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So Far…



Better Solutions?

Database Researchers HATE Him!

Doctor’s discovery revealed the secret to have the perfect 
index ordering with no tradeoffs! Watch this shocking 
video and learn how to do all queries in constant time 
using this one sneaky index trick! Free of initialization 
overhead!



Foundations: What is Database Cracking?

● Unlike traditional database indexing, which requires 
prior knowledge about the queries and the data 
distribution to create and maintain indexes, 
database cracking adjusts and optimizes indexes 
on-the-fly as queries are executed. 

● With database cracking, we use the queries as hints 
to how the data has to be ordered. 

● This is different from non-discriminative indices 
such as B-Trees and Hashtables. 



Foundations: Quick Walkthrough
We take the paper 
example. Given 
queries Q1 and Q2 
we perform the 
following…



Foundations: Quick Walkthrough
Make a copy of 
Column of A, the 
Cracker column, 
which is used to take 
advantage of insertion 
order for reconstr.

Execute and Crack 
based on Q1. 



Foundations: Quick Walkthrough
Execute and Crack 
based on Q2. 

Piece 1 and 3 
needs splitting. 
Piece 2 is free 
(Zero-Cost for 
Column Slice).

Piece 5 is free.



Why Doesn’t Everyone Use Trad. Database 
Cracking?



Why Doesn’t Everyone Use Trad. Database Cracking?

● Composed of unoptimized and optimized partitions 
(sorting), the payoff is over time as more queries are 
made. Convergence issue. Solved by hybrid 
algorithms (adaptive merging + database cracking).

● CPU bound and not I-O Bounded, wasted CPU cycles 
on scanning. Optimized by branch-free cracking, 
SIMD instructions (more work per instruction), 
Vectorization, etc. 

● Rate of performance per query depends on query 
pattern or order. A counting up sequential workload 
can have non-useful partitions. Solved by Stochastic 
Database Cracking.

Comparison to Non I/O-bounded 
Database Cracking



Why doesn’t everyone use Trad. Database Cracking?

● What about cracking parallelization? The support of 
concurrency is crucial for performance on modern 
multi-core hardware. Therefore, the cracking 
algorithms must be extended to scale well with the 
available computing cores.

● If project attributes are a lot, then tuple 
reconstruction may be the bottleneck. Database 
cracking leads to an unclustered index, to which  
extra lookups are needed to fetch the projected 
attributes.

Comparison of Cracking against 
various number of attributes



Observations: What do Cracking Algorithms Have in Common?

Commonality: Difference:

Simple data partitioning. Distribution of indexing effort across every 
query sequence. 



Introducing: Adaptive Adaptive Indexing

Simple 
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Non-discri
minative 

Index

Adaptive 
Index

Adaptive
Adaptive 

Index



What's Common of All those Cracking Algorithms?

● At the heart of every cracking algorithm is simply just data partitioning.

● Given a sequence of queries (Q0, Q1, 
…, Qn), it matters how the indexing 
effort is distributed across the 
sequence of Queries!

● With enough partitioning, we can 
converge to the ideal data organization for 
the most optimal quieres!



A Novel Approach – Adaptive-Adaptive Indexing

● Based observations of different cracking algorithms, the authors of Adaptive 
Adaptive Index (Schuhknecht et al.) sought to create a generalized adaptive 
indexing algorithm that adapts itself to the characteristics of specialized 
methods. 

Features of the Adaptive-Adaptive Indexing 
Algorithm 

1- Generalized Way of Index Refinement

2- Adaptive Reorganization Effort

3-  Ability to Identify and Defuse Skewed Key 
Distributions



Feature: Generalized Index Refinement

Partition-in-k: 
● Each form of reorganization can be neatly represented via function that 

produces k disjoint partitions. 
● Given a function f(k), we can have granular influence over convergence speed, 

variance, distribution of the indexing effort.
● We need an algorithm to set the fan-out so we can easily adapt to various  

adaptive indexing algorithms.

Reorganization Method Partition-in-k Representation

Crack-in-Two 

64-bit Key Sort 



Feature: Generalized Index Refinement - Radix Partitioning
This implementation uses a specialized  
radix-based partitioning offering higher 
partitioning throughput than comparison-based 
methods. 

Query Type Radix Partitioning Method Features

Very First Query Out-of-Place Temporary storage: 
software-managed buffers, 
non-temporal stores, 
optimized micro-layout. 

Subsequent Queries In-Place Sorting within original data 
structure, ‘cuckoo-style’, no 
additional memory. 



Feature: Adaptive Reorganization Effort - First Query 
Matters

● As mentioned before, both perform 
out-of-place partitioning (cracking column 
& radix-based column).

● Classical Database Cracking simply 
conducts k = 2 or k = 3 partition.

● Need to capitalize on k-partition advantage 
(k  > 3). How can we do this efficiently on 
initialization?
 

