O CAS CS 561: Data Systems Architectures
S Data-intensive Systems and Computing Lab

— Department of Computer Science B l |
D iS C College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

CS561 Spring 2026 - Systems Project
Title: Implementation of an LSM-Tree based key-value store

Background: Log-structured merge-tree (LSM-trees) [1, 2, 3] are one of the most
commonly used data structures for persistent storage of key-value entries. LSM-tree-
based storages are in use in several modern key-value stores including RocksDB at
Facebook, LevelDB and BigTable at Google, bLSM and cLSM at Yahoo!, Cassandra
and HBase at Apache, and so on. LSM-trees store data in the disk as immutable logs
(also known as sorted sequence tables (SSTs)), which are maintained in hierarchical
levels of increasing capacity. To bound the number of logs that a lookup has to probe,
LSM-trees merge logs of similar sizes. The two possible merging strategies are (i)
leveling (optimized for lookups) and (ii) tiering (optimized for updates).

Objective: The objective of the project is to implement an LSM-tree using only a
single process thread. The workflow for this is as the following.

(a) Review the LSM-tree literature to understand the principles and operations
supported in an LSM-tree.

(b) Implement an LSM-tree (vanilla implementation) using only a single process
thread for both merging strategies — leveling and tiering.

(c) Develop by cloning the API available to you at: https:/github.com/BU-
DiSC/cs561 templatedb. Note that you are expected to build a more extensive
testing infrastructure.

(d) Provide the source code. The performance of your implementation will be
regularly measured, and the best performer will be announced on the website.

Note: There are two more restrictions when implementing range query and

deletes.

(1) The output of range query should be sorted and you shall not use a large vector
to store intemediate results from all the levels and sort them together to output,
this means that you need to implement the merge process of several iterators in
different runs to avoid unnecessary space amplification.

(2) The range delete implementation should have similar logic to the point
tombstone, as you learned in class. You shall not implement range query/delete
by iterating every element between min and max then issue point query/deletes.

[1] Chen Luo, Michael J. Carey. LSM-based storage techniques: a survey. VLDB J.
29(1): 393-418 (2020)

[2] Niv Dayan, Manos Athanassoulis, Stratos Idreos. Monkey: Optimal Navigable
Key-Value Store. SIGMOD Conference 2017: 79-94

[3] Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J. O'Neil. The Log-
Structured Merge-Tree (LSM-Tree). Acta Inf. 33(4): 351-385 (1996)


http://bu-disc.github.io/CS561/
https://github.com/BU-DiSC/cs561_templatedb
https://github.com/BU-DiSC/cs561_templatedb

