Ie) CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab

C—U Department of Computer Science B l |
D iS C College of Arts and Sciences, Boston University

http://bu-disc.github.io/CS561/

CS561 Spring 2026 - Research Project

Title: Joins with Near-Sorted Data

Background: Modern day applications often generate near-sorted data with
respect to some attribute. For example, near-sorted data is frequently collected by
stock market applications, event-based applications like sensor readings, and data
that have correlated columns. In fact, near-sorted data can also occur as a result
of a previous join operation, or data that was recently sorted but received a few
updates that occurred out-of-order.

Join algorithms are fundamental to database systems to answer complex queries
with real-world data [1]. Sort-merge join (SM]) is a prominent algorithm known
for its high efficiency when the input relations are sorted on the join attribute. In
such a scenario, the sorting phase of the algorithm is eliminated, and the algorithm
only merges the two relations.

Objective: This project aims to explore the design space of join algorithms with
near-sorted data. Particularly, the project targets to answer the following
questions: What if the input relations are instead, near-sorted? Does sort-merge
join offer a viable option in exploiting near-sortedness? Can indexes that exploit data
sortedness help SM] become sortedness-aware?

Technical: This project requires C++ programming skills (particularly working
with pointers). The following steps outline the high-level milestones:
1. Develop a simple API that will use SMJ to sort two input data streams of
integers.
2. Generate differently sorted data using the workload generator from the
Benchmark on Data Sortedness (BoDS) [3].
Measure the runtime of SMJ] with differently sorted data.
4. Use QulT [2] and SWARE [4] to replace the sorting phase of SM] and
measure performance.
5. As an optional extension, you can also explore the design of near-sorted
hash merge join.

w

References:

[1] Helmer, Sven, Till Westmann, and Guido Moerkotte. "Diag-Join: An opportunistic join algorithm
for 1: N relationships.” None (1997).

[2] Raman, Aneesh, et al. "QuIT your B+-tree for the Quick Insertion Tree." In Proceedings of the
International Conférence on Extending Database Technology (EDBT). 2025.

[3] Raman, Aneesh, et al. "BoDS: A benchmark on data sortedness." Technology Conference on
Performance Evaluation and Benchmarking. Cham: Springer Nature Switzerland, 2022.

[4] Raman, Aneesh, et al. "Indexing for near-sorted data." 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 2023.



'©
DISC

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science

College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

BU




