
Cache-Awareness for Near-Sorted 
Indexing: The LaS Tree
Jingzhi Yan, Zhiyuan Chen, Jinpeng Huang

1



2

Background & Motivation
● Near-Sorted Data is Common

● Challenge: Fast Insertions

● Cache Awareness

● Still Need Efficient Point & Range Queries
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Storage Management:Database & BufferPool
● Database: collection of Tree Files + BufferPool

● BaseFile: Reads and writes fixed-size pages from/to disk

● BufferPool

○ caching pages in memory 

○ All operations write via bufferpool
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Fast Path
● Key idea : insert to fast path leaf directly without tree traversal

● Fast path hit: Directly insert; no need to traverse tree

● Fast path miss: Fall back to standard root-to-leaf search

● Fast path update:

○ Soft update: Slide fast path to the right neighbor after 

successful adjacent insert

○ Hard update: Reset fast path to current leaf after multiple 

failures (e.g., 3 misses)
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AppendLeafNode
● Key idea : append to leaf node!

● Benefits:

○ No need to move memory around

○ O(1) insertion

○ Tombstone for deletion

● Sort on split

○ When node is full, compact and fully sort entries

○ Then split at 3/4 position to maintain balance
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LasLeafNode
● Key idea : lazy sorting!

● Quick partition on Split

■ Compact

■ Partition two leafs by 

split key, leafs remains 

unsorted 
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LasTree = LasLeafNode + Background Sort
● Background Sorter:

○ Monitor "cold" leaves

○ Sort cold leaves asynchronously

● Benefit:

○  Insertions stay fast

○  Queries benefit from eventual 

sortedness
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Benchmarking
● Environment: Apple M1 Pro(10-core CPU, 16GB RAM)

● Data Size: 100,000 tuples, average over 3 runs

● Sortedness Control: percentage of unordered entries (k)
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Insert Performance
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Point Query Performance



13

Range Query Performance
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Mixed Workload
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Leaf Count
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LasTree does not Perform as Expected!
OverHead!

1. Compaction Cost

○ Removing duplicates and tombstones is a must

○ What if simply erase records(add tombstones) and no compaction? 

-> proves more overhead

2. Split key selection instability

○  Imbalanced splits when data is not fully sorted

3. Lock Contention

○ Two threads competing for locks on same leaf, blocking insertion



Division of Labor
Implementation
—----------------------
Jingzhi - LeafNode, Debugging

Zhiyuan - Fast path

Jinpeng - Database + 
BufferPool

Design
—----------------------
We decided the high-level 
design together. 

Experiments
—----------------------
Jingzhi - benchmark metrics

Zhiyuan, Jinpeng - python file 
plotting data
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Future Work
● Concurrency control

● Better cold leaf detection algorithm

● Larger scale evaluation



Thank You!
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