
Performance Study
of Buffer Pool
Manager on
Emulated SSDs
Can Gokmen, Toby Ueno, Tommy Ho

Background: SSDs

Faster read/write speeds and lower
latency compared to HDDs.

Makes use of in internal parallelism
architecture to concurrently
read/write data to pages.

Stripes data across multiple planes
allowing many parts of the SSD to
function simultaneously.

Background: Bufferpools

Caches disk pages in memory to reduce
disk access

Serves repeated requests from memory
instead of re-reading from disk

Buffers dirty pages in memory, allowing
delayed and more efficient write-backs to
disk.

Background: ACE

Eviction Policies: LRU, CFLRU,
LRU-WSR

Existing bufferpools assume no
concurrency, meaning they retrieve
pages and write back one at a time.

Takes into account read/write
asymmetry allowing ACE to buffer
dirty pages longer.

Sequentially evicts writes, taking
advantage of concurrency making the
cost of n writes equal to 1 write.

Problem: Testing

How to compare across SSD parameters?
(concurrency, asymmetry)

Would require many physical SSDs!

Monetary limit

Can’t set arbitrary parameters- have to
rely on hardware

Project Goal: Examining ACE Performance
on an SSD Emulator

FEMU: open-source NVMe SSD emulator
(developed by Li et. al., FAST 2018)

Objective: setup, run, and observe ACE on
FEMU

Motive 1: Confirm performance benefits of
ACE on SSDs

Motive 2: Confirm viability of FEMU as a
testing platform

Methodology

1. Install FEMU on SCC
2. Verify that FEMU parameters affect IOs
3. Install ACE on FEMU VM
4. Verify that ACE writes to the emulated

SSD
5. Experiments

a. Workload R/W ratio (ACE)
b. Bufferpool size (ACE)
c. Concurrency (ACE)
d. Number of channels (FEMU)
e. Write asymmetry (FEMU)

Challenges

Installing FEMU

Understanding ACE parameters

Ensuring ACE wrote to the SSD

(a lot of rerunning experiments!)

Results: FEMU Baseline

Results: R/W Ratio

Results: Bufferpool Size

● For ACE as the bufferpool page size increases
Write IOs exponentially decay until the
bufferpool size = disk size.

● Once the bufferpool size exceeds the total disk
size, all data can be served directly from the
bufferpool, reducing Write IOs to 0.

● As the bufferpool size approaches the number
of SSD channels, the decrease in Write IOs
slows dramatically, leveling off.

of channels = 8

Results: ACE Concurrency

● Concurrency in ACE: Number of pages
being written concurrently.

● Number of Write I/Os decrease as
concurrency increases.

Results: Heatmap of Execution Times

● Increasing number of channels in SSD for
set concurrency in ACE increases
performance.

Results: ACE on vs. ACE off

● Using ACE creates overhead, and causes
the same operation to be slower.

● k greater -> magnified

Results: SSD Latency

Conclusion

● ACE helps reduce write I/Os for the same workload, thus decreasing the execution
time.

● Write IOs exponentially decrease as bufferpool size increases, reaching zero once the
bufferpool fully fits the disk data.

● After a point, especially as the bufferpool size nears the number of SSD channels, the
rate of improvement slows and levels off.

● As concurrency in ACE increases, write I/Os decrease.
● As number of channels in SSD increases, performance increases.
● This is due to additional overhead of running ACE.

Thank you for listening!