?



Feature: Adaptive Reorganization Effort - First Query 
Matters

● Using Out-of-Place Radix Partitioning, 
leveraging software managed buffers and 
non-temporal streaming stores, we can 
reduce the partitioning costs.

● We want to take advantage of the TLB 
cache! Fan-outs > 32 partitions (assuming 
huge pages), can’t cache all address 
translations for each data entry in the 
input.

● Since most of the data is going to the 
same partition anyways, why don’t we have 
an intermediary buffer and then flush them 
to a mem address all at once.



Feature: Adaptive Reorganization Effort - First Query 
Matters

● When flushing large amounts of data, we 
want to prevent cache pollution as the 
cache line may be large.

● Leverage the SIMD to bypass CPU caches.
For a single buffer line, we need two calls 
to the AVX intrinsic 
“__mm256__stream_si256” in this example.

● Works well as these calls triggers a 
hardware write-combine.



Feature: Adaptive Reorganization Effort - First Query 
Matters

● Why does this even matter? 
What is the point of talking on all these 
optimizations that seem small?

● The key is on our first query, we can create 
a larger number (or dynamic as its control
by b_min) than cracking with negligible 
overhead and reducing the average 
partition size drastically!

● Only about a 1.5x slow-down from 0 - 512 
fan-out size compared to cracking 
initializations. We can fit these in caches 
nicely (like L3) (Data dependent).



Feature: Adaptive Reorganization Effort - What about 
Subsequent Queries?

● Sounds all good! 
However, what about the Qn query?

● We use In-place Radix Partitioning. 
> Generate the histogram
> Then perform inplace sorting (not 
complete sorting) with a replacement 
algorithm.

● Take a value lets say x0 in partition 0 that 
doesn’t belong and place it in the partition 
that it does. Then in that partition look for 
wrong values and do the same. Stop when 
x0 is filled. Rinse and repeat the cycle. 

10 1 2
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…

P0

100 3 -> 10 101

10

Pn

     …

3
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Temp

Temp

Scan



Feature: Adaptive Reorganization Effort - What about 
Subsequent Queries?

● Is this better (i.e cheaper) than two times 
in-place crack-in-two reorganizing? 

● Unfortunately, No :(

● So why do we sacrifice performance in this 
in-place radix partitioning? What is the 
point if two times in-place crack-in-two 
reorganizing is better?

My reaction when expecting radix 
partitioning to beat cracking.



Feature: Adaptive Reorganization Effort - What about 
Subsequent Queries?

● The key is that the overhead costs are 
negligible when the input sizes are small. 
That means it cost doesn’t matter when 
more partitioning happens!

● This hints that: 
With a decrease in partition size, increase 
of fan-out k. At a sufficiently small size, 
finish the partition sorting cost is 
negligible. 

● Remember earlier? A query context sorted 
index is what is being converge to (in this 
case, we are not paying upfront sorting 
costs).



Feature: Adaptive Reorganization Effort - So what's the 
policy? 

● Haven’t told you how to determine partition 
size for Partition-in-k. 
So How?

● With the following big bad Math equation:

You thought in Systems you could get away from math >:D



Feature: Adaptive Reorganization Effort - So what's the 
policy? 

● Let s be the size of the partition to 
reorganize.

● Let q be the query sequence 
number.

● Outputs fanout-bits or the actual 
partitioning of the input.



Feature: Adaptive Reorganization Effort - So what's the 
policy? 

b_first -> The k fanout for the first 
query.



Feature: Adaptive Reorganization Effort - So what's the 
policy? 

If the partition size, s, is bigger than 
t_adapt
===>
then we return the minimum fanout bit 
as the partition is way too large for less 
partitions.



Feature: Adaptive Reorganization Effort - So what's the 
policy? 

If the partition size, s, is smaller than 
t_adapt, and bigger than t_sort 
===>
then we adaptively set the number of 
bits based on the equation above. The 
smaller the partition size, the higher 
returned number of fanout bits.



Feature: Adaptive Reorganization Effort - So what's the 
policy? 

If the partition size, s, is smaller than 
t_adapt, and smaller than t_sort 
===>
we then just sort that partition! 
Return maximum number of fan-out 
bits, trigger sorting. Remember before, 
given a small enough input, the sorting 
will be very cheap!



Feature: Adaptive Reorganization Effort - So what's the 
policy? 

● This results in a smooth function. This can lead to 
possible optimizations on parameters to find the right 
descent. (Machine Learning?)



Feature: Ability to Identify and Defuse Skewed Key 
Distributions

By default, radix partitioning creates balanced partitions only if the key distribution is 
uniform. The problem is, uniformity is not always present!

Proposed Solution: Defuse the problems cause by the presence of skew in the very 
first query.

