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Motivation

LSM-tree is widely used in modern key-value stores such as RocksDB and LevelDB due to its
write-optimized design. However, different compaction policies and features such as Bloom filters and
range deletions have a significant impact on performance in real-world workloads.

Our goal is to implement a modular, high-performance LSM-tree from scratch to explore these tradeoffs,
compare tiering vs leveling compaction, and investigate how features like Bloom filters affect query
latency. This also serves as a practical way to deepen our understanding of the internal mechanics of
modern storage engines.



Implementation

Implemented both Leveling and Tiering Compaction Strategies
a. Leveling: older SSTables are merged and deduplicated
b.  Tiering: newer SSTables are merged within the same level
Used SkipList in MemTable
Bloom Filter Integration
o  Each SSTable has a Bloom filter stored persistently to reduce false reads
e Compact and Scan Logic
o  Implemented key de-duplication, range tombstone handling, and merge-heap scan
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1 # header

2 10 « All size

3 3 « range tomb size

4 10 < min

5 70 « max

6 1 « start seq

7 10 « bit per elements

8 45 « entries offset

9 120 « range delete offset
S : F t 10 144 < key index offset

av' ng orma 11 XX « numElements

12 XXX « Bloom filter offset

13 # entries

14 10101 3 « Put(1@, [1,3]) seq 1

15 202023

16 303033

17 4040 4 4

18 605053

19 10 1 70 « point delete(7@) seq 18

20 907073

21 # range tombstones

22 7 15 35 « DeleteRange(15,35) seq 7|

23 8 25 45

24 5 42 60

25 # Bloom filter

26 XXXXXXKXXXXXXXXXXXXXXXXXXXKXXXXXXXX <« just for show, only include © or 1

27 # key index offset list

28 10 46 « Key offset key 10 offset 46

29 20 57

30 30 68

31 40 79

32 58 90

33 76 101



Compaction-Leveling

Always select the oldest SSTable from the current level as the compaction source
Find SSTables in the next level that overlap in key range

Use a min-heap to merge entries; keep the one with the highest sequence number
Skip entries covered by range tombstones

Write the merged result to the next level and delete old files

If the target level exceeds its size limit, trigger recursive compaction



If at the bottom level (level >= max_level):

No further compaction is performed

Clean up entries deleted or covered by range tombstones

If result is empty — delete the file

Otherwise, create a new SSTable and dynamically expand to a new level

After compaction:

e Delete all input files from current levels
e Update vectors (sstables_file, levels_size)
e If the next level is too large, recursively call compaction
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Compaction-Tiering

e  Each level holds multiple overlapping SSTables

e  Once the total number of entries in the level exceeds a threshold, trigger compaction
e All entries and range tombstones from the level are merged directly into one SSTable
e No deduplication or tombstone filtering is performed during merge

° The result SSTable is written to the next level
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Experiment

e Pure Workloads: GET, SCAN, PUT, DELETE
e Mixed Workloads: PUT+DELETE, PUT+GET

e LevelRatioT



GET-Only Workload

Bloom filters speed up GET in Leveling

But may less effective in Tiering, and in some
time may increase query time due to:

e In Tiering, each level contains multiple
overlapping SSTables

e The same key may appear in several
SSTables

e Bloom filters are applied per SSTable and
often return false positives
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SCAN-Only Workload

Leveling outperforms Tiering

e |Leveling keeps data with
non-overlapping files

e Tiering accumulates many overlapping
files per level, increasing merge
complexity and degrading scan
efficiency

The performance gap between short-range
and long-range scans is minimal for both
strategies.
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PUT-Only Workload

Tiering is more efficiently

e Less frequent compactions reduce
write amplification

Write pattern (sequential vs random)
has minimal impact

e All writes go through MemTable
and are flushed to disk in sorted
order
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DELETE-Only Workload

e DELETE issimilarto PUT —> Tiering
outperforms Leveling

e Tiering keeps tombstones longer
without merging

e InLeveling, range deletes trigger
costly compactions and repeated
merges

e InTiering, range tombstones are
lazily handled
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PUT-Range DELETE
Workload

Write-only workloads —> Tiering
outperforms Leveling

Leveling performs worse under
sequential writes
e Sequential PUTs overlap heavily
with range tombstones

e This triggers large compactions,
increases write amplification
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PUT-GET Workload

e PUT+GET workload behaves similarly

to pure GET
e  Bloom filters are still effective
in Leveling

e File overlap in Tiering limits
Bloom filter usefulness

e Peak overhead occurs at PUT ratio =
0.5
° Read and write operations
interfere with each other
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Impact of Level Ratio T
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As level ratio T increases, compaction cost grows faster
in Leveling than in Tiering

Leveling forces aggressive merge to maintain
non-overlapping layout
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Summary

e Tiering performs better in write-heavy workloads
e Leveling is superior for point queries and scan-heavy workloads
e Bloom filters help Leveling, but are less effective in Tiering due to overlapping files

e Leveling’s PUT performance and Tiering’s GET is more sensitive to the level ratio T
than in Leveling, due to increasing overlap among files



Thank You!



