BOSTON . -
CS 561: Data Systems Architectures

class 7

Design Tradeoffs in Key-Value Stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

Do we have a quiz today ... ?

NO!

BOSTON
UNIVERSITY

what to do now?

A) read the syllabus and the website

B) register to Piazza + Gradescope

C) finish project O

D) finish project 1 (due 2/14)

E) register for the student-presentations (by 2/17)

F) start working on project proposal (due 2/23)

BOSTON
UNIVERSITY

http://tinyurl.com/S25-CS561-presentations

Fast Scans on Key-Value Stores (KVS)

Key-Value Stores are designed for transactional workloads (put and get operations)

|H-IPERHCSHEE ﬂﬁ RocksDB —/»WCassandra amazon

DynamoDB
. mongoDB

Analytical workloads require efficient scans and aggregations
(typically offered by column-store systems)

P IQctian
monetdb , Vectorwise

BOSTON i
Can we do both in one system?

Why combine KVS and analytical systems?

cheaper and cheaper storage
more data ingestion
need for write-optimized ¢
data structures]

what about analytical queries?

BOSTON
UNIVERSITY

100E+03 -
1.00E+08 L
1.00E+07
100E+06
1005405
1.00E+04 L
1.00E+03 L
1.00E+02
1.00E+01 -
100E+00
1.00E-01
100E-02
100E-03
1.00E-04 —

1.00E-05

1.00E-06

Historical Cost of Computer Memory and Storage

#Flip-Flops

mCore

41Cs on boards

= SIMMs

«DIMMs

< Big Dnves

+Floppy Drives

* Small Drives

=Flash Memory

+ 55D

L L -

1955 1960 1985 1970 1975 1980 1985 1930 199 2000 2005 2010 2015 2020 2048

Year

ash

Both transactional and analytical systems

Most organizations maintain both
 transactional systems (often as key-value stores)
* analytical systems (often as column-stores)

problems? 7\1\
e U

requires additional expertise and management (e.g., two DBASs)
harder to maintain (more systems, more code)

time consuming data integration/transfer

BOSTON
UNIVERSITY

Log scale! Scan Time of 50M records (~4GB of data)

1.E+04

Prohibitively slow!

1.E+03

1.E+02

Acceptable performance!

1.E+01

1.E+00

Scan Time (seconds)

1.E-01

1.E-02

&
BOSTON
UNIVERSITY

Goals of this paper

Bridge the conflicting goals of get/put and scan operations

get/put operations need sparse data structures - locality is not required, access one object
scans require locality (relevant data to be packed together)

we will discuss how to compromise, via the design of Tellstore

how to amend the SQL-over-NoSQL architecture for mixed workloads

BOSTON
UNIVERSITY

SQL over NoSQL

Commit Manager

Elasticity

. Processing
Snapshot Isolation Layer

e.g., MVCC, no locking, timestamp based

OLTP

Support for:
Scans
Versioning e
Batching

BOSTON
UNIVERSITY

OLTP

OLAP

Scans

selection
projection
(simple) aggregates

shared scans
remember them?

BOSTON
UNIVERSITY

Versioning

multiple versions
through timestamps

garbage collection

discarding old versions
during scans might be costly

vk
e L

Batching

batch several
requests to the
storage layer

amortize the
network time

Challenges

scans Vvs. get/put

BOSTON
UNIVERSITY

Scans need columnar locality

[#1, John, 2/4/88, Boston J

/

get/put need row-wise locality

.
why? ?\\\J

\

-

X

2/4/88
2/1/87
7/7/93
4/1/92
3/9/91
9/3/96

~

Challenges

scans vs. get/put | #1,John, 2/4/88, Boston, vl |
| #1, John, 2/4/88, Cambridge, v2 |

scans Vvs. versioning /

versioning reduces locality in scans

checking for the latest version in scans needs CPU time

BOSTON
UNIVERSITY

Challenges

batching multiple scans or multiple put/get requests is ok

scans Vvs. get/put

but ...

L batching scans and puts/gets is a bad idea!
Scans vs. versioning

)
scans vs. batching why? 7‘\\\‘
e \

a puts/gets need fast predictable performance

scans inherently have high and variable latency

BOSTON
UNIVERSITY

How to design KVS for efficient scans?

