
UpBit: Scalable
In-Memory Updatable
Bitmap Indexing
Anwesha, Asianna, Can, Ross, Toby, Tommy

Presenters

Brief Overview

● Bitmap Indexing
○ Read
○ Update
○ Memory

● Why?
○ Compression

■ {en,de}coding
○ Fast Bitwise Operations

■ c.f. SIMD

Basic Bitmap Design

● Bitmap Indexing
○ For each distinct value in the

data domain, we have a bit
vector

● Operation cost
○ read: 1 decode
○ update: 1 decode + 1 encode

Recall: RUM Conjecture

What we want:

● shift more to left
● auxiliary data structs

○ reduce friction of R/W
○ distribute load: currently have

single bit vector
■ better compression

● Still space efficient
○ periodic compaction/merging

Problem
How do we make bitmaps efficient for both reads and updates?

Solution
Update Conscious Bitmaps (UCB)

Update Conscious Bitmaps (UCB)

Main Component: Existence Bitvector (EB)

The existence bitvector determines
whether or not the entire row is valid or
invalid.

Instead of updating the data in-place, we
will now append the new version to the
end.

UCB Update

Mark for deletion then
append

UCB Search

Bitwise AND
between VB and EB

MAJOR FLAW

● More Update → queries = less
compressible

● Now the situation is reversed
○ Read
○ Update

Why does latency increase if we have more
updates?

● Cost of VB ^ EB increases
as more rows becomes
invalidated

● Increased average read
latency

How can we address this issue?

SOLUTION: UPBIT

Distribute the update cost

Efficiently access certain portions of the compressed bitvector

Update Bitvectors (UB)

● Instead of having only one EB, we
now have a UB for each value of the
domain

● Each value in UB is initialized to 0
● Now the actual value is calculated

using VB UB
● Keep a counter of bits set to 1 in each

UB, if 0 skip XOR altogether

Example: Updating

1. Use Value
Bitvector-Mapping
(VBM) to find the
correct row.

2. Flip bit of row 2 of UB
of A = 20

3. Flip bit of row 2 of UB
of A = 10

Example: Deletion

Example: Insertion

Problem
We still need to decode the entire bitvector before we can

obtain the value of a specific row.

Can we improve this?

Solution
Fence Pointers

Fence Pointers

● Enables efficient partial decoding close to any part of the bitvector.
● map: unencoded_word -> encoded_word

○ decode only the word

Example: Fence Pointers Walkthrough

Operation:

● FIND bit 62073

Math:

● unencoded word = 62073 / 31 = W2002
● pos = 62073 % 31 = 11

Fence:

● W2002 -> w97 (encoded word)

Q: Find bit 62150? 62150/31=W2004

Fence Pointer Granularity

● triangular relationship
○ c.f. RUM
○ not an equilateral

triangle!
● tune granularity based on

expected workload
● min write 10^3
● min read 10^5

Problem
As updates stack, UB becomes less compressible.

How do we fix this?

Solution
Merging

Merging

1. Merge each UB with the corresponding VB once we
reach a certain threshold of updates.

2. Once the threshold is reached we mark that bitvector as
"to be merged".

3. The next time we perform a search using that bitvector
we update the VB as well since we are already
calculating VB UB.

4. Once finished UB is reset back to all 0s.

Merging

Here we perform an XOR between the
VB and UB and set the new VB equal to
that result

Merging

Merging is only performed once we
receive a query using that VB in
order to reduce overhead, since we
are already performing that
calculation in the search

Why doesn't this work with UCB?

● Since we split the work of the existence bitvector between multiple
update bitvectors, we only need to XOR a portion of the existence
bitvector amount.

● If we try to apply this method to UCB we will need to merge the
existence bitvector with every single value bitvector, instead of only a
portion of it.

Experimental analysis

Experimental Analysis

● Synthetic Data Variables:
○ n = # of tuples/ size of dataset
○ d = cardinality of domain/

● Distribution of data
○ Uniform distribution
○ Zipfian distribution: generates skew

● Standalone implementation in C++ built upon the Fastbit bitvector

Scalable read

● Most important limitation of
UCB

● UCB does not provide this
○ EB becomes less

compressible
● UpBit does!