● Implementation Features: 
○ Detect skew without overhead
○ In the presence of skew, recursively split partitions that are much 

larger than the average to enforce balanced processing of 
subsequent queries. 

● Configuration: 
○ Seven configuration parameters – convergence speed, variance 

reduction, resistance toward skew, etc. 



Feature: Why Is Skew An Issue? 

● Key Issue:
○ Skewed key distributions lead to generation of 

non-uniform partition sizes. 
○ Non-uniform partition sizes can severely limit the 

gain in index quality of a partitioning step. 
● Extreme Example: 

○ Zipf distribution
■ Most frequent key occurs twice as often as 

the second most frequent key. 
● Partition Balancing with Skew: 

○ Requires use of equi-depth histograms to balance 
the partitions. 

Figure: Example of Zipf distribution



Feature: Defusing Skew

Equi-Depth Histograms: Statistical tools which 
summarize the distribution of data across a given 
attribute - partitions data in buckets such that each 
bin contains approximately the same number of 
records. 

How do we do it? 



Feature: Equi-Depth Out-of-Place Radix Partitioning 
Algorithm

Function: An algorithm that leverages 
equi-depth histograms designed to handle 
skewed data distributions from the initial query. 

Procedure

Phase Action

1 Initial Assumption and 
Histogram Construction

2 - Iterative Comparison and 
Marking Skew

- Partitioning with Respect 
to Histogram

3 In-Place Partitioning of 
Skewed Partitions Figure: Defusing of input skew



Feature: Equi-Depth Out-of-Place Partitioning - Phase 1

Phase 1 Procedure: 

1) Initial Assumption
a) Uniformly distributed keys in 

the input column
.

2) Construct Histogram .
a) First phase of the out-of-place 

partition-in-k algorithm
b) ‘bfirst’ bits for partitioning

3) Iterate – 
a)

4) Identify and mark partitions that 
exceed this threshold as skewed.



Feature: Equi-Depth Out-of-Place Partitioning - Phase 2

Phase 2 Procedure: 

1) Partition with Respect to the 
Histogram
a) Out-of-place partition-in-k
b) Copy tuples into corresponding 

partitions
c) New histograms built for 

skewed partitions, using 
minimum number of bits ‘bmin’.

d) Piggyback histogram 
generation for next partition 
phase into current step

Skewed partitions



Feature: Equi-Depth Out-of-Place Partitioning - Phase 3

Phase 3 Procedure: 

1) In-Place Partitioning of Skewed 
Partitions
a) Iterate over all skewed 

partitions
b) Partition in-place according to 

‘bmin’ many bits



Feature: Configuration Knobs
● The adaptiveness is that we can take our 

parameters to influence the degree of 
partitioning. Optimal parameters leads to 
optimal query response times.

● How do we figure it out optimal params.?

● Trial and Error (Manual Config.)

● Smarter Trial and Error => Simulated 
Annealing (Following Boltzmann 
distributions due to using a Boltzmann
probability) 



Food for Thought: Thinking Outside of Configuration 
Knobs
● Possible even better. Remember our Guest 

Lecturer Andy Huynh’s research? Perhaps 
we can transform into an optimization 
problem.

● Can we define a cost function (which is 
query response time) and then define 
neighborhood uncertainty, following a 
iterative method such as Stochastic 
Gradient Descent (SGD)?

Can this be turned into a Convex Optimization 
problem? Probably not, perhaps its another case 

of non-convex optimization.



Meta-Adaptive Index 
Now we can 

put it all 
together!



Meta-Adaptive Index - Pseudocode



Meta-Adaptive Index - Feature 1
1 META_ADAPTIVE_INDEX(table, queries) {
2     // initialize empty index column
3     initializeEmptyIndex()
4     // process first query
5     // out-of-place partition,
6     // handle possible skew, and update index
7     oopPartitionInK(table, f(table.size, 0))
...
17     for(all remaining queries q) {
18         // get query predicates
19         low = queries[q].low;
20         high = queries[q].high;
...
25         if(p[low] is not finished) {
26             ipPartitionInK(p[low], f(p[low].size, q))
27             updateIndex()
28         }
29         // try to refine the smaller partition
30         if(p[high] is not finished) {
31             ipPartitionInK(p[high], f(p[high].size, q))
32             updateIndex()
33         }
...
51 }

Function: Generalize the Way of 
Refinement

● This portion highlights the 
generalized way of index 
refinement through both 
out-of-place and 
in-place-partitioning. 

● Updates the index based on 
the initial query and 
iteratively refines it with 
subsequent queries.