Key design decisions
(A) Updates
(B) Layout

(C) Versioning

BOSTON
UNIVERSITY

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place

C ® >

BOSTON
UNIVERSITY

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured

BOSTON
UNIVERSITY

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured delta-main

C D

(000)

BOSTON
UNIVERSITY

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured delta-main

(B) Layout column PAX (columnar per page)
rd'
A\ Al[B||IC|ID Al[B|[C||D A D
t J \ J \ J \) (J) J \ J \)

BOSTON
UNIVERSITY

Small detour: page layouts middle ground?

a page

Row-store Column-store
]] \1
l

BOSTON
UNIVERSITY

/ii ABCD ?\\//7 j\\

ABCD something more than that!
ABCD

A B C D

A/&r D)]
4 O T\\ //; ABCD 3\\

\; : ABCD |
- - : ABCD j
/‘/' A’B C D r N [N [N [A\

mini row-store

BOSTON & J \ N // & J J J //
UNIVERSITY

Partition Attributes Across (PAX)

: "‘\1 # attributes free space
Middle ground? ? \\ P l
. l \L attr. sizes
Decompose a slotted-page internally £y
L : d U324 v][4t header
in mini-pages per attribute 2 M } page heade
0962 | 7658
v CaChe'frlendly }T-nﬁnipage
» Brings only relevant attributes to cache Pf:se_HCE_biE]
—» Jane John
| e N
7‘"\1\ v-offsets [V-minipage
e LT ;|__
. . —» 30 | 45
e Compatible with slotted-pages? }
F-minipage
e Same update abstraction? presence bits [1[1

— (insert in a page)

BOSTON »
UNIVERSITY

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured delta-main

(B) Layout column (PAX) row
(" asco]
ABCD

ABCD

BOSTON \S ~/
UNIVERSITY

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured delta-main

(B) Layout column (PAX) row 7ﬂ
e U
([N
(C) Versioning clustered \ ABCD (vl) Il any other options?
_ _ABCD(v2)
(ST
UNIVERSITY

How to design KVS for efficient scans?
Key design decisions
(A) Updates in-place log-structured delta-main

(B) Layout column (PAX) row

(C) Versioning clustered (ABCD (vl) ?__E. ABCD (v2) }
chained ABCD |

BOSTON ABCD
\)

How to design KVS for efficient scans?

Key design decisions
(A) Updates in-place log-structured delta-main

(B) Layout column (PAX) row

(C) Versioning clustered chained

vk

what comes as a result of versioning? @ W

BOSTON
UNIVERSITY

Garbage Collection (GC)

(A) Periodic separate dedicated thread(s)

(B) Piggy-backed GC during scans

increases scan time but frequently read tables benefit

avoids re-reading for GC (since data is already accessed)

BOSTON
UNIVERSITY

Design Space

Updates X Layout X Versioning X GC

in-place column (PAX) clustered periodic
log-structured row chained piggy-backed
delta-main

W‘

?\
o . e U

hybrid designs are also valid!

should we consider all possible designs?

BOSTON
UNIVERSITY

Design Space

Updates X Layout X Versioning X GC

in-place column (PAX) clustered periodic
log-structured row chained piggy-backed
delta-main

some combinations can be discarded:

log-structured & column worse than delta-main & column
log-structured & clustered worse than log-structured & chained

note that each combination here represents multiple options

UNIVERSITY

BOSTON
UNIVERSITY

Dimension Approach Advantages | Disadvantages
update-in- storage versioning,
place & concurrency
log- storage,
Update structured concurrency GC
delta-main compromise
?;!EI;SI scan get/put
Layout
row get/put scan
. clustered get/put GC
Versions 52
chained GC scan

Table 2: Design Tradeoffs

Design Space

Updates X Layout X Versioning X GC

in-place column (PAX) clustered periodic
delta-main
focus on two extremes: TellStore-Log

(1) log-structured & row & chained

BOSTON
UNIVERSITY

Design Space

Updates X Layout X Versioning X GC

log-structured row chained piggy-backed

focus on two extremes: TellStore-Log
(1) log-structured & row & chained
(2) delta-main & column & clustered

TellStore-Col
BOSTON
UNIVERSITY

TellStore-Log

lock-free hash table

” Newest Hash Table
y Value

BOSTON
UNIVERSITY

Foo

Bar

one log per table (locality for scans)
inserts, updates, and deletes are all logged

