
Cache-Awareness for Near-Sorted
Indexing: The LaS Tree
Jingzhi Yan, Zhiyuan Chen, Jinpeng Huang

1

2

Background & Motivation
● Near-Sorted Data is Common

● Challenge: Fast Insertions

● Cache Awareness

● Still Need Efficient Point & Range Queries

3

Database

BufferPool

File

OptimizedBTree LoggedBTree LasTree

AppendLeafNode

Fast Path

File System
consists of

Implemented via

SimpleBTree

LeafNode LeafNode

Fast Path

LasLeafNode

Background Sort

Fast Path

4

LeafNode Page Layout
BaseHeader

PageHeader

Slots

free space

Heap end

Heap base

offset : 0

offset : 4096

Heap grows up

Slots grows down

● Fixed-size 4KB pages

● Slot array grows downward,

heap grows upward

5

Storage Management:Database & BufferPool
● Database: collection of Tree Files + BufferPool

● BaseFile: Reads and writes fixed-size pages from/to disk

● BufferPool

○ caching pages in memory

○ All operations write via bufferpool

6

Fast Path
● Key idea : insert to fast path leaf directly without tree traversal

● Fast path hit: Directly insert; no need to traverse tree

● Fast path miss: Fall back to standard root-to-leaf search

● Fast path update:

○ Soft update: Slide fast path to the right neighbor after

successful adjacent insert

○ Hard update: Reset fast path to current leaf after multiple

failures (e.g., 3 misses)

7

AppendLeafNode
● Key idea : append to leaf node!

● Benefits:

○ No need to move memory around

○ O(1) insertion

○ Tombstone for deletion

● Sort on split

○ When node is full, compact and fully sort entries

○ Then split at 3/4 position to maintain balance

8

LasLeafNode
● Key idea : lazy sorting!

● Quick partition on Split

■ Compact

■ Partition two leafs by

split key, leafs remains

unsorted

9

LasTree = LasLeafNode + Background Sort
● Background Sorter:

○ Monitor "cold" leaves

○ Sort cold leaves asynchronously

● Benefit:

○ Insertions stay fast

○ Queries benefit from eventual

sortedness

10

Benchmarking
● Environment: Apple M1 Pro(10-core CPU, 16GB RAM)

● Data Size: 100,000 tuples, average over 3 runs

● Sortedness Control: percentage of unordered entries (k)

11

Insert Performance

12

Point Query Performance

13

Range Query Performance

14

Mixed Workload

15

Leaf Count

16

LasTree does not Perform as Expected!
OverHead!

1. Compaction Cost

○ Removing duplicates and tombstones is a must

○ What if simply erase records(add tombstones) and no compaction?

-> proves more overhead

2. Split key selection instability

○ Imbalanced splits when data is not fully sorted

3. Lock Contention

○ Two threads competing for locks on same leaf, blocking insertion

Division of Labor
Implementation
—----------------------
Jingzhi - LeafNode, Debugging

Zhiyuan - Fast path

Jinpeng - Database +
BufferPool

Design
—----------------------
We decided the high-level
design together.

Experiments
—----------------------
Jingzhi - benchmark metrics

Zhiyuan, Jinpeng - python file
plotting data

17

18

Future Work
● Concurrency control

● Better cold leaf detection algorithm

● Larger scale evaluation

Thank You!

19

