Cache-Awareness for Near-Sorted
Indexing: The LaS Tree

Jingzhi Yan, Zhiyuan Chen, Jinpeng Huang

Background & Motivation

e Near-Sorted Data is Common
e Challenge: Fast Insertions
e Cache Awareness

e Still Need Efficient Point & Range Queries

consists of

- File

File System
BufferPool
Implemented via

SimpleBTree OptimizedBTree LoggedBTree LasTree

| |

Background Sort

Fast Path Fast Path Fast Path

LeafNode LeafNode AppendLeafNode LasLeafNode

LeafNode Page Layout

e Fixed-size 4KB pages
e JSlot array grows downward,

heap grows upward

BaseHeader
PageHeader

Slots

free space

Heap end

Heap base

offset : 0

Slots grows down

Heap grows up

offset : 4096

Storage Management:Database & BufferPool

e Database: collection of Tree Files + BufferPool
e BaseFile: Reads and writes fixed-size pages from/to disk
e BufferPool

o caching pages in memory

o All operations write via bufferpool

Fast Path

e Key idea : insert to fast path leaf directly without tree traversal
e Fast path hit: Directly insert; no need to traverse tree
e Fast path miss: Fall back to standard root-to-leaf search
e Fast path update:
o Soft update: Slide fast path to the right neighbor after
successful adjacent insert
o Hard update: Reset fast path to current leaf after multiple

failures (e.g., 3 misses)

AppendLeafNode

e Key idea : append to leaf node!
e Benefits:
o No need to move memory around
o O(1) insertion
o Tombstone for deletion
e JSort on split
o When node is full, compact and fully sort entries

o Then split at 3/4 position to maintain balance

LasleafNode

e Key idea : lazy sorting!

e Quick partition on Split

Compact
Partition two leafs by
split key, leafs remains

unsorted

@)

(b)

Sort

3 6 2 4 8

Before split (split key = 6)

Quick Partition

3 6 2 4 88—

Before split (split key = 6)

Left

Right

LasTree = LasLeafNode + Background Sort

e Background Sorter:

o Monitor "cold" leaves

o Sort cold leaves asynchronously

e Benefit:

O

O

Insertions stay fast
Queries benefit from eventual

sortedness

Fast Path Slide

| >

1

Previous Hot Leaf

New Hot Leaf

b

Detect Cold Leaf

h

Enqueue to Cold Node Queue

b

Background Thread: Sort Cold Leaf

h

Cold Leaf Sorted

Benchmarking
e Environment: Apple M1 Pro(10-core CPU, 16GB RAM)

e Data Size: 100,000 tuples, average over 3 runs

e Sortedness Control: percentage of unordered entries (k)

10

Insert Performance

Insert Time (ms

o
o
w

o©

o

N
1

0.01+

0.00 -

Insert Performance

% Sortedness

[0 LasTree

[LoggedBTree
@@ OptimizedBTree
3 SimpleBTree

11

Point Query Performance

Point Query Performance

0.08 |—]

Search Time (ms)

0.02 -

0.00 -

0 20 50 80 95 100
% Sortedness

[0 LasTree

[LoggedBTree
@@ OptimizedBTree
3 SimpleBTree

12

Search Time (ms)

Range Query Performance

o
(o)

o
o

o©
»

©
N

o
(=}

Range Query Performance

8

% Sortedness

[LasTree

[LoggedBTree
[OptimizedBTree
3 SimpleBTree

13

Mixed Workload

Mixed Workload Time (ms)

Mixed Workload Performance (70% insert, 30% lookup)

0 20 50 80
% Sortedness

5 100

[0 LasTree

[LoggedBTree
@@ OptimizedBTree
3 SimpleBTree

14

Leaf Count

Leaf Count

4000 -

3500

3000 ¢

2500 ¢

[LasTree

[LoggedBTree
@ OptimizedBTree
3 SimpleBTree

2000 ¢

1500 ¢

0 20 50 80 95 100
% Sortedness

15

LasTree does not Perform as Expected!
OverHead!
1. Compaction Cost
o Removing duplicates and tombstones is a must
o What if simply erase records(add tombstones) and no compaction?
-> proves more overhead
2. Split key selection instability
o Imbalanced splits when data is not fully sorted
3. Lock Contention

o Two threads competing for locks on same leaf, blocking insertion

16

Division of Labor

We decided the high-level
design together.

Implementation

Jingzhi - LeafNode, Debugging
Zhiyuan - Fast path

Jinpeng - Database +
BufferPool

Experiments

Jingzhi - benchmark metrics

Zhiyuan, Jinpeng - python file
plotting data

17

Future Work

e Concurrency control
e DBetter cold leaf detection algorithm

e Larger scale evaluation

18

Thank You!

