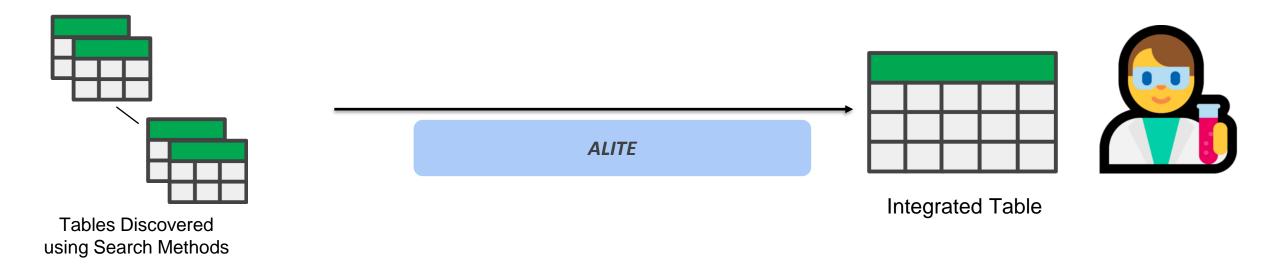
Experimental Results

- 1. SANTOS outperforms the state-of-the-art method [2] by 25-165% in Mean Average Precision (MAP) across all benchmarks.
- 2. Synthesized KB improves MAP by 8% on TUS benchmark [1] and 43% on (New) SMALL benchmark .

3. SANTOS's query time on (New) LARGE benchmark is ~5X faster than state-of-the-art method.

Efficiency

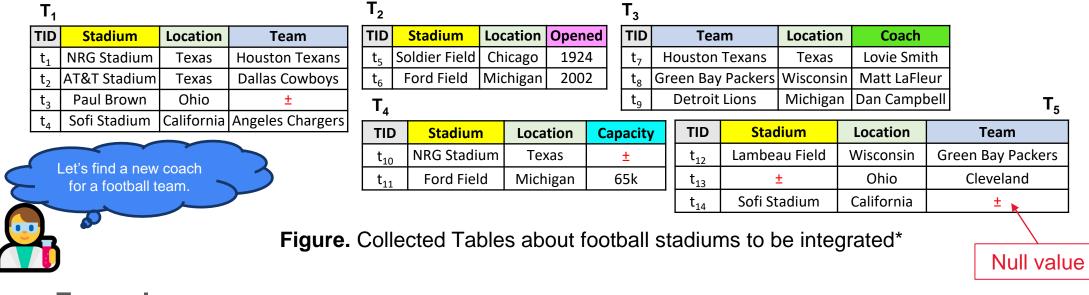
[2] Bogatu, Fernandes, Paton and Konstantinou. Dataset Discovery in Data Lakes. ICDE 2020


SANTOS Summary

- SANTOS leverages semantics of both columns and relationships between columns for table union search
- SANTOS uses both an external KB and a novel data-driven synthesized KB to find column and relationship semantics
- SANTOS outperforms state-of-the-art table union search method on all benchmarks

Outline

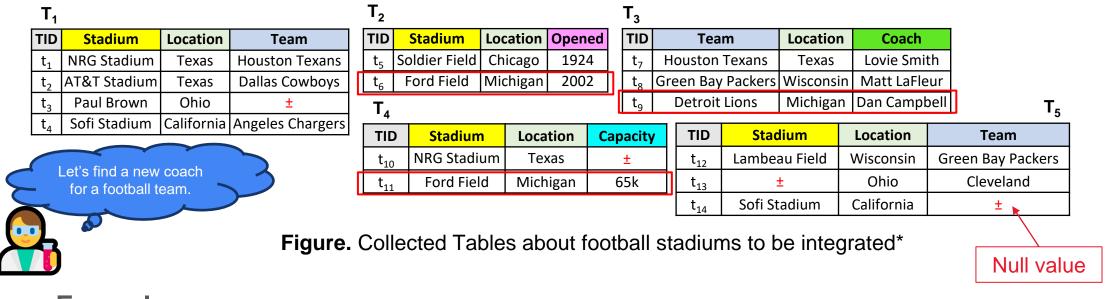
- Motivation
- Table discovery using SANTOS
- Table integration using ALITE
- DIALITE


Integrating the Discovered Tables

- How can we integrate the discovered tables into a single table?
 - Integration provides a unified view of data.
 - Integration allows data scientists to run queries that go beyond a single table.

