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Motivation

LSM-tree is widely used in modern key-value stores such as RocksDB and LevelDB due to its 
write-optimized design. However, different compaction policies and features such as Bloom filters and 
range deletions have a significant impact on performance in real-world workloads.

Our goal is to implement a modular, high-performance LSM-tree from scratch to explore these tradeoffs, 
compare tiering vs leveling compaction, and investigate how features like Bloom filters affect query 
latency. This also serves as a practical way to deepen our understanding of the internal mechanics of 
modern storage engines.



Implementation

● Implemented both Leveling and Tiering Compaction Strategies
a. Leveling: older SSTables are merged and deduplicated
b. Tiering: newer SSTables are merged within the same level

● Used SkipList in MemTable
● Bloom Filter Integration

○ Each SSTable has a Bloom filter stored persistently to reduce false reads
● Compact and Scan Logic

○ Implemented key de-duplication, range tombstone handling, and merge-heap scan





Saving Format



Compaction-Leveling

● Always select the oldest SSTable from the current level as the compaction source
● Find SSTables in the next level that overlap in key range
● Use a min-heap to merge entries; keep the one with the highest sequence number
● Skip entries covered by range tombstones
● Write the merged result to the next level and delete old files
● If the target level exceeds its size limit, trigger recursive compaction



If at the bottom level (level >= max_level):

● No further compaction is performed
● Clean up entries deleted or covered by range tombstones
● If result is empty → delete the file
● Otherwise, create a new SSTable and dynamically expand to a new level

After compaction:

● Delete all input files from current levels
● Update vectors (sstables_file, levels_size)
● If the next level is too large, recursively call compaction





Compaction-Tiering

● Each level holds multiple overlapping SSTables

● Once the total number of entries in the level exceeds a threshold, trigger compaction

● All entries and range tombstones from the level are merged directly into one SSTable

● No deduplication or tombstone filtering is performed during merge

● The result SSTable is written to the next level





Experiment

● Pure Workloads: GET, SCAN, PUT, DELETE

● Mixed Workloads: PUT+DELETE, PUT+GET

● Level Ratio T



GET-Only Workload
● Bloom filters speed up GET in Leveling

● But may less effective in Tiering, and in some 
time may increase query time due to:

● In Tiering, each level contains multiple 
overlapping SSTables

● The same key may appear in several 
SSTables

● Bloom filters are applied per SSTable and 
often return false positives



SCAN-Only Workload
● Leveling outperforms Tiering 

● Leveling keeps data with 
non-overlapping files

● Tiering accumulates many overlapping 
files per level, increasing merge 
complexity and degrading scan 
efficiency

● The performance gap between short-range 
and long-range scans is minimal for both 
strategies.



PUT-Only Workload
● Tiering is more efficiently

● Less frequent compactions reduce 
write amplification

● Write pattern (sequential vs random) 
has minimal impact

● All writes go through MemTable 
and are flushed to disk in sorted 
order



DELETE-Only Workload
● DELETE is similar to PUT —> Tiering 

outperforms Leveling
● Tiering keeps tombstones longer 

without merging

● In Leveling, range deletes trigger 
costly compactions and repeated 
merges

● In Tiering, range tombstones are 
lazily handled 



PUT-Range DELETE 
Workload

● Write-only workloads —> Tiering 
outperforms Leveling

● Leveling performs worse under 
sequential writes

● Sequential PUTs overlap heavily 
with range tombstones

● This triggers large compactions, 
increases write amplification



PUT-GET Workload
● PUT+GET workload behaves similarly 

to pure GET
● Bloom filters are still effective 

in Leveling
● File overlap in Tiering limits 

Bloom filter usefulness

● Peak overhead occurs at PUT ratio ≈ 
0.5

●     Read and write operations 
interfere with each other



Impact of Level Ratio T

● As level ratio T increases, compaction cost grows faster 
in Leveling than in Tiering

● Leveling forces aggressive merge to maintain 
non-overlapping layout

    

● As level ratio T increases, GET cost grows faster in 
Tiering than in Leveling

● Tiering accumulates more overlapping files, 
increasing lookup overhead



Summary

● Tiering performs better in write-heavy workloads

● Leveling is superior for point queries and scan-heavy workloads

● Bloom filters help Leveling, but are less effective in Tiering due to overlapping files

● Leveling’s PUT performance and Tiering’s GET is more sensitive to the level ratio T 
than in Leveling, due to increasing overlap among files



Thank You!


