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Background: SSDs

Faster read/write speeds and lower
latency compared to HDDs.

Makes use of in internal parallelism
architecture to concurrently
read/write data to pages.

Stripes data across multiple planes
allowing many parts of the SSD to
function simultaneously.
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Background: Bufferpools
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Background: ACE

Buffer Pool
Eviction Policies: LRU, CFLRU,
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Problem: Testing

How to compare across SSD parameters?
(concurrency, asymmetry)

Would require many physical SSDs!
Monetary limit

Can’t set arbitrary parameters- have to
rely on hardware




Project Goal: Examining ACE Performance

on an SSD Emulator

FEMU: open-source NVMe SSD emulator
(developed by Li et. al., FAST 2018)

Objective: setup, run, and observe ACE on
FEMU

Motive 1: Confirm performance benefits of
ACE on SSDs

Motive 2: Confirm viability of FEMU as a
testing platform

MoatLab/FEMU

FEMU: Accurate, Scalable and Extensible NVMe

SSD Emulator (FAST'18)
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Methodology

Install FEMU on SCC
Verify that FEMU parameters affect 10s
Install ACE on FEMU VM
Verify that ACE writes to the emulated
SSD
5.  Experiments
a.  Workload R/W ratio (ACE)
Bufferpool size (ACE)
Concurrency (ACE)

Number of channels (FEMU)
Write asymmetry (FEMU)
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Challenges

Installing FEMU
Understanding ACE parameters
Ensuring ACE wrote to the SSD

(a lot of rerunning experiments!)




10s per second

Results: FEMU Baseline
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# Write 10s

Results: R/W Ratio

ACE Write 10s over Varying R/W Ratio Workloads
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Results: Bufferpool Size

Write 1/0O vs Buffer Pool Size
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Write 1/O

Results: ACE Concurrency

Write 1/0 vs. Concurrency in ACE for Different Policies
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Concurrency in ACE

Concurrency in ACE: Number of pages
being written concurrently.

Number of Write 1/Os decrease as
concurrency increases.



Results: Heatmap of Execution Times

Execution Times (s) of Running ACE-LRU
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set concurrency in ACE increases
performance.
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Execution Times (s)

Results: ACE on vs. ACE off

Execution Times (s) vs. Number of Channels in SSD for ACE On/Off (k=1)
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Using ACE creates overhead, and causes
the same operation to be slower.
k greater -> magnified



Results: SSD Latency

ACE Latency over Varying SSD R/W Asymmetry
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Conclusion

e ACE helps reduce write |/Os for the same workload, thus decreasing the execution
time.

e Write |Os exponentially decrease as bufferpool size increases, reaching zero once the
bufferpool fully fits the disk data.

e After a point, especially as the bufferpool size nears the number of SSD channels, the
rate of improvement slows and levels off.
As concurrency in ACE increases, write |/Os decrease.
As number of channels in SSD increases, performance increases.
This is due to additional overhead of running ACE.



Thank you for listening!