We present ALITE as a solution to integrate the set of discovered tables.

Why Table Integration?



- Example query:
 - "Find the coaches who coach teams having stadiums established after 2000, that accommodate at least
 <u>50 thousand</u> spectators."

* The collected tables can have more columns; for conciseness, we only show the columns that we use for the discussion.

^{*} TID stands for Tuple IDs. They are not real columns, and we use them for representation only.

Why Table Integration?

- Example query:
 - "Find the <u>coaches</u> who coach <u>teams</u> having <u>stadiums</u> established after <u>2000</u>, that accommodate at least
 <u>50 thousand</u> spectators."
 - Dan Campbell is a coach who coaches the <u>Detroit Lions</u> that uses <u>Ford Field Stadium</u> established in <u>2002</u> and having a capacity of hosting <u>65k</u> spectators.

We need to (at least) integrate Tables T_2 , T_3 and T_4 to get this answer.

^{*} The collected tables can have more columns; for conciseness, we only show the columns that we use for the discussion.

^{*} TID stands for Tuple IDs. They are not real columns, and we use them for representation only.

Issues with Table Integration:

• Which columns to align together? Meta data could be imprecise!

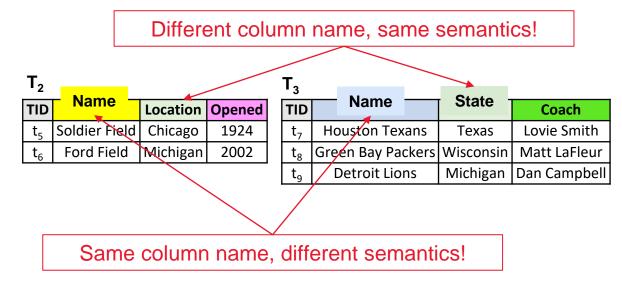


Figure. Collected Tables about football stadiums to be integrated

Issues with Table Integration

- Which columns to align together?
 - Schema matching between a table pair is not enough as we want to integrate a set of tables.

T ₁				T ₂					T ₃						
ΊD	Stadium	Location	Team	TID	Stadium	Location	Opene	d	TID		Tea	m	Location	Coach	
t ₁	NRG Stadium	Texas	Houston Texans	t ₅	Soldier Field	Chicago	1924		t ₇	Ηοι	uston	Texans	Texas	Lovie Smi	:h
t ₂	AT&T Stadium	Texas	Dallas Cowboys	t ₆	Ford Field	Michigan	2002		t ₈	Gree	en Bay	Packers	Wisconsir	n Matt LaFle	ur
t ₃	Paul Brown	Ohio	±	T			-		t ₉	D	etroit	Lions	Michigan	Dan Camp	ell T ₅
t ₄	Sofi Stadium	California	Angeles Chargers	TID	Stadium	Loca	ition	Сар	acity	,	TID	Stac	lium	Location	Team
				t ₁₀	NRG Stadiu	um Tex	xas		±	$\neg [$	t ₁₂	Lambe	au Field	Wisconsin	Green Bay Packers
				t ₁₁	Ford Fiel	d Mich	nigan	6	5k	$\neg [$	t ₁₃	:	±	Ohio	Cleveland
					•	•					t ₁₄	Sofi St	adium	California	±

Figure. Collected Tables about football stadiums to be integrated

We develop a hierarchical clustering algorithm that determines the aligning columns using holistic schema matching [1].

Issues with Table Integration

• Basic integration operators may not be effective.