Meta-Adaptive Index - Feature 2

17 for(all remaining queries q) {
18     // get query predicates
19     low = queries[q].low;
20     high = queries[q].high;
...
24     // try to refine the largest partition first
25     if(p[low] is not finished) {
26         ipPartitionInK(p[low], f(p[low].size, q))
27         updateIndex()
28     }
29     // try to refine the smaller partition
30     if(p[high] is not finished) {
31         ipPartitionInK(p[high], f(p[high].size, q))
32         updateIndex()
33     }
...
51 }

Function: Adaptive 
Reorganization Effort

● This portion highlights the 
adaptive reorganization 
effort, where priority is given 
to refining the largest 
partition first, and moving to 
the smaller if needed. 

● The effort to adapt is based 
on each query’s 
requirements and current 
state of partitions. 



Meta-Adaptive Index - Feature 3

5 // out-of-place partition,
6 // handle possible skew, and update index
7 oopPartitionInK(table, f(table.size, 0))
...
25 if(p[low] is not finished) {
26     ipPartitionInK(p[low], f(p[low].size, q))
27     updateIndex()
28 }
...
30 if(p[high] is not finished) {
31     ipPartitionInK(p[high], f(p[high].size, q))
32     updateIndex()
33 }

Function: Identify and Defuse 
Skewed Key Distributions

● This portion highlights the 
algorithm’s ability to identify 
and address skewed key 
distributions through its 
partition strategy. 

● Initially - OOP partitioning 
that allows handling 
potential skew. 

● Subsequently - IP 
partitioning to refine further.



All Subsequent Queries …Initial Query

Meta-Adaptive Index - Diagram View



Baseline Comparisons
The authors tested against:

> Standard Cracking (Standard)  

> Stochastic Cracking (Combat against Sequential Query Patterns)

> Hybrid Cracking [HSS & HCS] (Combat against Convergence issues)

> Sort + Binary Search (Extreme Case)

> Linear Scan with no Index (Extreme Case)



Experimental Evaluation: Setup

> Data: 100 million entries, each entry is 8B key and 8B RowID. Total about 1.5 GB.

Generated Key distr.: Uniform, Normal, and Zipf.

> Workload: 1000 Range Queries with 8B upper and lower bounds with selectivity 
1%.



Experimental Evaluation: Individual Query Response 
Time Test Setup
> The main goal of basically any adaptive index is to keep the pressure on the 
individual queries as low as possible.

> Tested with inspection on individual queries. Given the parameters of:

b_first = 10,   T_adapt = 64 MB,

b_min = 3,     T_sort = 256 KB

b_max = 6     Skew_Tol = 5x

> Focused on RANDOM Query Workload with 1% Selectivity.



Experimental Evaluation: Individual Query Response 
Time - Uniform
● Start: Meta-Adaptive Index is 

expensive compared to other 
baselines. 

● Pays off over time.
● Robust and Stable performance 

below 10ms.



Experimental Evaluation: Individual Query Response 
Time - Normal
● Start: Meta-Adaptive Index is 

almost equivalent to other 
baselines, slightly slower.

● High variance of response times 
for other methods (concentration)

● Robust and Stable performance 
below 20ms.



Experimental Evaluation: Individual Query Response 
Time - Zipf
● Worse case for radix based 

partitioning. Much slower (4x) to 
other baselines in the beginning.

● Skewed distribution impacts first 
query.

● Robust and Stable performance 
below 30ms.



Experimental Evaluation: Accumulated Query 
Response Time - Uniform
● The automatic configuration is 

slightly better for all workloads 
except of PERIODIC.

● Largest b_first



Experimental Evaluation: Accumulated Query 
Response Time - Normal
● The accumulated query time 

difference between manual and 
automatic are very small.

● DC (Red) slightly better than 
HCS. DD1R the same.



Experimental Evaluation: Accumulated Query 
Response Time - Zipf
● Biggest difference between 

manual config and automatic 
config

● Small b_first



Conclusions

● The authors unified the large amount of specialized adaptive indexes that aim 
at improving a specific problem at a time in a single general method. This was 
achieved this by identifying the fact that partitioning is at the core of any 
adaptive indexing algorithm.   

● A meta-index is proposed that can emulate a large set of specialized in- 
dexes, which we were able to show by inspecting the indexing signatures.

● The meta-adaptive index serves as a valid alternative for a large number of 
specialized indexes and is able to improve  in terms of robustness, runtime, 
and convergence speed over the state-of- the-art methods.

● Used automatic methods such as Simulated annealing to push the 
performance of the meta-adaptive index to the limits.



Future Work and Suggestions

● Write-Heavy Workloads
○ Investigate the performance of adaptive-adaptive indexing under write-heavy scenarios, 

develop strategies to mitigate potential overhead from frequent index updates.
● Enhanced Skew Handling

○ Investigate ways to extend skew detection and mitigation beyond initial partitioning strategies 
to improve index performance. 

● Real-World Benchmarks
○ Test the indexing algorithm on real-world applications, particularly those with mixed and 

unpredictable workloads, to validate and refine the approach. 
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Thank You!
Any Questions?


