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Background & Motivation

e Near-Sorted Data is Common
e Challenge: Fast Insertions
e Cache Awareness

e Still Need Efficient Point & Range Queries
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LeafNode Page Layout

e Fixed-size 4KB pages
e JSlot array grows downward,

heap grows upward
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Storage Management:Database & BufferPool

e Database: collection of Tree Files + BufferPool
e BaseFile: Reads and writes fixed-size pages from/to disk
e BufferPool

o caching pages in memory

o All operations write via bufferpool




Fast Path

e Key idea : insert to fast path leaf directly without tree traversal
e Fast path hit: Directly insert; no need to traverse tree
e Fast path miss: Fall back to standard root-to-leaf search
e Fast path update:
o Soft update: Slide fast path to the right neighbor after
successful adjacent insert
o Hard update: Reset fast path to current leaf after multiple

failures (e.g., 3 misses)




AppendLeafNode

e Key idea : append to leaf node!
e Benefits:
o No need to move memory around
o O(1) insertion
o Tombstone for deletion
e JSort on split
o When node is full, compact and fully sort entries

o Then split at 3/4 position to maintain balance




LasleafNode

e Key idea : lazy sorting!

e Quick partition on Split
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LasTree = LasLeafNode + Background Sort

e Background Sorter:

o Monitor "cold" leaves

o Sort cold leaves asynchronously

e Benefit:
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Benchmarking
e Environment: Apple M1 Pro(10-core CPU, 16GB RAM)

e Data Size: 100,000 tuples, average over 3 runs

e Sortedness Control: percentage of unordered entries (k)
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Insert Performance
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Point Query Performance

Point Query Performance

0.08 |— ]

Search Time (ms)

0.02 -

0.00 -

0 20 50 80 95 100
% Sortedness

[0 LasTree

[ LoggedBTree
@@ OptimizedBTree
3 SimpleBTree

12



Search Time (ms)
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Mixed Workload
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Leaf Count
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LasTree does not Perform as Expected!
OverHead!
1. Compaction Cost
o Removing duplicates and tombstones is a must
o What if simply erase records(add tombstones) and no compaction?
-> proves more overhead
2. Split key selection instability
o Imbalanced splits when data is not fully sorted
3. Lock Contention

o Two threads competing for locks on same leaf, blocking insertion
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Division of Labor

We decided the high-level
design together.

Implementation

Jingzhi - LeafNode, Debugging
Zhiyuan - Fast path

Jinpeng - Database +
BufferPool

Experiments

Jingzhi - benchmark metrics

Zhiyuan, Jinpeng - python file
plotting data

17



Future Work

e Concurrency control
e DBetter cold leaf detection algorithm

e Larger scale evaluation
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Thank You!