T ₁				T_2					T ₃						
TID	Stadium	Location	Team	TID	Stadium	Location	Open	ed	TID	Теа	m	Location	Coach		
t ₁	NRG Stadium	Texas	Houston Texans	t ₅	Soldier Field	Chicago	1924	1	t ₇	Houston	Texans	Texas	Lovie Smi	th	
t ₂	AT&T Stadium	Texas	Dallas Cowboys	t ₆	Ford Field	Michigar	2002	2	t ₈	Green Bay	/ Packers	Wisconsin	Matt LaFle	eur	
t ₃	Paul Brown	Ohio	±	T ₄					t ₉	Detroit	Lions	Michigan	Dan Campl	pell	
t ₄	Sofi Stadium	California	Angeles Chargers) Stadium	Loc	ation	Са	pacity	TID	Stad	lium	Location	Team	
t ₁₀ NRG Stadium Texas							±	t ₁₂	Lambe	au Field	Wisconsin	Green Bay Pa	ck		
				t ₁₁	Ford Fiel	d Mic	higan		65k	t ₁₃		±	Ohio	Cleveland	ł
										t_14	Sofi St	adium	California	±	

Figure. Collected Tables about football stadiums to be integrated

- Union operator (\cup):
 - Needs all tables to have the exact same columns.
 - We can project out the aligning columns, but we miss other columns.

$$T_1 \cup T_2 \cup T_3 \cup T_4 \cup T_5$$

Issues with Table Integration

• Basic integration operators may not be effective.

T ₁				T_2					T ₃					
TID	Stadium	Location	Team	TID	Stadium	Location	Open	ed	TID	Теа	m	Location	Coach	
t ₁	NRG Stadium	Texas	Houston Texans	t ₅	Soldier Field	Chicago	1924	4	t ₇	Houston	Texans	Texas	Lovie Smi	th
t ₂	AT&T Stadium	Texas	Dallas Cowboys	t ₆	Ford Field	Michigar	n 2002	2	t ₈	Green Bay	Packers	Wisconsir	Matt LaFle	eur
t ₃	Paul Brown	Ohio	±	T					t ₉	Detroit	Lions	Michigan	Dan Campl	pell
t ₄	Sofi Stadium	California	Angeles Chargers		TID Stadium Location Cap			pacity	TID	Stac	dium	Location	Team	
	t ₁₀ NRG Stadium Texas					±	t ₁₂	Lambe	au Field	Wisconsin	Green Bay Packe			
				t ₁₁	Ford Fiel	Ford Field Michigan 6			65k	t ₁₃	:	±	Ohio	Cleveland
						-				t_14	Sofi St	adium	California	±

Figure. Collected Tables about football stadiums to be integrated

- Inner join (⋈):
 - Missed tuples having no join partner even in one table.

$$T_1 \bowtie T_2 \bowtie T_3 \bowtie T_4 \bowtie T_5$$

TID	Stadium	Location	Team	Opened	Coach	Capacity	

Issues with Table Integration

Basic integration operators may not be effective. •

T ₁				T_2					T ₃					
TID	Stadium	Location	Team	TID	Stadium	Location	Opene	ed	TID	Теа	m	Location	Coach	
t ₁	NRG Stadium	Texas	Houston Texans	t ₅	Soldier Field	Chicago	1924		t ₇	Houston	Texans	Texas	Lovie Smi	th
t ₂	AT&T Stadium	Texas	Dallas Cowboys	t ₆	Ford Field	Michigan	2002		t ₈	Green Bay	/ Packers	Wisconsir	Matt LaFle	eur
t ₃	Paul Brown	Ohio	±	T₄					t ₉	Detroit	Lions	Michigan	Dan Campl	pell
t ₄	Sofi Stadium	California	Angeles Chargers		Stadium	Loca	ation	Са	pacity	TID	Stac	dium	Location	Team
				t ₁₀	NRG Stadiu	um Te	xas		±	t ₁₂	Lambe	au Field	Wisconsin	Green Bay Pac
				t ₁₁	Ford Field Michigan 6		65k	t ₁₃		±	Ohio	Cleveland		
				-	·					t_14	Sofi St	adium	California	±

Figure. Collected Tables about football stadiums to be integrated

- Outer join (\bowtie): .
 - Not associative. •
 - Different order of integration using outer join could yield different outputs [1]. •
 - Example: $(T_1 \bowtie T_2 \bowtie T_3 \bowtie T_4 \bowtie T_5) \neq (T_5 \bowtie T_4 \bowtie T_3 \bowtie T_2 \bowtie T_1)$ •

We propose to use a scalable implementation of (Natural) Full Disjunction operator [1].

