
Efficient Indexing in Main Memory: 
Adaptive Radix Tree (ART)

Overcoming Index Structure Performance Bottlenecks

Changxuan Fan Boyang Liu Chunhao Bi



Current Problem
● Main memory capacities 

have grown, enabling most 
databases to fit into RAM.

● Binary search trees: 
inefficient due to hardware 
advancements.

● Hash tables: fast but only 
support point queries.



Prefix Tree (Trie)
- Unlike a binary search tree, 

nodes in the trie do not store 
their associated key. 

- Instead, a node's position in 
the trie defines the key with 
which it is associated. 



Radix Tree (Background)

- Unlike Prefix Tree, each 
node that is the only child is 
merged with its parent. 



ART (adaptive radix tree)
● ART, offers efficient indexing, surpassing traditional structures 

and supporting insertions/deletions.
● ART maintains sorted order, enabling additional operations like 

range scan and prefix lookup.



Radix trees vs. comparison-based trees:

● Height depends on key length, not 
on the number of elements.

● No rebalancing operations required.

● Keys stored in lexicographic order.

● Inner nodes map partial keys, leaf 
nodes store values.

● Complexity comparison: O(k log n) 
vs. O(k).



Adaptive Nodes

● Desirable large span vs. excessive space consumption:
● Trade-off illustrated with different span values.
● Adaptive Radix Tree (ART) introduces adaptivity in node 

sizes.
● Adaptive node illustration:

● Maintains tree structure while adjusting node sizes.
● Efficient support for incremental updates:

● Small number of node types with different fanouts.
● Replacement of nodes based on capacity and underfull 

conditions.



Inner Node
● Inner nodes map partial 

keys to child pointers.
● Four data structures with 

different capacities used 
internally.



Leaf Node
Structure of Leaf Nodes:

● Discussion on storing values associated 
with keys.

● Different methods for storing values:

● Single-value leaves
● Multi-value leaves
● Combined pointer/value 

slots



Now it’s time to create an ART from a naive 
radix tree! 



Let’s first compress the tree!



Optimization - Node Collapse

1. Lazy Expansion
- Inner nodes are only created if 

they are required to 
distinguish at least two leaf 
nodes

2. Path Compression
- Removes all inner nodes that 

have only a single child



Lazy Expansion



Path Compression



We’ve done the compression, what’s next?



Let’s search first!



Search



Search for “ANY”



Search for “ANY”



Search for “ANY”



Search for “ANY”



Search for “ANY”



How does this node 
look like?



This is a Node4
Compare each key one by one



What if we have more than 4 values?
Node4 store only 4 values!



We use Node16!



This is a Node16
Still compare each key one by one?



Node4

Node16

What’s the difference between Node4 and 
Node16? Only size?



SIMD - Single instruction, multiple data

● Supported by 
most modern 
computers

● Compute 
multiple data 
with one run



We can compare keys in parallel! 
(Or use binary search if not supported)



More keys? Can’t compare 48 keys in parallel!



This is a Node48
At most 48 out of 256 keys have index, rest are 

EMPTY!!



Why 256 keys?
Because each key 1 byte = 8 bits =  256 values



This is a Node256
Every key can have a pointer 



Search
- Node lookup

1. Node4 - traverse
2. Node16 

- parallel(or binary search)
3. Node 48 

- return node[index[byte]]
4. Node256 

- return node[key]
5. Time Complexity? Almost O(1)!



Insert

1. Add Leaf

2. Postfix

3. Prefix

4. Split

5. Node grow



Delete

● Symmetrical to insertion.
● The leaf is removed from an inner node, which is 

shrunk if necessary. (Path Compression)
● If a node now has only one child, it is replaced by its 

child(Lazy Expansion).



Bulk loading

● Using the first byte of each key the key/value pairs are radix 
partitioned into 256 partitions and an inner node of the 
appropriate type is created.

● Before returning that inner node, its children are created by 
recursively applying the bulk loading procedure for each 
partition using the next byte of each key.



How does ART reduce space consumption?



Reduce space consumption

● Optimization ( Lazy Expansion 
+ Path Compression)

● Adaptive Nodes ( Grow from 4 
to 16 to 48 to 256)

● Space per key is bounded 
(worst case 1 key per Node4)



What about range queries?



