Implementation of an
LSM-Tree-Based Key-Value
Store

Minghong Zou, Haonan Wu

Motivation

LSM-tree is widely used in modern key-value stores such as RocksDB and LevelDB due to its
write-optimized design. However, different compaction policies and features such as Bloom filters and
range deletions have a significant impact on performance in real-world workloads.

Our goal is to implement a modular, high-performance LSM-tree from scratch to explore these tradeoffs,
compare tiering vs leveling compaction, and investigate how features like Bloom filters affect query
latency. This also serves as a practical way to deepen our understanding of the internal mechanics of
modern storage engines.

Implementation

Implemented both Leveling and Tiering Compaction Strategies
a. Leveling: older SSTables are merged and deduplicated
b. Tiering: newer SSTables are merged within the same level
Used SkipList in MemTable
Bloom Filter Integration
o Each SSTable has a Bloom filter stored persistently to reduce false reads
e Compact and Scan Logic
o Implemented key de-duplication, range tombstone handling, and merge-heap scan

Disk

LO
Compact
(merge &\l/
L1

Compact J/

(merge &

sort) L2

sort)

DB

¥
A

Read

yd

Vector fileNames

Vector LevelSize

¢

J\\)

\ |
Memory l

K

Read First

MemTable

. Read2nd

Full e

WV Read 3rd

ImmutableMemtable Read 4th
]
flush(with Bloom Filter + persistence)
A4
SSTable SSTable \
a2

SSTable

SSTable

SSTable
SSTable

SSTable
SSTable

SSTable

1 # header

2 10 « All size

3 3 « range tomb size

4 10 < min

5 70 « max

6 1 « start seq

7 10 « bit per elements

8 45 « entries offset

9 120 « range delete offset
S : F t 10 144 < key index offset

av' ng orma 11 XX « numElements

12 XXX « Bloom filter offset

13 # entries

14 10101 3 « Put(1@, [1,3]) seq 1

15 202023

16 303033

17 4040 4 4

18 605053

19 10 1 70 « point delete(7@) seq 18

20 907073

21 # range tombstones

22 7 15 35 « DeleteRange(15,35) seq 7|

23 8 25 45

24 5 42 60

25 # Bloom filter

26 XXXXXXKXXXXXXXXXXXXXXXXXXXKXXXXXXXX <« just for show, only include © or 1

27 # key index offset list

28 10 46 « Key offset key 10 offset 46

29 20 57

30 30 68

31 40 79

32 58 90

33 76 101

Compaction-Leveling

Always select the oldest SSTable from the current level as the compaction source
Find SSTables in the next level that overlap in key range

Use a min-heap to merge entries; keep the one with the highest sequence number
Skip entries covered by range tombstones

Write the merged result to the next level and delete old files

If the target level exceeds its size limit, trigger recursive compaction

If at the bottom level (level >= max_level):

No further compaction is performed

Clean up entries deleted or covered by range tombstones

If result is empty — delete the file

Otherwise, create a new SSTable and dynamically expand to a new level

After compaction:

e Delete all input files from current levels
e Update vectors (sstables_file, levels_size)
e If the next level is too large, recursively call compaction

Memtable

J

SSTable

Compaction (remove overlap,

discard deleted keys)

SSTableL1

SSTableL1

Compaction

SSTableL2

SSTableL2

Compaction(First highest sstable

will clear range tomb, tomb)

SSTableL3

Compaction-Tiering

e Each level holds multiple overlapping SSTables

e Once the total number of entries in the level exceeds a threshold, trigger compaction
e All entries and range tombstones from the level are merged directly into one SSTable
e No deduplication or tombstone filtering is performed during merge

