
CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

CS561 Spring 2026 – Project 1
Title: Analyzing the impact of LSM-buffer implementation on performance

This programming assignment is for groups of two or three. If there is a strong reason
you wish to work on it alone, please reach out to the teaching staff and explain why.

Introduction

A common question in production LSM-engines is how to configure some key tuning
knobs in a database system for specific workloads. A good data engineer can provide
such answers through experience, benchmarking, and intuition. The goal of this task is
to start building these skills, starting with benchmarking.

In this assignment, we focus on one of the most common LSM-based key-value stores,
RocksDB. We will compare the performance of RocksDB with different settings of the
memory buffer and for specific workloads.

Instruction

Please prepare a 50-minute time slot to go through this instruction manual. We strongly
encourage you to use SCC for this project. You can follow the same SCC guide as in
project 0 to get started. To set up SCC correctly, make sure to select Desktop interactive
app from SCC dashboard, and load cmake vscode gcc/13.2.0. Please make sure to select
correct working directory.

You can access the VS code from terminal with “code” command.

1. Download and Compile RocksDB

(1) If you are using SCC please skip to point (2), otherwise prepare your Linux
environment with:

“sudo apt-get upgrade && sudo apt-get update”

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

“sudo apt-get install make g++”

“sudo apt-get install libsnappy-dev libgflags-dev zlib1g-dev libbz2-dev liblz4-dev libzstd-dev ”

 For the following steps, it is highly recommended that you can work in a tmux terminal
in case any network issues stop your running programs. Just run “tmux” or “tmux attach –
t [session_id]”.

(2) We use one of the latest versions (v 8.9.1) of RocksDB. Navigate to your working
directory for project1 (e.g., “mkdir ~/project1/ && cd ~/project1/”) and run

“wget https://github.com/facebook/rocksdb/archive/refs/tags/v8.9.1.tar.gz”.

This will download a compressed tarball “v8.9.1.tar.gz”. Decompress it with “tar -xvzf
v8.9.1.tar.gz” and you will get a new directory named “rocksdb-8.9.1”.

(3) Go into this directory and compile its static library:

“cd rocksdb-8.9.1 && make static_lib –j2”.

Compiling the static library may take sometime between 15 minutes to half an hour to
compile. May take even more depending on the available resources. (You may have a
similar problem when you run the workload generator.)

You will have a new file (≈1.2GB) called “librocksdb.a”, which serves as the static library
of RocksDB.

Note: NO NEED TO COMPILE THE DEBUG VERSION UNLESS YOU NEED IT. If
you really want to debug your own program later, you can run “make –j2 dbg” to generate
a debug version of RocksDB so that you can have full control when debugging things.
Compiling the debug version of RocksDB is very time-consuming, you can skip this
step if you do not require full control of the codes when debugging.

2. Get Started with Sample Code

(1) Assuming that we just successfully compiled the static library under the directory
“rocksdb-8.9.1”, now we go into directory “examples/” and compile the
“simple_example” file with “cd examples/ && make simple_example”.

(2) Simply type “./simple_example” in your terminal to execute it and you will get nothing
printed in the terminal. However, now if you go to directory “/tmp/” and you will find
a directory called “rocksdb_simple_example” is created. The newly created directory is
actually the database home directory, which was just populated from “simple_example”.

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

You will find many necessary files for RocksDB under this directory (e.g., MANIFEST,
LOCK, LOG).

(3) Read the code from “simple_example.cc” and get a high-level understanding of how
we create a database with specific path, how we call a basic version of “get()”, “put()”.
(DON’T panic if you cannot understand the code, since you are not required to
understand everything. You might be confused about “IncreaseParallelism(),
OptimizeLevelStyleCompaction(), WriteBatch, PinnableSlice”, just skip these when you read the
example code).

3. Workload Generator

(1) Go into your working directory for project 1 and run

“git clone https://github.com/BU-DiSC/K-V-Workload-Generator.git”.

(2) Compile the workload generator with “cd K-V-Workload-Generator && make” and you will
get an executable file “./load_gen” that can produce much more complicated workload
than what we have in project0. For example, run

“./load_gen -I 100000 -Q 3000 -S 1000 -Y 0.3”.