Key validFrom validTo previous isValid data

- immutable log

- = Log head

previous entry for the same key why? 7&
e

TellStore-Log Insertion

Hash Table

a record is considered valid after the hash table pointer is updated

‘ . Log

the log contains rows

BOSTON
UNIVERSITY

TellStore-Log Update

Hash Table

previous pointer

the log contains rows

BOSTON
UNIVERSITY

TellStore-Log Delete

Hash Table

previous pointer

the log contains rows

BOSTON
UNIVERSITY

TellStore-Log Garbage Collection

Hash Table

invalidated entries hurt scan performance

during scan, health (% of invalid entries) per page is calculated

if health < threshold, page is re-written in the head of the log &
update hash table & old page is reclaimed

the log contains rows

BOSTON
UNIVERSITY

TellStore-Log in a nutshell

log-structure: efficient puts

hash-table: efficient gets (always points to the latest entry)
snapshot Isolation: high throughput, no locks needed
self-contained log: efficient scans (valid from/to needed)
lazy GC: Optimize tables that are scanned

BOSTON
UNIVERSITY

TellStore-Col

before inserting we query

new entries go to insert log

updates go to update log

main is read-only
columnar: read-optimized

BOSTON

UNIVERSITY

four data structures

Update Log

Insert Log

logs are write-optimized
row-oriented: append-only

TellStore-Col Layout
_ MetaData

.Em fixed-size data is stored in columnar format

__ Columns

variable-size data is indexed in columnar format

mma but stored in row-wise format

why row-wise?
Var-Size)

Heap 1
s (2) less metadata (one offset for many columns)

(1) faster materialization (contiguous copying)

BOSTON
UNIVERSITY

TellStore-Col Versioning

in main storage multiple versions

are clustered contiguously
logs work like before

and they are row-wise

newest pointers

[—

may exist —

Insert Log

Update Log
previous pointers may

BOSTON - -
exist only in update log

TellStore-Col Insertion

.

Update Log

BOSTON
UNIVERSITY

TellStore-Col Update

.
‘ Update Log

Insert Log

=

newest pointer

BOSTON
UNIVERSITY

TellStore-Col Update

Hash Table

newest pointer
previous pointer

Insert Log
\

newest pointer

BOSTON
UNIVERSITY

TellStore-Col Garbage Collection

BOSTON
UNIVERSITY

Insert Log
\

Hash Table

previous pointer

newest pointer

newest pointer

dedicated thread
(conversion from row to column)

all main pages with invalid entries

all pages from insert log + update
to main

run GC frequently + truncate logs

TellStore-Col in a nutshell

delta-main: compromise between puts and scans

hash-table: efficient gets (always points to the latest entry, may need
one more pointer to follow)

PAX layout: minimize disk 1/0, maintain locality for scans
separate insert/update logs: efficient GC
eager GC: improve scans

BOSTON
UNIVERSITY

Implementation Details

scans are assigned to dedicated threads scan coordinator for shared scans

Get / Put, Scan Results
Scan Requests

Scan Scan

Garbage

Collection
Thread

BOSTON
UNIVERSITY

Implementation Details

efficient predicate evaluation via code generation and predicate pushdown

I . q1a<4/\(a>0vb>20) a,;a<4Ab>10
all queries in CNF nnn/ o
reuse work |~
S =
A A L
T o |3 + | s |8 :
v > A V > A ;
S (=} = (=] =
A A
« | | HEEE 4
r0 0|0 n o | kL 0| 1]0]|1
rl 0| o n 5 0o . [K | 0| 1] 0
2| 0|0l o n 1 0o . K2 110
Initial Matrix B Data > Result Matrix B’

BOSTON
UNIVERSITY

Yahoo! Cloud Serving Benchmark# (YCSB#)

based on YSCB, a put/get benchmark
main_table (P, A, B, C,D, E, F, G, H,I,J) P: 8-byte ley | A-H: 2-bytes, 4-bytes, 8-bytes | I-J: strings 12-16 bytes

e Query 1: A simple aggregation on the first floating point
column to calculate the maximum value:
SELECT max (B) FROM main_ table

e Query 2: The same aggregation as Query 1, but with an
additional selection on a second floating point column and
selectivity of about 50%:

SELECT max (B) FROM main_table
WHERE H > 0 and H < 0.5

e Query 3: A selection with approximately 10% selectivity:
SELECT * FROM main_table

