Performance Study
of Buffer Pool
MEDETIge]y
Emulated SSDs

Can Gokmen, Toby Ueno, Tommy Ho



Background: SSDs

Faster read/write speeds and lower
latency compared to HDDs.

Makes use of in internal parallelism
architecture to concurrently
read/write data to pages.

Stripes data across multiple planes
allowing many parts of the SSD to
function simultaneously.

Controlle

Channel 0
NN HEEEE
NN NN

Channel N
o o T CICICIE) |2 ]
o T IO | (2

Flash Package -> Chip -> Die -> Plane -> Erase Block -> Page -> Nand

Cells




Background: Bufferpools

Caches disk pages in memory to reduce Get page #2 O Execution
disk access a Engine
Ng Directory L"”] /
.SetJ;ve(s:I ripeateddtjeqt;ests :.‘olzn memory E (L[] 2 Pointer to page #2
instead of re-reading from dis % D:DD:D
. ) . Memory &=
Buffers dirty pages in memory, allowing ... _.' .................. 1. ...................................................................
delayed and more efficient write-backs to ~ N
d | S k ) 'L: Directory Header ] Header I Header ] Header l Header I
e | |LLLI
Sliccol | 1 2 3 4 5 || Pages
S| L]
Disk & §




Background: ACE

Buffer Pool
Eviction Policies: LRU, CFLRU,
Dk e Pi | P2 | Pa | Po

LRU-WSR (7] Clean page Ps | Piz | Pis | Pwo
Existing bufferpools assume no i ﬁ %4 . \

concurrency, meaning they retrieve
pages and write back one at a time. EE? Writer ea Evictor la\@_] Reader

. . Seq. Stream | ( History-based
Takes into account read/write [D_, DC;’.”M“";”% = i e Prcfctd’mr}( Prefetcher
asymmetry allowing ACE to buffer et Candidates B8-8-8) 9OFF
dirty pages longer.

. . . . Concurrently write Parallelly prefetch

Sequentially evicts writes, taking back n,, dirty pages n, - 1 pages

advantage of concurrency making the
cost of n writes equal to 1 write.




Problem: Testing

How to compare across SSD parameters?
(concurrency, asymmetry)

Would require many physical SSDs!
Monetary limit

Can’t set arbitrary parameters- have to
rely on hardware




Project Goal: Examining ACE Performance

on an SSD Emulator

FEMU: open-source NVMe SSD emulator
(developed by Li et. al., FAST 2018)

Objective: setup, run, and observe ACE on
FEMU

Motive 1: Confirm performance benefits of
ACE on SSDs

Motive 2: Confirm viability of FEMU as a
testing platform

MoatLab/FEMU

FEMU: Accurate, Scalable and Extensible NVMe

SSD Emulator (FAST'18)

A 20

Contributors

© 20

Issues

@ 11

Discussions

v 473
Stars

% 213
Forks




Methodology

Install FEMU on SCC
Verify that FEMU parameters affect 10s
Install ACE on FEMU VM
Verify that ACE writes to the emulated
SSD
5.  Experiments
a.  Workload R/W ratio (ACE)
Bufferpool size (ACE)
Concurrency (ACE)

Number of channels (FEMU)
Write asymmetry (FEMU)

BN e

® 20 T




Challenges

Installing FEMU
Understanding ACE parameters
Ensuring ACE wrote to the SSD

(a lot of rerunning experiments!)




10s per second

Results: FEMU Baseline

FIO testing on FEMU over 4-core SCC FIO testing on FEMU over 32-core SCC
- =
FEMU nchans=2 6660
—@®— FEMU nchans=4
160000 1 —®— FEMU nchans=8
250000 A
140000 -
el
c
120000 + § 200000 - —8— FEMU nchans=2
o —e— FEMU nchans=4
g —&— FEMU nchans=8
v
100000 - ]
150000 -
80000
100000 -
60000
40000 - 2 a 6 8 10 12 14 16
# Jobs

# Jobs



# Write 10s

Results: R/W Ratio

ACE Write 10s over Varying R/W Ratio Workloads

Exec Time (s)

25000 1 - ace

—&— base
20000 1
15000 -
10000 -
5000 -
0 -

T T T T T T
0 20 40 60 80 100

% Reads

ACE Latency over Varying R/W Ratio Workloads

—8— ace

—8— base
8000 -
6000 -
4000 A
2000 A

0 T T T T T T
0 20 40 60 80 100

% Reads




Results: Bufferpool Size

Write 1/0O vs Buffer Pool Size

e —e— LRUACE
For ACE as the bufferpool page size increases =@- CFLRUACE
Write 10s exponentially decay until the 250001 I t:t,’_WSR ACE
bufferpool size = disk size. —»— CFLRU
Once the bufferpool size exceeds the total disk SRR L
size, all data can be served directly from the Q
bufferpool, reducing Write 10s to O. § 150007
As the bufferpool size approaches the number
of SSD channels, the decrease in Write |0s 100007
slows dramatically, leveling off.

5000 -

04
5 / 10 15 20
Buffer Pool Size (pages)

# of channels = 8



Write 1/O

Results: ACE Concurrency

Write 1/0 vs. Concurrency in ACE for Different Policies

16000 A —&— ACE-LRU
—®— ACE-CFLRU
—&— ACE-LRU-WSR
14000 A
12000 A
10000 A
8000 A
6000 A
4000 A
A d L
2000 1
* ®
T T T T T T T
il 2 4 8 16 32 64

Concurrency in ACE

Concurrency in ACE: Number of pages
being written concurrently.

Number of Write 1/Os decrease as
concurrency increases.



Results: Heatmap of Execution Times

Execution Times (s) of Running ACE-LRU

10.28 13.48 16.42

. . 10.84 11.18
e Increasing number of channels in SSD for

set concurrency in ACE increases
performance.

Number of Channels in SSD

1 2 4 8 16 32 64
Concurrency in ACE



Execution Times (s)

Results: ACE on vs. ACE off

Execution Times (s) vs. Number of Channels in SSD for ACE On/Off (k=1)

10 +

—e— LRU
—>¢ ACE-LRU but k=1
—e— CFLRU

—>¢ ACE-CFLRU but k=1

[ .

g

Number of Channels in SSD

Using ACE creates overhead, and causes
the same operation to be slower.
k greater -> magnified



Results: SSD Latency

ACE Latency over Varying SSD R/W Asymmetry

80001 —@— ace
—&— base
7000 -
6000 -
m
E
>
()
c
2 5000
o
-
4000 A
3000 -
1 2 3 4 5

Alpha



Conclusion

e ACE helps reduce write |/Os for the same workload, thus decreasing the execution
time.

e Write |Os exponentially decrease as bufferpool size increases, reaching zero once the
bufferpool fully fits the disk data.

e After a point, especially as the bufferpool size nears the number of SSD channels, the
rate of improvement slows and levels off.
As concurrency in ACE increases, write |/Os decrease.
As number of channels in SSD increases, performance increases.
This is due to additional overhead of running ACE.



Thank you for listening!



