

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

CS561	Spring	2026	-	Research	Project	
Title:	Joins	with	Near-Sorted	Data	

	
Background:	 Modern	 day	 applications	 often	 generate	 near-sorted	 data	 with	
respect	to	some	attribute.	For	example,	near-sorted	data	is	frequently	collected	by	
stock	market	applications,	event-based	applications	like	sensor	readings,	and	data	
that	have	correlated	columns.	In	fact,	near-sorted	data	can	also	occur	as	a	result	
of	a	previous	join	operation,	or	data	that	was	recently	sorted	but	received	a	few	
updates	that	occurred	out-of-order.		
	
Join	algorithms	are	fundamental	to	database	systems	to	answer	complex	queries	
with	real-world	data	[1].	Sort-merge	join	(SMJ)	is	a	prominent	algorithm	known	
for	its	high	efficiency	when	the	input	relations	are	sorted	on	the	join	attribute.	In	
such	a	scenario,	the	sorting	phase	of	the	algorithm	is	eliminated,	and	the	algorithm	
only	merges	the	two	relations.		
	
Objective:	This	project	aims	to	explore	the	design	space	of	join	algorithms	with	
near-sorted	 data.	 Particularly,	 the	 project	 targets	 to	 answer	 the	 following	
questions:	What	if	 the	 input	relations	are	 instead,	near-sorted?	Does	sort-merge	
join	offer	a	viable	option	in	exploiting	near-sortedness?	Can	indexes	that	exploit	data	
sortedness	help	SMJ	become	sortedness-aware?		
	
Technical:	This	project	 requires	C++	programming	skills	 (particularly	working	
with	pointers).	The	following	steps	outline	the	high-level	milestones:		

1. Develop	a	simple	API	that	will	use	SMJ	to	sort	two	input	data	streams	of	
integers.		

2. Generate	differently	 sorted	data	using	 the	workload	generator	 from	 the	
Benchmark	on	Data	Sortedness	(BoDS)	[3].		

3. Measure	the	runtime	of	SMJ	with	differently	sorted	data.		
4. Use	 QuIT	 [2]	 and	 SWARE	 [4]	 to	 replace	 the	 sorting	 phase	 of	 SMJ	 and	

measure	performance.		
5. As	an	optional	extension,	you	can	also	explore	the	design	of	near-sorted	

hash	merge	join.	
	

References:	
[1] Helmer, Sven, Till Westmann, and Guido Moerkotte. "Diag-Join: An opportunistic join algorithm
for 1: N relationships." None (1997).
[2] Raman, Aneesh, et al. "QuIT your B+-tree for the Quick Insertion Tree." In Proceedings of the
International Conference on Extending Database Technology (EDBT). 2025.
[3] Raman, Aneesh, et al. "BoDS: A benchmark on data sortedness." Technology Conference on
Performance Evaluation and Benchmarking. Cham: Springer Nature Switzerland, 2022.
[4] Raman, Aneesh, et al. "Indexing for near-sorted data." 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 2023.

	
	

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

		

