CAS CS 561: Data Systems Architectures
S Data-intensive Systems and Computing Lab

— Department of Computer Science B l |
D iS C College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

QO

CS561 Spring 2026 — Project 0

Title: Implementation of a Zone Map

Background: A zone map is a coarse index that maintains minimum/maximum value
ranges of one or more specified columns over contiguous sets of data blocks or rows,
called zones of a table [1]. A zone map helps in data pruning of both single keys and
a range of keys. The queried key/range of keys is first checked with the min/max
values of every block/zone before searching within the block. By avoiding
unnecessary I/Os to the storage, zone maps improve query performance.

Simple sorted array/vector:
T1] 2 | 3 [a1 5 T 61 o T o T o1 1

max max max max max

Zonemap: l l l 1

| 1,2,..6,7..,10 | 11,12,...15,...20 | 21,22,...25....30 | 31,32,...35,...40 | \

:

min min min min min

Objective: The objective of the project is to implement a simple zone map and
evaluate its performance on both point and range queries. For range queries, you will
need to implement the query generator that can issue range queries with specific
selectivity. The workflow for this is as the following.

(a) Implement a zone map by cloning the API available at: https://github.com/BU-
DiSC/cs561 templatezonemaps2. This API contains a header file with basic
functionality definitions for a zone map. You are free to modify certain
components to improve performance.

(b) Implement the range query generator with selectivity s (0 < s < 1) as input in the
existing workload generator (workload_generator.cpp). You can fix the number of
elements to be selected as |s * N| in your implementation. The existing workload
generator generates three files: a raw data (to be input) file, a point query file, and
an empty file. The empty file is supposed to store the generated range queries after
you implement the range query generator.

(c) In main.cpp, write the code for a parser that parses the range query file. Report the
average execution time for the following workloads.
W1: 5M inserts with sorted data®, 10K point queries
W2: 5M inserts with sorted data, 1K range queries, selectivity: 0.001
W3: 5M inserts with sorted data, 1K range queries, selectivity: 0.1
W4: W1 with unsorted data
W5: W2 with unsorted data
W6: W3 with unsorted data

*To generate sorted data just use the --sort flag while generating the data.

http://bu-disc.github.io/CS561/
https://github.com/BU-DiSC/cs561_templatezonemaps2
https://github.com/BU-DiSC/cs561_templatezonemaps2

CAS CS 561: Data Systems Architectures

gg % Data-intensive Systems and Computing Lab
— Department of Computer Science B l |
D iS C College of Arts and Sciences, Boston University

http://bu-disc.github.io/CS561/

(d) Research questions.

i) What is the expected memory footprint (in bytes) to build the zone map?
(assume: number of elements is N and every zone has d entries)

ii) In practice, we may have raw data stored on disk, and the zone map is
maintained in memory to reduce the number of required I/Os to answer
queries. What should we do if we only have a limited memory budget to
build the zone map (i.e., when the memory budget of M bytes is smaller
than the expected memory footprint)?

Deliverables: Zone map implementation code that runs the test cases. It is required
to have comments within the implementation, that explain various design decisions.
Do NOT upload your code to public repositories, such as GitHub and Bitbucket.

[1] M. Ziauddin, A. Witkowski, Y. J. Kim, D. Potapov, J. Lahorani, and M. Krishna.
2017. Dimensions based data clustering and zone maps. PVLDB Endow. 10(12), pp.
1622-1633. DOI: https://doi.org/10.14778/3137765.3137769.

http://bu-disc.github.io/CS561/

