Concurrency Aware
Algorithm Design For ZNS
SSD's

Anastas Kanaris, Bruce Casillas, Ross Mikulskis

Motivation

Why is Concurrency Aware Algorithm Design
Important?

To Maximize
Modern Hardware

Capabilities

Enable Parallelism

Maximize Throughput
Mitigate Write Amplification
Without this, we won't know

how to fully utilize hardware

How can we quantify read/write

Problem .
asymmetry and concurrency in
statement ZNS SSDs?

How do we test for this, without

buying a bunch of different physical
SSD’s.
Why is it important to know this for

ZNS?

/ Main Memory \
—— A

Storage o sowen
Hierarchy e

O1 / Shingled Disks \

L / Tape \ A4
Flash SSD’s are taking the place of HDD’s in
storage pyramid because the speed é%i‘:d’
increases are worth more than the cost
increase

Size

Recall: Storage Hierarchy Pyramid

Channel 0

1 L 1L
N CICICC] 1]

Controlle

Channel N

Traditional SSD
02

I || N
N [

Flash Package -> Chip -> Die -> Plane -> Erase Block -> Page -> Nand
Cells

e Random writes to any logical block

address. Problem: Block Interface Tax

e Device firmware handles internal
complexities like wear leveling and
garbage collection.

e The host (OS/filesystem/database) has no
visibility into the internal physical layout.

T

ooo

=]=]"]

000 —
I J—L
ZNS SSD Zone 0 Zone 1 Zone N
03 LBAO | LBA 1 | LBA 2 | LBA 3 LBA4—| LBA 5 | LBA 6 | LBA 7 LBA8| LBA9| | LBAN

° Storage divided into zones, and writes
must be sequential within each
zone.

e The host is responsible for managing
zone write pointers and handling
resets.

e This offloads complexity from the
SSD firmware to the host, enabling
better coordination and
performance.

Comparing SSD
Types
04

Traditional SSDs: Still maintain block interface
design, simplifies host software. Operational cost
of supporting this are growing prohibitively.
Mismatch between allowed operations and flash
media.

ZNS SSDs: Designed to better take advantage of
the flash media they’re built on. More complex to
use, but offer performance benefits

TRADITIONAL SSD

\ / /

N[¥

ZNS SSD

random writes

sequential writes

How do we test different configurations?

ConfZNS++!
Developed by Storage and Network research group - VU Amsterdam

Allows users to configure zones, enabling workload-aware tuning.

\ 20 28 2

Passes this configuration into FEMU, allowing users to emulate ZNS behavior without the physical
hardware

7

Inside FEMU we can use FIO to simulate reads/writes to ZNS device

] S
for config in CONFIGS:

Methodolo
ssh-exec VM "${fio_common_cmd}$(cat tests/test_id.flags)"

-
>
>
->
>

run_tests.sh
time = now()

femu_src.config = config; // set using regexrp
recompile femu;
start FEMU VM;

scp ${test_id}.csv into results/${test_id}_${time}.csv on host
kill FEMU VM

FEMU VM Image

Install ConfZNS++ Code Artifact in Linux Environment

FEMU

Install FEMU so that ConfZNS++ can connect to it
Use ConfZNS++ to load desired ZNS Configuration into VM
Inside VM run FIO tests

Send results back to host machine and check for overarching trends

Tested Parameters - ZNS Configurations

SU Zone: 1:1 Zone-Parallel Unit Mapping
MU”2 Zone: 1 Zone Maps to 2 Parallel Units

MU”4 Zone: 1 Zone Maps to 4 Parallel Units

\ 20 28 2

FU Zone: 1 Zone Maps to all Parallel Units

Tested Parameters - FIO

- -numjobs

Arguments Meaning

€ Simulates concurrent access from multiple sources
--numjobs=int The number of threads
= -jodepth spawned be the test.
2 Controls level of queuing and parallelism within each job. —-iodepth=int Controls how many 1/0
. requests it issues to the OS
-> -blocksize at any given time. A
sequential job with --
€ Controls how large each I/O request is iodepth=2 will submit two

sequential 10 requests at a
time.

Experiments

Test: Inter-Zone Parallelism

. Th hput vs Threads (int
Idea: Increase the number of jobs SIpTLE TS fnter
7000 | —® FU_ZONE
(threads) spawned by the test —e— MU4_ZONE
—o— MU8_ZONE
6000 1 —®— SU_ZONE
This simulates concurrent access from
< 5000
multiple sources S
3 4000 +
;5; 3000
=
2000 A
1000 1
2I éll é é 1I0 1I2 1I4 1I6
Number of Jobs

Mean Write Latency (ps)

Test: Inter-Zone Parallelism (cont.)

Utilization vs Number of Jobs
Write Latency vs Num Jobs

2000 ’_\’—,_’/,/’/\
1800 A
1600
1400 1
1200 A
1000
— —e— FU_ZONE
—e— MU4_ZONE
—8— MUS8_ZONE
600 - —e— SU_ZONE
2 4 6 8 10 12 14 16
Num Jobs

Disk Utilization

96 -
94 -
92
90 |
88
86
—e— FU_ZONE
—o— MU4_ZONE
84 —e— MUS_ZONE
—e— SU_ZONE
6 8 10 12 14 16

Number

Throughput (IOPs)

Test:

Inter-Zone Parallelism (Reads)

Throughput vs Number of Jobs

70000
—e— FU_ZONE
—e— MU4_ZONE
60000 | —®— MU8_ZONE
—e— SU_ZONE
50000 B
40000 A
30000 -
20000
®
10000 -
2 4 6 8 10 12 14 16

Number of Jobs

Test: Intra-zone Parallelism

Throughput vs Queue Depth

Idea: Increase the io-depth, increasing the —

L J

&
L4

L 4

number of sequential IO requests 2000
1750 4

Did not really gain meaningful information from

g 1500 1
this test, possible there’s a better parameter to £ 1250
%‘ » - L ®
use _E 1000 4 / T T
750 +
—e— FU_ZONE
500 - —&— MU4_ZONE
—8— MUB_ZONE
250 - —® ® L —e— SU_ZONE
2 4 6 8 10 12 14 16

Queue Depth

Tests: Mixed Workloads

Idea: test mix of read/writes instead of just

writes

Have had issues configuring this test but hoping

to have results soon!

/\

Conclusions

What did we learn?

-> How Storage Hardware has evolved over time
- How FIO and FEMU/ConfZNS++ can be used to experiment with different ZNS Emulations

-> How Inter-Zone Parallelism can vary across the different configurations

Possible next directions

-> Complete Mixed Workload tests to evaluate read-write asymmetry

- Measure impact these different configurations have on other zns specific commands (ie
zone-finish)

References

[1]Papon, Tarikul Islam, and Manos Athanassoulis. "A parametric /O model for modern

storage devices." Proceedings of the 17th International Workshop on Data Management on

New Hardware. 2021

[2]Doekemeijer, Krijn, et al. "Exploring /0O Management Performance in ZNS with ConfZNS++."
Proceedings of the 17th ACM International Systems and Storage Conference. 2024.

[3] Im, Minwoo, Kyungsu Kang, and Heonyoung Yeom. "Accelerating RocksDB for small-zone
ZNS SSDs by parallel I/O mechanism." Proceedings of the 23rd International Middleware
Conference Industrial Track. 2022.