Full Disjunction (FD)

T,	I		
TIC	Stadium	Location	Team
t ₁	NRG Stadium	Texas	Houston Texans
t ₂	AT&T Stadium	Texas	Dallas Cowboys
t ₃	Paul Brown	Ohio	±
t ₄	Sofi Stadium	California	Angeles Chargers

	T ₂					T ₃						
	TID	Stadium	Location	Open	ed	TID		Tea	m	Location	Coach	
	t ₅	Soldier Field	Chicago	1924	1	t ₇	H	louston	Texans	Texas	Lovie Smi	th
	t ₆	Ford Field	Michigan	2002	2	t ₈	Gr	een Bay	Packers	Wisconsi	n Matt LaFle	eur
	T ₄					t ₉		Detroit	Lions	Michigar	Dan Campl	T ₅
Г	TID	Stadiun		ation	Ca	pacity	,	TID	Stad	lium	Location	Team
					Ca	pacity	/		Jiau		Location	Teann
	t ₁₀	NRG Stadi	um Te	xas		±		t ₁₂	Lambea	au Field	Wisconsin	Green Bay Packers
	t ₁₁	Ford Field Mid		nigan		65k		t ₁₃	±		Ohio	Cleveland
	· · ·					t ₁₄ Sofi Stad		adium	California	±		

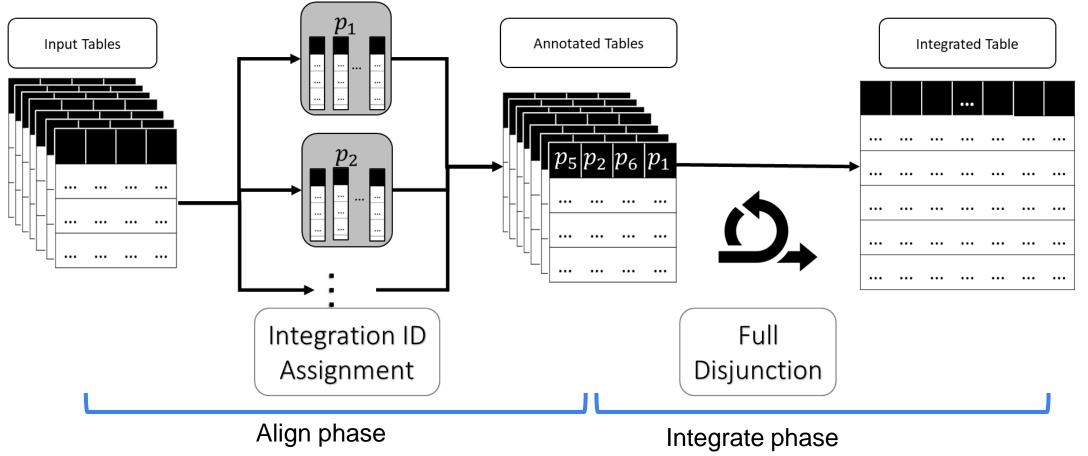
Figure. Collected Tables about football stadiums to be integrated

 $FD (T_1, T_2, T_3, T_4, T_5) = FD (T_5, T_4, T_3, T_2, T_1)$

TIDs	Stadium	Location	Team	Opened	Coach	Capacity	•
$\{t_1, t_{7}, t_{10}\}$	NRG Stadium	Texas	Houston Texans	T	Lovie Smith	±	
{t ₂ }	AT&T Stadium	Texas	Dallas Cowboys	T	T	T	•
{t ₃ }	Paul Brown	Ohio	±	T	T	T	
{t ₁₃ }	±	Ohio	Cleveland	T	T	T	
{t ₄ }	Sofi Stadium	California	Angeles Chargers	T	T	T	
{t ₅ }	Soldier Field	Chicago	T	1924	T	T	
$\{t_6, t_9, t_{11}\}$	Ford Field	Michigan	Detroit Lions	2002	Dan Campbell	65k	
$\{t_8, t_{12}\}$	Lambeau Field	Wisconsin	Green Bay Packers	Ţ	Matt LaFleur	⊥ 🔸	