○ Recall: distributed UBs,
better compressibility

Increasing

UpBit supports fast updates

n = 100M, d = 100

query mix of 100k operations

UCB is 3.43-3.77x faster than
in-place

UpBit is 51-115x faster than
in-place

UpBit vs. read-optimized

n = 100M, d = 100

query mix of 100k operations

UpBit outperforms UCB by 3x,
but loses to read-optimized
indexes by 8%.

Multithreading

Why so much faster?

● distributed UB
● note: serial execution

○ no locking for protected
updates in these
experiments

Space overhead: auxiliary structs
● Compressed very close
● Notice:

○ good compression on UB

Design Choices (how it differs from
traditional system)

1. Distribute the update cost
a. Update Bitvectors

2. Efficiently access certain portions of the compressed bitvector
a. Fence Pointers

Goals of the Architecture

1. Make bitmaps efficient for both read and update queries.
2. Avoid unnecessarily encoding and decoding the entire bitvector.

a. FP
3. Make the bitvectors more compressible as updates stack.

a. on-the fly merges during reads
b. query-driven absorption of updates

Tuning knobs

1. UB-VB merging threshold
2. FP granularity
3. # threads

Critics and Proponents

Overheads
Can we justify the overheads UpBit imposes by using the
results it achieves?

Storage Overhead and Balance

“UpBit achieves efficient and scalable updates, while allowing
for comparable read performance, having up to 8% overhead.”

● 8% is justified? How?

● Effects of skewness?

Storage Overhead and Balance (Response)

8% is justified? How?

● Significant improvements in update
performance (51x-115x)
○ overall beneficial for any sort of mixed workload

Effects of skewness?

● Empirically, overhead remains stable at 8%
○ overhead due to XOR operation + fence pointers
○ merges mitigate UB growth
○ fence pointers scale well with data

Impact of Fence Pointer Overheads

● Fence pointers to minimize decoding overhead

● Direct access

● Is the space overhead worth it?

Impact of Fence Pointer Overheads
(Response)

● Space overhead in full UpBit: 0.5% (fence pointers) + 15% (update
bitvectors)

● Mainly from update bitvectors, so they are worth it.

Resilient to Change?
Robust?

Resilience to Different Scenarios

Performance in OLAP (range queries) vs. OLTP (short queries with
point reads + random infrequent updates)?

Resilience to Different Scenarios (Response)

Performance in OLAP vs. OLTP?

● UpBit incurs 8% read overhead vs. in-place updates
○ detrimental for point reads in OLTP

● Bitmaps are typically designed for OLAP workloads
○ optimized for (selective) range queries & updates
○ take advantage of efficient bitvector operations on columns

UpBit vs B+ Tree as Index

● UpBit is great! -efficient queries and space efficiency

● Why are B+ trees used then?

UpBit vs B+ Tree as Index (Response)

Considering the benefits of UpBit, why are B+ trees so predominantly used as indexing
structures over bitmaps considering how space efficient they are and how easily we can
perform queries?

● Use cases are different
● Bitmaps are for low-moderate cardinality
● Sparse data - selectivity queries
● Very good for OLAP queries

Design Decisions (UpBit
vs UCB)

EB vs UB

● Seperate update vectors, helps parallelism

● What about one combined structure of update

vectors?

● Drawbacks?

● A hybrid approach?

EB vs UB (Response)

Combined structure? Hybrid approach?

● Major complexity increase
● Might lose/ complicate parallelism
● What is the benefit?

○ Would need to build & evaluate to see any significant benefits

Update-only Workloads

● What if only updates, no reads?

● Would UCB be the same?

Update-only Workloads (Response)

What if a workload just has updates? Would UCB work as good UpBit in this case
considering it no longer has to pay the penalty of high read cost when updates are high
which was its primary disadvantage.

Initially maybe, Eventually No - less compressible

Delete efficiency

● Deletes are fast in UpBit

● Slow in UpBit due to EB becoming dense

● A change to UCB to make deletes as fast?

Delete efficiency (Response)

● UCB “delete” inefficiency stems from reads
● With many deletes, EB becomes dense

A change to UCB to make deletes as fast?

● Not simply— problem is fairly core to UCB

AND vs XOR

● UCB -> AND

● UpBit -> XOR

● Why is UpBit faster?