BOSTON WHERE F > 0 and F < 26
UNIVERSITY

Experiments: Transactional Workload

3 000 000 l 4500 000
< 2500 000 —oes T o 000000 _ .
g p S 3500 000 —
Q o,
2 2 000 000 =2 & 9 3 000 000 ’/
3 1 500 000 - ~e-TellStore-Col @ 2 500 000 —- ’/l/ -e-TellStore-Col
5 / ~# TellStore-Row £2000 000 - -+ TellStore-Row
£1000000 [~—2= TellStore-Log 5 1500 000 / TellStore-Log
Q P] -~
8 -+-Kudu 1 000 000 -+ -Kud
O 500000 S 00 000 ucd
(I T TPOUOTOTIIIPIRPRIY FPPPTIITRI SIS TTPPeT IS @rririeenssttienntiannaas 0 +
1 3 4 1 2 3 4
Storage Nodes Storage Nodes
(a) Get/Put Workload (b) Get-only workload

Figure 8: Exp 1, Throughput: YCSB, TellStore Variants and Kudu, Vary Storage Nodes

Kudu is used as it was the most competitive to begin with

SIORENONN All TellStore approaches are not that far!
UNIVERSITY

Experiments: Scans

several orders of magnitude
faster scans!

10x-faster scans! 2000
----------------- 1 RE————Y | 18,000 [Py . 4
.. b
? "7 16,000
@
.E, 14,000
12,000
-e-TellStore-Col & 10’000 -e-TellStore-Col
-4 TellStore-Row Z ’ —4- TellStore-Row
» 8,000
TellStore-Log S 6.000 TellStore-Log
o ’
e -4 -Kudu E 4,000 -#-Kudu
i S EE-EE v 2,000 v
— _? 0 AIL. I (R S
3 4 1 2 3 4
Storage Nodes Storage Nodes
(a) YCSB# Query 1 (b) YCSB# Query 3

Figure 10: Exp 3, Response Time: YCSB#, Vary Storage Nodes

Q3 does not have projections,
so no benefit from columnar

BOSTON
UNIVERSITY

Experiments: Mixed Workload

°000 H TellStore-Col 600 ' ' 600 ' '
S -e-TellStore-Col -e-TellStore-Col .-
) > 000 E]Ie::::ore-fow —200 | - TellStore-Row f —>00 | - TellStore-Row —T
b ellStore-Lo. 8 4] .’
24000 B Kudu € 2400 TellStore-Log 2400 TellStore-Log . ¥ 3
o s A -4
%3000 E300 E300 A | !
§_2000 gzoo 'T"_'_ . A y -1 gzoo '__...-n’ - /
% 1 000 %100 | —— . %100 /
0 0 0
No Get/Put 35000 Gets 35 000 Get/Puts 0 35k 500k 1M 1.5M 2M 2.5M 0 35k 500k iMm 1.5M 2M 2.5M
(a) TellStore vs Kudu (b) TellStore, Scale Get Requests (c) TellStore, Scale Get/Put Requests
Figure 11: Exp 4, Response Time: YCSB# Query 1, 4 Storage Nodes

Contrary to competition, In the absence of updates With 50% updates

scan perf. is stable with TellStore scales perfectly: eventually logging wins

more gets/puts scans+gets go to different

cores
BOSTON
UNIVERSITY

Things to remember

KVS vs. Scans: how to compromise, navigate the design space

v'delta-main vs. log-structure
v'chained vs. clustered versions
v'row-major vs. column-major
v'lazy vs. eager GC

BOSTON
UNIVERSITY

F2: Designing a Key-Value Store for Large Skewed Workloads

Konstantinos Kanellis* Badrish Chandramouli Shivaram Venkataraman
University of Wisconsin-Madison Microsoft Research University of Wisconsin-Madison
kkanellis@cs.wisc.edu badrishe@microsoft.com shivaram@cs. wisc.edu

A new set of requirements:
point put/get operations (need for high throughput, ideally full in-memory for hot data)

larger-than-memory working set (so full in-memory not possible)

high skew in access patterns (reads/writes)

The target application has no scans!

2\

\)

which design should they follow? e L

[with slides from Konstantinos Kanellis]

Key-value stores

Log-structured Merge (LSM) Trees Point-optimized Stores

* Handle larger-than-memory workloads * Focus on use-cases like web caching

e Organized in levels; first is in-memory e Large in-memory index structures

e Support both point & range queries * Latch-free concurrent designs

* Avoid I/O by employing (Bloom) filters » Saturate I/O (even for NVMe SSDs)

e Judicious use of main memory * Very high throughput (>1M ops/sec)
T R

Bapliste Lepers
University of Sydney

“+ RocksDB

@ SPLINTERDB

FAasTER: A Concurrent Key-Value Store with In-Place Updates

Badrish Chandramouli’, Guna Prasaad® Donald Kossmann, Justin Levandoski,
James Hunter', Mike Barnentt
Thierosolt Research FUniversily of Washinglen
badrishe @microsoftcon, guns@es.washington.edu, {donaldk, {ustin levandoski, jahunter, mbarnetii@micrasoftcom