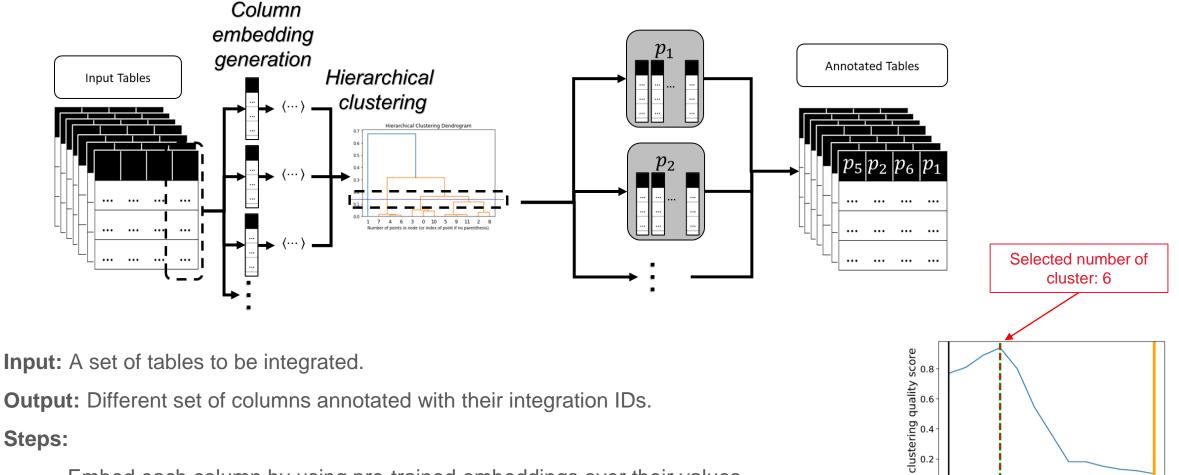
Figure. Output tuples generated using Full Disjunction operator

• An associative version of outer join operator [1].


Integrates each input tuple maximally and produces a set of maximally integrated tuples [2].

The maximally integrated tuples do not subsume each other.

Produced null due to incomplete information

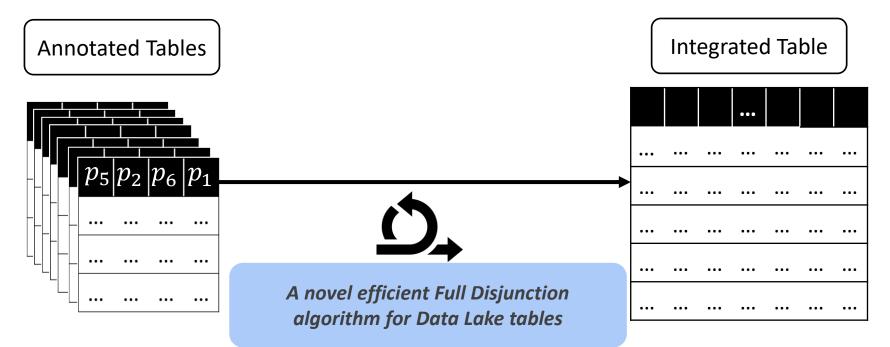

Proposed Solution

• ALITE (Align and Integrate):

- Align: Identify the matching columns across the set of tables and annotate them with a dummy column header.
- **Integrate:** Apply a novel algorithm for Full Disjunction (FD) [1] that scales better than prior work.
- [1] Galindo-Legaria. Outerjoins as Disjunctions. SIGMOD 1994

Align Phase (Phase 1)

Steps:


.

- Embed each column by using pre-trained embeddings over their values. •
- Apply hierarchical clustering over the columns. •
- Select the number of cluster that maximizes the clustering quality (e.g., Silhouette's coefficient¹). •
- Annotate each cluster with a dummy column header (column integration ID). •

3 4 5 6 7 8 9 10 11 12 13 14 15 number of clusters

Fig. Number of clusters selection

Integrate Phase (Phase 2)

- **Input:** A set of tables with their columns annotated with their integration IDs.
- **Output:** An integrated table.

We develop FD algorithm by adopting complementation semantics [5] that practically scales FD computation for table schemas forming complex cycles and having no PK-FK relations.

