

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

CS561 Spring 2025 - Research Project
Title: Project Qu-ART Tree – QuIT for ART?

Background: The Adaptive Radix Tree (ART)[1] is a trie-data structure offering
efficient main-memory indexing. ART builds upon the radix tree data structure that
offers operations at an 𝑂(𝑘) complexity where 𝑘 denotes the length of the key and is
independent of 𝑛, the number of entries. However, ART offers differently sized nodes,
tuned for exploiting modern hardware characteristics. Adapting each index/internal
node locally allows ART to optimize for space and efficiency at the same time.

Meanwhile, recent work on Sortedness-Aware indexing data structures[2,3] have
focused on harnessing inherent data characteristics, i.e., sortedness to improve
indexing performance. QuIT or Quick Insertion Tree proposes two interesting
strategies to adapt to sortedness – lil and pole, while also discussing pitfalls of a naïve
strategy (tail-leaf insertions) that has been widely adapted in popular data systems.

Objective: This project aims to explore the feasibility of applying QuIT-like principles
to ART. Particularly, since ART is a trie-based data structure, moving fast-path
pointers to parent-nodes (capitalizing prefixes to be more nearly-sorted) can yield
more benefits when compared to moving the pointers across the sibling nodes.

Technical: This project requires C++ programming skills (particularly working with
pointers). We can start off with an existing implementation of ART to integrate and
test our changes:

1. Implement tail-leaf/tail-inner node optimization + benchmark against
standard ART.

2. Implement lil in ART, which essentially will be a pointer to the last-inserted
internal node of the tree + another variant that will move the pointer upwards
to its parent rather than between siblings.

3. Benchmark both versions of lil against other baselines.
4. Explore pole for ART – how would its estimator work in a trie-data structure,

any possibility of optimizations, etc.
5. Implement pole in ART + benchmark

Responsible Mentor: Aneesh Raman

References:

[1] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In Proceedings of the 2013 IEEE
International Conference on Data Engineering (ICDE 2013) (ICDE '13). IEEE
Computer Society, USA, 38–49. https://doi.org/10.1109/ICDE.2013.6544812
[2] A. Raman, S. Sarkar, M. Olma and M. Athanassoulis, "Indexing for Near-Sorted
Data," 2023 IEEE 39th International Conference on Data Engineering (ICDE),
Anaheim, CA, USA, 2023, pp. 1475-1488, doi: 10.1109/ICDE55515.2023.00117.
[3] A. Raman, K. Karatsenidis, S. Xie, M. Olma, S. Sarkar, M. Athanassoulis, “QuIT
your B+-tree for the Quick Insertion Tree”, 2025 28th International Conference on
Extending Database Technology (EDBT) (EDBT ’2025), Barcelona, Spain.