ABSTRACT
Over th decad,

1.1 Challenges and Existing Solutions
st

BOSTON

UNIVERSITY

Real-world, large skewed workloads

e Point queries and high throughput paramount

* Working sets larger than main-memory — most data rarely accessed or updated
* Total indexed data order of magnitude larger than main-memory

* Natural skew in key access pattern — both for reads and writes

* Memory resources scarce — disk wear is a practical concern

Search Engine Workload

Insert / Update statistics (e.g., clicks, statistics)

Queries :
Per-user Millions of active users at any time — critical path

Statistics >
Q < > wmd Many more inactive, but we still need to keep data!
Ads clicks -

\I/

We fetch clicks for active users (during browsing)

- We count viewed ads, from active users
BOS1UIN
UNIVERSITY

Limitations of Existing Systems (1)

Log-structured Merge (LSM) Trees

— Filters may no longer fit in memory

— CPU overhead (10s of filters / query)

memory

lookup Bloom fence
key X filters pointers
|
buffer —
N
bigger filters — fewer false positives

lookup cost vs. memory

— Need tuning
(O]
[eT0]
o
9 LSM-tree
[75]
%%,
w @/‘ \Q@
%
O %
X
more merging — fewer runs

lookup cost vs. update cost

BOSTON
UNIVERSITY [1] Dayan et. al. Monkey: Optimal Navigable Key-Value Store (SIGMOD’17)

Limitations of Existing Systems (2)

KVell FASTER

e Adjust page-cache size * Tune record log in-memory size / hash index

— Large in-memory B-tree (19B per key) — Reducing index size increases /O ops

— B-tree continuously paged out to disk — Log compaction “pollutes” in-memory log

BOSTON
UNIVERSITY

Limitations of Existing Systems (2)

KVell FASTER
e Adjust page-cache size * Tune record log in-memory size / hash index
— Large in-memory B-tree (19B per key) — Reducing index size increases I/O ops
— B-tree continuously paged out to disk — Log compaction “pollutes” in-memory log
| | |
SSD | SSRAMDBSIMi DRAM
| | |
l l l : e
Copy write-cold records to tail i i i Increasc.est write-amplification due
! ! | to rewriting of records
/ 1 ! \I\
|
!
BEGIN BEGIN HEAD HEAD TAIL HEADAIL TAIL

FASTER Hybrid Log
New records compete with old compacted

BOSTON records for a spot at in-memory regions
UNIVERSITY

Introducing F2

Key Idea: separate management of records across both read/write and

BOSTON
UNIVERSITY

/cold domains

SSD/HDD DRAM

Record Log of g Read Cache
write-hot keys / /\ Key 2, Value

BEGIN

Key 5, Value //
Key 1 Value Hot_Log
\\\ Key 3, Value
1 ===
TAIL Cold-Log
Index

» Cold-Cold Records Compaction

Design Space

Updates X Layout X Versioning X GC

in-place column (PAX) clustered

delta-main

similar to TellStore-Log, but with periodic compaction

compaction aggressively optimized

BOSTON
UNIVERSITY

F? — Read Cache

Contains read-hot records of both log and cold log
* Hash index entries can point to either read cache entries or (') record log (single bit in address)

Reads go from -log index = (optionally) read cache = log
Reads from cold-log are always inserted at the tail of the read cache

Upserts and RMWs write directly to log tail, eliminating read cache chain
* |f record with same key in read cache, it’s invalidated!

Periodically, read cache is evicting in-memory records (HEAD), by altering the hash chains

SSD/HDD DRAM

[
-

L Read—Cache ,/_,

Mutable

Hot Log M

RO

NANNANN
/
/
o

Stable Region
Hot-Log

BEGIN HEAD TAIL HEAD TAIL Index

F2 — Performance Comparison

YCSB: 250M keys, 8B keys, 100B values; 3GiB mem budget (10% of dataset size); 24 threads, NVMe SSD

Zipfian
_ 1386 - 2 mmm FASTER
g 12507 mmm SplinterDB mmm KVell
2 1000 — 92’ RocksDB mmm LeanStore
v
A4
~ 750 -
a
_ Oi
§ 500 9
o]
Iﬁl
M NONNGE WOMMGN Ml li il M-

YCSB A YCSB-B YCSB-C YCSB-F

Throughput (Kreqgs/sec)