^[1] Galindo-Legaria. Outerjoins as Disjunctions. SIGMOD 1994

^[2] Kanza and Sagiv. Computing Full Disjunctions. PODS 2003

^[3] Cohen, Fadida, Kanza, Kimelfeld and Sagiv. Full Disjunctions: Poly-Delay Iterator in Action. VLDB 2006

^[4] Paganelli, Beneventano, Guerra and Sottovia. Parallelizing Computations of Full Disjunctions. Big Data Research 2019

^[5] Bleiholder and Naumann. Data Fusion. CSUR 2009

ALITE Full Disjunction Building Blocks

- Types of Nulls:
 - **Missing Nulls** •
 - Null values (\pm) in the input tables. •
 - **Produced Nulls** •
 - Null values (\perp) produced during the integration process due to incomplete information. ٠

	Stadium	Location	Team	Opened	Coach	Capacity
	Paul Brown	Ohio	→ ±	T	T	
	🗶 ±	Ohio	Cleveland	T	Ţ	L
	Sofi Stadium	California	Angeles Chargers	⊥ ↓		L
ng Nulls						Produced

Missir

We handle two nulls differently during the integration.

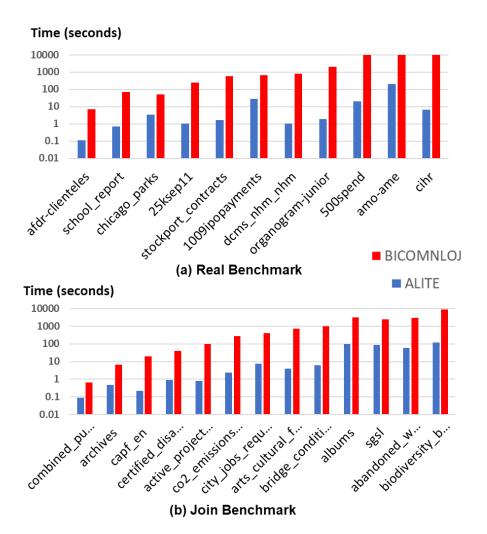
ALITE Full Disjunction Algorithm

- We use a fixed sequence of outer union, complementation and subsumption. .
- Produce maximally integrated tuples using complementation operator.
 - Replace missing nulls with distinct labeled nulls to avoid undesirable complementation. •
- Remove subsumable tuples using subsumption operator to get FD. .

ALITE Full Disjunction

- 1 Input: $\mathcal{T} = \{T_1, T_2, \dots, T_n\}$, a set of tables with integration IDs as column names
- ² Output: FD(\mathcal{T}), the Natural Full Disjunction of \mathcal{T}
- $\mathcal{T} \leftarrow \text{GenerateLabeledNulls}(\mathcal{T})$
- 4 $U_{ou} \leftarrow T_1 \uplus T_2 \uplus \cdots \uplus T_n$
- 5 $U_{\text{comp}} \leftarrow \text{Complement}(U_{\text{ou}})$
- //Apply outer union ⊎
- 6 $U_{\text{comp}} \leftarrow \text{RemoveLabeledNulls}(U_{\text{comp}})$
- 7 $T' \leftarrow \beta(U_{\text{comp}})$
- 8 Output T'

- //Apply complementation κ
- //Apply subsumption β


Key idea: Generating Labeled Nulls Avoids undesirable complementation

- Benchmark:
 - We create three new benchmarks using real data lake tables.¹
 - We also use IMDB movie benchmark.²
 - Each integration set contains a set of tables to be integrated together.

Benchmark	Tables	Columns	Tuples	Integration sets	Experiments
Align	606	4,584	2.2M	65	Align
Real	102	1, 195	219k	11	Align, Integrate
Join	302	2, 309	1.1M	28	Integrate
IMDB	6	33	3k - 30k	1	Integrate

- Align Phase:
 - Baselines:
 - Schema-matching techniques ¹
 - We adopt binary matchers such as CUPID, COMA, SF, JLM and DB.
 - ALITE variations:
 - We implement ALITE using BERT, fastText and TURL embeddings.
 - Metrics:
 - Precision, Recall and F₁-Score
 - Results:
 - ALITE based on TURL embeddings, pretrained on tables, outperforms other methods in terms of F₁-Score by over 4 % in Real Benchmark.

