
Concurrency Aware
Algorithm Design For ZNS
SSD’s
Anastas Kanaris, Bruce Casillas, Ross Mikulskis

Motivation

Why is Concurrency Aware Algorithm Design
Important?

To Maximize
Modern Hardware
Capabilities

● Enable Parallelism

● Maximize Throughput

● Mitigate Write Amplification

● Without this, we won’t know

how to fully utilize hardware

Problem
statement

How can we quantify read/write
asymmetry and concurrency in
ZNS SSDs?

● How do we test for this, without

buying a bunch of different physical

SSD’s.

● Why is it important to know this for

ZNS?

Recall: Storage Hierarchy Pyramid

Storage
Hierarchy
01

Flash SSD’s are taking the place of HDD’s in

storage pyramid because the speed

increases are worth more than the cost

increase

Speed,
Cost

Size

Problem: Block Interface Tax

Traditional SSD
02

● Random writes to any logical block
address.

● Device firmware handles internal
complexities like wear leveling and
garbage collection.

● The host (OS/filesystem/database) has no
visibility into the internal physical layout.

ZNS SSD
03

● Storage divided into zones, and writes
must be sequential within each
zone.

● The host is responsible for managing
zone write pointers and handling
resets.

● This offloads complexity from the
SSD firmware to the host, enabling
better coordination and
performance.

Comparing SSD
Types
04
Traditional SSDs: Still maintain block interface
design, simplifies host software. Operational cost
of supporting this are growing prohibitively.
Mismatch between allowed operations and flash
media.

ZNS SSDs: Designed to better take advantage of
the flash media they’re built on. More complex to
use, but offer performance benefits

➔ ConfZNS++!

➔ Developed by Storage and Network research group - VU Amsterdam

➔ Allows users to configure zones, enabling workload-aware tuning.

➔ Passes this configuration into FEMU, allowing users to emulate ZNS behavior without the physical

hardware

➔ Inside FEMU we can use FIO to simulate reads/writes to ZNS device

How do we test different configurations?

➔ Install ConfZNS++ Code Artifact in Linux Environment

➔ Install FEMU so that ConfZNS++ can connect to it

➔ Use ConfZNS++ to load desired ZNS Configuration into VM

➔ Inside VM run FIO tests

➔ Send results back to host machine and check for overarching trends

Methodology

➔ SU Zone: 1:1 Zone-Parallel Unit Mapping

➔ MU^2 Zone: 1 Zone Maps to 2 Parallel Units

➔ MU^4 Zone: 1 Zone Maps to 4 Parallel Units

➔ FU Zone: 1 Zone Maps to all Parallel Units

Tested Parameters - ZNS Configurations

➔ –numjobs

◆ Simulates concurrent access from multiple sources

➔ –iodepth

◆ Controls level of queuing and parallelism within each job.

➔ -blocksize

◆ Controls how large each I/O request is

Tested Parameters - FIO

Experiments

Test: Inter-Zone Parallelism
Idea: Increase the number of jobs

(threads) spawned by the test

This simulates concurrent access from

multiple sources

Test: Inter-Zone Parallelism (cont.)

Test: Inter-Zone Parallelism (Reads)

Test: Intra-zone Parallelism
Idea: Increase the io-depth, increasing the

number of sequential IO requests

Did not really gain meaningful information from

this test, possible there’s a better parameter to

use

Tests: Mixed Workloads
Idea: test mix of read/writes instead of just

writes

Have had issues configuring this test but hoping

to have results soon!

Conclusions

What did we learn?
➔ How Storage Hardware has evolved over time

➔ How FIO and FEMU/ConfZNS++ can be used to experiment with different ZNS Emulations

➔ How Inter-Zone Parallelism can vary across the different configurations

Possible next directions
➔ Complete Mixed Workload tests to evaluate read-write asymmetry

➔ Measure impact these different configurations have on other zns specific commands (ie

zone-finish)

References