We sort the keys!
But in what order?



Binary-Comparable Keys

● Strings have lexicographic order (a<b<c)
● Signed integers have sign bit 0,1, where 1 is negative and 0 is 

positive, which is not lexicographically sorted
● Required transformations before storing in ART
● Sorted keys enabling efficient ordered range scans and 

lookups for minimum, maximum, top-N, etc



How to represent -1 using 4 bit?
(0001 for 1, 0100 for 4)



Binary-Comparable Keys

Example: Two’s Complement
1 - 0001 or 0000 0001

-1 - 1111 or 1111 1111
For sign bit, 1 < 0



● Sorted keys makes data in sorted order.
● All operations that rely on this order can be supported
● Replace comparison-based trees with radix trees
● Replace comparison-based sorting algorithms like quicksort or 

mergesort with the radix sort algorithm

Binary-Comparable Keys



Evaluation

● Hardware Specifications



Contestants

Adaptive Radix Tree (ART)

● Generalized Prefix Tree (GPT) —— radix tree
● Cache-Sensitive B+-tree (CSB)  ——  optimized for main memory
● k-ary Search Tree (kary)  —— read-only
● Fast Architecture Sensitive Tree (FAST) —— read-only
● Hash Table (HT)
● Red-Black Tree (RB)



Evaluation

● Search Performance
● Caching Effects
● Updates
● End-to-End Evaluation



Search Performance

Similar -> Cache effects



Search Performance

● Cycles: Processor cycles taken per lookup operation; 
a. fewer cycles indicate higher efficiency.

● Instructions: Number of instructions executed per lookup;
a. fewer instructions suggest a more efficient algorithm.

● Mispredicted Branches: Counts the times the processor's branch prediction is wrong; 
a. fewer mispredictions lead to better performance.

● L3 Cache Hits: How often the searched data is found in the L3 cache during lookups; 
a. more hits typically mean better performance.

● L3 Cache Misses: Instances where the data is not found in the L3 cache, indicating a need to access 
slower main memory; 

a. fewer misses are ideal.



Search Performance

From one query, one thread,

to using multiple unsynchronized threads

Interleave multiple tree traversals using software pipelining



Caching Effects

DRAM (dynamic random access memory)

DRAM latency amounts to hundreds of CPU cycles in today’s CPU

● skew 
● size



Cache Effects – skew

Skew: the imbalance in the frequency of access or 
distribution of the keys in a dataset

Cache misses decreases as the skew increases

Fast requires more comparisons and offset calculations



Cache Effects – cache size

Consider competing memory accesses

HT is mostly unaffected

ART can adapt flexibly



Updates

For ART, trade off between 

1. Time consuming for data structure 
adaptations

2. Time saving from the space saving

Ordered data benefits ordered search method, 
(only HT excluded)



Updates

delta mechanism

Merge FAST and red-black tree periodically

O(n) merging step



End-to-End Evaluation

System: HyPer

Compare different data structures

Implement diverse related operations

uses TPC-C, a standard OLTP benchmark



HyPer

● supports both transactional (OLTP) and analytical (OLAP) workloads
● Performance relies critically on indexes（no overhead for buffer management, locking, or latching）

● OLTP: Online Transaction Processing
● OLAP: Online Analytical Processing



End-to-End Evaluation

System: HyPer

Compare different data structures

Implement diverse related operations (read, range scan, prefix lookup, minimum, etc)

uses TPC-C, a standard OLTP benchmark



TPC-P transactions

TPC-C requires prefix-based range 
scans for some indexes, so cannot 
use hash tables for all indexes.



Space Consumption

Index 3: relatively long strings

Indexes 1, 2, 4, and 5: dense integers



Final Results

Lazy expansion helps with index 3, 6, which have TID

● TID leads to sparser distribution of keys
● With the lazy expansion, TID can be truncated

Path compression helps with all indexes



Conclusions

Lazy expansion and path compression

ART is faster than most of state-of-the-art main-memory data structures.

ART is faster than the read-only FAST.

Only Hash Table is competitive, but HT is unsorted.



Future works

● synchronizing concurrent updates
● design a space-efficient radix tree which has nodes of equal size



Thanks