AND vs XOR (response)

We know reading in UCB requires an AND between the value and existence bitvector, but
UpBit uses XOR for reading. Why is UpBit faster? Could the choice of operation make a
difference in terms of time?

● Traditional hardware XOR faster
● New hardware ~ no difference
● EB can quickly become dense whereas UB remains sparse by design
● Operating on sparse is

Tuning the Design
(Frequency of XOR and

fence pointers)

Timing the XOR

● Non-ideal merge frequency of UB and VB?
● Automate merge frequency → Use ML?
● Workload variance changes ideal “threshold” and frequency of

fence pointers - do we assume constant workload? Skews?

Timing the XOR (Response)

What if the merging of the update bitvector (UB) and
the value bitvector (VB) is not ideal?

● Low frequency -> dense UB
● High frequency -> unnecessary operations

Could we make the merge tuning automated?

● Threshold value is fairly tolerant
● Dynamic threshold adjustment would need to

be worth any overhead

Optimal Value of ‘T’

Performance degradation with bad
values of merge frequency - ‘T’?

Optimal Value of ‘T’ (Response)

Optimal Value of merge frequency ‘T’

Graph remains nearly constant

Theoretically, we do not expect
this. Why?

Optimal Value of ‘T’ (Response)

Why the constant behavior in graph?

● Slight increase in latency after T=10
(Paper identifies 10 as optimal)

● XOR performed at word level (hardware
is very fast for XOR and remains almost
constant for word level so does not
matter if UB has extra 1s)

● UB just has to be relatively sparse
● WAH decompression does not scale

linearly with number of updates
● Data suggests UB accumulation is not as

significant for performance
○ evaluate wider range of workloads

(very high update frequency might be
more sensitive)

Fence Pointer Frequency

● Granularity behavior of fence pointers?
● Generalized value for different workloads
● Any other factors that impact
● Can we use offline heuristics to calculate

Fence Pointer Frequency (Response)

Random access →more granular | Scans → less granular fence pointers

Storage overhead for too many fence pointers

Update → maintaining cost might increase

Compressibility → coarser granularity might work

Heuristic approach → maybe used like fence pointer every 128 words or 256
words but fine-tune based on exp results

Hardware might affect cost

Fence Pointer Overhead

We observe that fence pointers can indeed help to decrease average latency
by 2.29×, requiring, however, significant space overhead of about 15%.
Almost the same benefit (2.18×), can be achieved for only 4% space
overhead

● Fence pointer overhead reduce from 15% to 4% but
performance reduced from 2.29x to 2.18x in the Experiments.

● Is this a bias?

Fence Pointer Overhead (Response)

Why did the fence pointer overhead
reduce from 15% to 4% when
performance only reduced from 2.29x
to 2.18x in the Experiments?

● granularity & overhead in log
scale

● sweet spot between no FPs and
max FPs (effectively
uncompressed)

● finer FP granularity ->
diminishing rewards

Alternative Design
Tradeoffs

Background XOR Processing

● Perform XOR of UB and VB as a background process

● Eliminate the potential overhead of READ?

Background XOR Processing (Response)

● Stale data - Might be delay between update and observed change
● Overhead of Synchronization
● Continuous CPU/ Memory use
● Increased complexity

Using Byte-Aligned Bitmap Compression

● Why underlying Fastbit design?
● Why use Word-Aligned Hybrid and not Byte-Aligned

Bitmap Compression (better space efficiency)?

Using Byte-Aligned Bitmap Compression
(Response)

Why did UpBit use the underlying Fastbit design?

● FastBit “state-of-the-art”
● performant, optimized system

Why use Word-Aligned Hybrid and not Byte-Aligned Bitmap Compression?

● Words in WAH compression align with system architecture
○ better performance

● variable-length vs. fixed-length
○ space/performance tradeoff

Summary

● Paper proposes robust design for bitmaps use case
● Extremely detailed experiments
● Details impact of each design separately
● Claims scalability but demonstrates mostly vertical scalability

(size) but not concurrency as much (talks about threads)
● CUBIT addresses concurrency (also locking with delta records)
● Could be tested with workloads targeting only one part of data for

updates
● potential comparison - bitmaps that just recreate the structure for

updates (less heavy update workloads)

Thank you!