° The result SSTable is written to the next level

Memtable % p

SSTable
SSTable
SSTable Solabe
SSTable
SSTable
SSTable

SSTable

SSTable

SSTable

SSTable

SSTable

Experiment

e Pure Workloads: GET, SCAN, PUT, DELETE
e Mixed Workloads: PUT+DELETE, PUT+GET

e LevelRatioT

GET-Only Workload

Bloom filters speed up GET in Leveling

But may less effective in Tiering, and in some
time may increase query time due to:

e In Tiering, each level contains multiple
overlapping SSTables

e The same key may appear in several
SSTables

e Bloom filters are applied per SSTable and
often return false positives

60

50

N
(=}

Execution Time/s
[3*) w
(=) (=}

Performance of GET

—Leveling
—Tiering

—Leveling+Bloom Filter
—Tiering+Bloom Filter

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of GET operations

SCAN-Only Workload

Leveling outperforms Tiering

e |Leveling keeps data with
non-overlapping files

e Tiering accumulates many overlapping
files per level, increasing merge
complexity and degrading scan
efficiency

The performance gap between short-range
and long-range scans is minimal for both
strategies.

Execution Time/s

400

350

300

250

200

150

100

50

Performance of SCAN

—Leveling-Short Range

—Leveling-Long Range
—Tiering-Short Range
—Tiering-Long Range

1000 1500 2000 2500 3000

Number of SCAN operations

PUT-Only Workload

Tiering is more efficiently

e Less frequent compactions reduce
write amplification

Write pattern (sequential vs random)
has minimal impact

e All writes go through MemTable
and are flushed to disk in sorted
order

S
=

Execution Time/s
=) =]
~ =N

0.2

Performance of PUT

—Leveling-Sequential Put
—Leveling-Random Put
—Tiering-Sequential Put

—Tiering-Random Put

1000 2000 3000 4000 5000 6000 7000

Number of PUT Operations

8000

9000

10000

DELETE-Only Workload

e DELETE issimilarto PUT —> Tiering
outperforms Leveling

e Tiering keeps tombstones longer
without merging

e InLeveling, range deletes trigger
costly compactions and repeated
merges

e InTiering, range tombstones are
lazily handled

1.4

Execution Time/s
j =}
oo

0.4

0.2

Performance of DELETE

—Leveling-Point Delete
—Leveling-Range Delete
—Tiering-Point Delete

—Tiering-Range Delete

—

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of DELETE Operations

PUT-Range DELETE
Workload

Write-only workloads —> Tiering
outperforms Leveling

Leveling performs worse under
sequential writes
e Sequential PUTs overlap heavily
with range tombstones

e This triggers large compactions,
increases write amplification

0.8

0.6

Execution Time/s

0.4

0.2

Performance of PUT+DELETE

—Leveling-Sequential PUT
—Leveling-Random PUT
—Tiering-Sequential PUT
—Tiering-Random PUT

0.1 0.2 0.3 0.4 0.5 0.6

Ratio of PUT

0.7

0.8

0.9

PUT-GET Workload

e PUT+GET workload behaves similarly

to pure GET
e Bloom filters are still effective
in Leveling

e File overlap in Tiering limits
Bloom filter usefulness

e Peak overhead occurs at PUT ratio =
0.5
° Read and write operations
interfere with each other

Execution Time/s

Performance of PUT+GET
—Leveling
—Leveling+Bloom Filter
—Tiering

—Tiering+Bloom Filter

=~ 3\

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ratio of PUT

Impact of Level Ratio T

700

600

Execution Time/ms
w £ W
8 8 S

)
=]
S

100

Performance of PUT in different Level Ratio T

—Leveling-PUT
—Tiering-PUT

Level Ratio T

As level ratio T increases, compaction cost grows faster
in Leveling than in Tiering

Leveling forces aggressive merge to maintain
non-overlapping layout

60

50

Execution Time/s
w ey
o (=}

)
=)

Performance of GET in different Level Ratio T

—Leveling-GET
—Tiering-GET

Level Ratio T

As level ratio T increases, GET cost grows faster in
Tiering than in Leveling

Tiering accumulates more overlapping files,
increasing lookup overhead

Summary

e Tiering performs better in write-heavy workloads
e Leveling is superior for point queries and scan-heavy workloads
e Bloom filters help Leveling, but are less effective in Tiering due to overlapping files

e Leveling’s PUT performance and Tiering’s GET is more sensitive to the level ratio T
than in Leveling, due to increasing overlap among files

Thank You!