- Integrate Phase Efficiency
 - Baselines: BICOMNLOJ [1], ParaFD [2]
 - Metrics: Runtime
 - Results:
 - ALITE is faster than the best baseline (BICOMNLOJ) by around 10 times in average in Real and join benchmarks.

- Integrate Phase Effectiveness
 - **Baseline:** Outer join
 - Tuple Difference Ratio:
 - Tuple Difference Ratio, $TDR = \frac{|FD Tuples \cap Outer join Tuples|}{|FD Tuples|}$
 - In Real Benchmark, outer join correctly produces all maximally integrated tuples only in one case
 - In other cases, outer join produces more than 50% maximally integrated tuples at least three times.

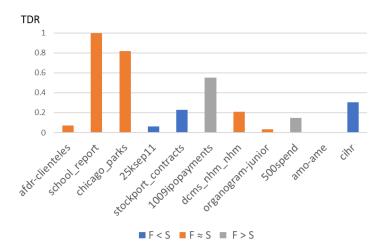


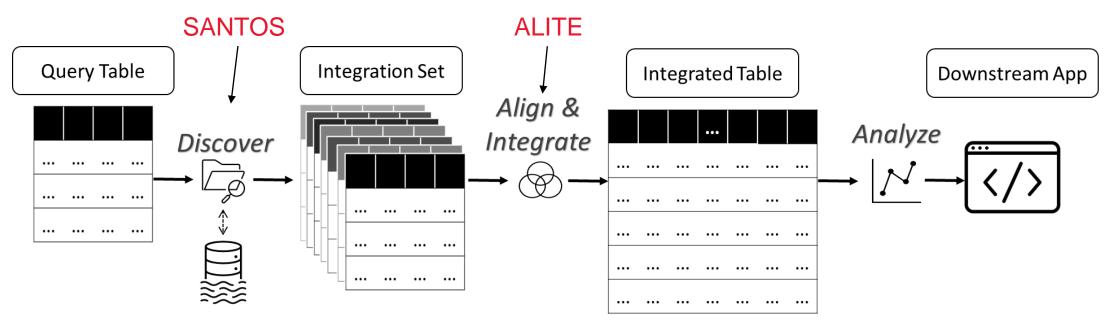
Figure. TDR in Real Benchmark

- Integrate Phase Effectiveness
 - **Baseline:** Outer join
 - Entity resolution:
 - We apply entity resolution to the output of both FD and outer join.
 - Entity resolution over Full disjunction result improves F_1 -Score by around 45%.

Integration Method	Precision	Recall	F ₁ -Score	
Full Disjunction	0.795	0.838	0.816	
Outer join	0.339	0.397	0.366	

Figure. Effectiveness of applying Entity Resolution as a downstreaming task after integration

ALITE Summary


- ALITE outperforms existing schema matchers¹ in Align Phase in terms of F₁-score by over 4 % in Real data lake Benchmark.
- ALITE is faster than the best baseline (BICOMNLOJ [1]) by around 10 times in average in Real benchmarks.
- Entity resolution over Full disjunction result improves F₁-Score by around 45% in comparison to Outer join result.

Outline

- Motivation
- Table discovery using SANTOS
- Table integration using ALITE
- **DIALITE**

End-to-end system

• **DIALITE** (Discover, Align and Integrate)

An overview of DIALITE system

- A system to extend query table by discovering new tables, integrating them.
- DIALITE allows downstreaming task over the integrated table.
- DIALITE is extendible i.e., new discovery and integration algorithms and analyses can be added easily.

SIGMOD 2023 (DEMO)

Demonstration

https://tinyurl.com/dialite-sigmod

Acknowledgements (non-exhaustive)

Wolfgang Gatterbauer

Renée J. Miller

Mirek Riedewald

Roee Shraga

Zixuan Chen

Grace Fan

Acknowledgements (non-exhaustive)

Also, thanks to my data scientist 🙂

Table Discovery and Integration in Data Lakes

Aamod Khatiwada

Northeastern University

Khoury College of Computer Sciences

Boston

khatiwada.a@northeastern.edu | https://aamodkh.github.io