Where “I” specifies the number of inserts, “Q” specifies the number of point queries, “S”
specifies the number of range queries with selectivity “Y” (Note that the configuration
characters differ from what we have in project 0). After you run the above command,
you will get a “workload.txt” mixed with these operations.

The workload file will have 100000+3000+1000=104000 lines. Every line in this
workload file starts with a character that specifies the operation type, and then the
parameters for the operation. For example, “I 801627617 woQf” means that inserts a
key-value pair (801627617, “woQf”), and “S 2992416503 4294786680” means a range
query between key 2992416503 and 4294786680.

(3) To simplify your implementation, we provide another example file
“simple_example.cc” that can parse the workload file we just produced. (See https://bu-
disc.github.io/CS561/projects/simple_example.cc). The workflow is as follows:

a) Navigate to “examples” directory. Rename the origin “simple_example.cc”
as “simple_example_old.cc”. Move the new one (provided by us) to the same
path as the old one.

b) Compile the new “simple_example.cc” by “make simple_example” under the
“examples/” folder.

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

c) Move the workload file (“workload.txt”, that we just created using
“./load_gen”) under the same directory with “simple_example.cc” (i.e.,
“rocksdb-8.9.1/examples/”).

d) Run “simple_example” under the “examples/” directory
e) Check if the database directory “/tmp/cs561_project1/” has been created. If

the path exists and it has similar files to “/tmp/rocksdb_simple_example/”,
you are good now.

Experiment

As you will be required to benchmark the system performance under different settings,
you will have to know how to change the configuration in the example code. In most
cases, you will play with the variable “Options& op”. For example, if you want to set 32MB
as the write buffer size (essentially L0 size in the Log-Structured Merge Tree) in
RocksDB, you can write “op.write_buffer_size= 33,554,432” (32*1024*1024 Bytes) where
the default value of write buffer size is 64MB and put this line of code before we pass
“op” to the “Open(op,…,…)” function.

In the submission document, you need to present their performance (either the latency
for each type of operation or the overall latency to execute the workload).

1. Configure the system with the following specifications (examples are provided):
a. Set the write buffer size as 2MB.
b. Try four different types of memTable implementation and compare the

operation latency (examples are provided). You can check the available
implementation from the file “rocksdb-8.9.1/include/convenience.h”
(lines 201 - 229). The example of specifying the memTable is in line 790
of “rocksdb-8.9.1/include/advanced_options.h”. A more detailed
declaration can be found in “rocksdb-8.9.1/include/memtablerep.h”. Note
that if you choose vector as the memTable factory, you need to add
“op.allow_concurrent_memtable_write = false;” before you call “Open” function.
Every time you make some changes in your code to vary the memTable
implementation, remember to re-compile “simple_example.cc” by “make
simple_example” under the “examples/” folder.

2. Generate the following 3 types of workloads (the entry size should be set as 64B)
and store the workload files somewhere safe with distinct names. For each
workload, copy it under the “examples/” folder (rename the workload file by
“workload.txt”) and test the system performance with varying the memory
buffer implementation as mentioned above (4 experiments per workload, each
experiment specifies one type of memTable implementation):

(a) Insert-only workload: 1M inserts

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

(b) Mixed workload (insert and point queries): 900K inserts, 100K point queries
(c) Mixed sequential workload (insert and point queries): 900K inserts, 100K

point queries

Note: To generate sequential workload (inserts and then queries), you make the
following changes in “load_gen.cc”, re-compile “load_gen” and re-generate the
workload using “load_gen”:

“#define PQ_THRESHOLD 0.1” à“#define PQ_THRESHOLD 1.0”

3. Summarize the above experiments (with figures) and explain how the
implementation of the memory buffer affects the system performance.

Question

1. How do you think a change (increase or decrease) in the memory buffer size
would affect the workload execution latency? You may want to run some
experiments to quantify this; otherwise, you can provide your intuition to
explain your answer.

Submission instructions

Please submit a single PDF file in Gradescope. Hand-written reports are NOT allowed!
Make sure that you submit as a group! In this file include your full names and BU
IDs. There should be only one submission per group.