Hotspot 10%
800 — . 2 B FASTER
B SplinterDB s KVell
B RocksDB I | eanStore
600
23 457
400
200 o
7586
I i ML

0_

YCSB-A

YCSB-B YCSB-C YCSB-F

Zipfian: SplinterDB (1 . 78X), RocksDB (4 . 61Xx), FASTER (4 . 94X)

Hotspot 10%: SplinterDB (1 . 66X), RocksDB (1 . 88Xx), FASTER (1 .92Xx)

F2 —1/0 Amplification & Scalability Comparison

YCSB: 250M keys, 8B keys, 100B values; 3GiB mem budget (10% of dataset size); 24 threads, NVMe SSD

B 2 W SplinterDB M RocksDB mmmm FASTER mmm KVell W LeanStore

40181

5742 3022 3324
10 1378 138

30 -
8 13..0;3.66 13I79 E—N
c 25 - g - ng 1250 - /
= 20 L 1000 96 2.62x 882
= 1653 9 = / it
= 15 = 150-¢ 638/
4.3 a [521/
5 10- £ 500/ 337/./2 —% %7
Q s = il‘: é 250 —;}%%3/!56
, S 5% §
o—I —il—o"F— } 0_1rz'1 8 12 16 20 24
YCSB-A YCSB-B YCSB-A YCSB-B Number of Threads
Read Amp Write Amp YCSB-A
F2 achieve less WA than Baselines F2 saturates at 8-12 threads

= Varying memory-budget, YCSB skewness; F2 detailed evaluation €<

BOSTON . -
CS 561: Data Systems Architectures

class 7

Design Tradeoffs in Key-Value Stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

	Slide 1: class 7 Design Tradeoffs in Key-Value Stores
	Slide 2: Do we have a quiz today … ?
	Slide 3: what to do now?
	Slide 4: Fast Scans on Key-Value Stores (KVS)
	Slide 5: Why combine KVS and analytical systems?
	Slide 6: Both transactional and analytical systems
	Slide 7
	Slide 8: Goals of this paper
	Slide 9: SQL over NoSQL
	Slide 10
	Slide 11: Challenges
	Slide 12: Challenges
	Slide 13: Challenges
	Slide 14: How to design KVS for efficient scans?
	Slide 15: How to design KVS for efficient scans?
	Slide 16: How to design KVS for efficient scans?
	Slide 17: How to design KVS for efficient scans?
	Slide 18: How to design KVS for efficient scans?
	Slide 19: Small detour: page layouts
	Slide 20
	Slide 21: Partition Attributes Across (PAX)
	Slide 22: How to design KVS for efficient scans?
	Slide 23: How to design KVS for efficient scans?
	Slide 24: How to design KVS for efficient scans?
	Slide 25: How to design KVS for efficient scans?
	Slide 26: Garbage Collection (GC)
	Slide 27: Design Space
	Slide 28: Design Space
	Slide 29
	Slide 30: Design Space
	Slide 31: Design Space
	Slide 32: TellStore-Log
	Slide 33: TellStore-Log Insertion
	Slide 34: TellStore-Log Update
	Slide 35: TellStore-Log Delete
	Slide 36: TellStore-Log Garbage Collection
	Slide 37: TellStore-Log in a nutshell
	Slide 38: TellStore-Col
	Slide 39: TellStore-Col Layout
	Slide 40: TellStore-Col Versioning
	Slide 41: TellStore-Col Insertion
	Slide 42: TellStore-Col Update
	Slide 43: TellStore-Col Update
	Slide 44: TellStore-Col Garbage Collection
	Slide 45: TellStore-Col in a nutshell
	Slide 46: Implementation Details
	Slide 47: Implementation Details
	Slide 48: Yahoo! Cloud Serving Benchmark# (YCSB#)
	Slide 49: Experiments: Transactional Workload
	Slide 50: Experiments: Scans
	Slide 51: Experiments: Mixed Workload
	Slide 52: Things to remember
	Slide 53
	Slide 54: Key-value stores
	Slide 55: Real-world, large skewed workloads
	Slide 56: Limitations of Existing Systems (1)
	Slide 57: Limitations of Existing Systems (2)
	Slide 58: Limitations of Existing Systems (2)
	Slide 59: Introducing F2
	Slide 60: Design Space
	Slide 61: F2 – Read Cache
	Slide 62: F2 – Performance Comparison
	Slide 63: F2 – I/O Amplification & Scalability Comparison
	Slide 64: class 7 Design Tradeoffs in Key-Value Stores

