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Do we have a quiz today … ?

No! 



what to do now?

A) read the syllabus and the website

B) register to Piazza + Gradescope

C) finish project 0

D) finish project 1 (due 2/14)

E) register for the student-presentations (by 2/17)

F) start working on project proposal (due 2/23)

http://tinyurl.com/S25-CS561-presentations


Fast Scans on Key-Value Stores (KVS)
Key-Value Stores are designed for transactional workloads (put and get operations)

Analytical workloads require efficient scans and aggregations 
(typically offered by column-store systems)

Can we do both in one system?



Why combine KVS and analytical systems?

memory

flash

HDD

cheaper and cheaper storage

more data ingestion

need for write-optimized
data structures

what about analytical queries?



Both transactional and analytical systems

Most organizations maintain both 

• transactional systems (often as key-value stores)

• analytical systems (often as column-stores)

problems?

requires additional expertise and management (e.g., two DBAs)

harder to maintain (more systems, more code)

time consuming data integration/transfer
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Scan Time of 50M records (~4GB of data)Log scale!

Prohibitively slow!

Acceptable performance!

Goal!



Goals of this paper

Bridge the conflicting goals of get/put and scan operations

get/put operations need sparse data structures

scans require locality (relevant data to be packed together)

we will discuss how to compromise, via the design of Tellstore

how to amend the SQL-over-NoSQL architecture for mixed workloads

→ locality is not required, access one object



SQL over NoSQL

Elasticity

Snapshot Isolation

Support for:
   Scans
   Versioning
   Batching

e.g., MVCC, no locking, timestamp based



Scans

selection

projection

(simple) aggregates

shared scans
remember them?

Versioning

multiple versions 
through timestamps

garbage collection

discarding old versions 
during scans might be costly

Batching

batch several 
requests to the 
storage layer

amortize the 
network time



Challenges

scans vs. get/put

#1, John, 2/4/88, Boston
2/4/88
2/1/87
7/7/93
4/1/92
3/9/91
9/3/96

Scans need columnar locality

get/put need row-wise locality 

why?



Challenges

scans vs. get/put

scans vs. versioning

#1, John, 2/4/88, Boston, v1

versioning reduces locality in scans

#1, John, 2/4/88, Cambridge, v2

checking for the latest version in scans needs CPU time 



Challenges

scans vs. get/put

scans vs. versioning

scans vs. batching

batching multiple scans or multiple put/get requests is ok

but …

batching scans and puts/gets is a bad idea!

why?

puts/gets need fast predictable performance

scans inherently have high and variable latency



How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning
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How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

in-place log-structured delta-main

column

A B C D A B C D A B C D

PAX (columnar per page)



Small detour: page layouts

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

a page
Row-store Column-store

middle ground?



A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

B
C DA, Β

A B C D

A B C D

A B C D

A B C D

mini row-store

something more than that!



Partition Attributes Across (PAX)

21

Middle ground?

Decompose a slotted-page internally 
in mini-pages per attribute

✓ Cache-friendly
➢ Brings only relevant attributes to cache

• Compatible with slotted-pages?

• Same update abstraction?
– (insert in a page)



How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

in-place log-structured delta-main

column (PAX) row

A B C D

A B C D

A B C D



How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered A B C D (v1)

A B C D (v2)

A B C D

any other options?



How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered

chained

A B C D (v1)

A B C D

A B C D

A B C D (v2)



How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered chained

what comes as a result of versioning?



Garbage Collection (GC)

(A) Periodic 

(B) Piggy-backed GC during scans

separate dedicated thread(s) 

increases scan time but frequently read tables benefit

avoids re-reading for GC (since data is already accessed)



Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

hybrid designs are also valid!
should we consider all possible designs?



Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

some combinations can be discarded:

log-structured & column worse than delta-main & column

log-structured & clustered worse than log-structured & chained

note that each combination here represents multiple options





Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

focus on two extremes:
 (1) log-structured & row & chained 

TellStore-Log



Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

focus on two extremes:
 (1) log-structured & row & chained 
 (2) delta-main & column & clustered

TellStore-Log

TellStore-Col



TellStore-Log

immutable log

head

lock-free hash table

previous entry for the same key

one log per table (locality for scans)

inserts, updates, and deletes are all logged

why?



TellStore-Log Insertion

Hash Table

Log

a record is considered valid after the hash table pointer is updated

the log contains rows



TellStore-Log Update

Hash Table

Log

previous pointer

the log contains rows



TellStore-Log Delete

Hash Table

Log

previous pointer

the log contains rows

D



TellStore-Log Garbage Collection

Hash Table

Log

the log contains rows

D

invalidated entries hurt scan performance

during scan, health (% of invalid entries) per page is calculated

if health < threshold, page is re-written in the head of the log &
 update hash table & old page is reclaimed



TellStore-Log in a nutshell

log-structure: efficient puts

hash-table: efficient gets (always points to the latest entry)

snapshot Isolation: high throughput, no locks needed

self-contained log: efficient scans (valid from/to needed)

lazy GC: Optimize tables that are scanned 



TellStore-Col
four data structures

before inserting we query

new entries go to insert log

updates go to update log

logs are write-optimized
row-oriented: append-only

main is read-only
columnar: read-optimized



TellStore-Col Layout

fixed-size data is stored in columnar format

variable-size data is indexed in columnar format
but stored in row-wise format

why row-wise?

(1) faster materialization (contiguous copying)

(2) less metadata (one offset for many columns)



TellStore-Col Versioning

in main storage multiple versions
are clustered contiguously

newest pointers
may exist

previous pointers may
exist only in update log

logs work like before 
and they are row-wise



TellStore-Col Insertion

Hash Table

Insert Log

Main

Update Log



TellStore-Col Update

Hash Table

Insert Log

Main

Update Log

newest pointer



TellStore-Col Update

Hash Table

Insert Log

Main

Update Log

newest pointer

previous pointer
newest pointer



TellStore-Col Garbage Collection

Hash Table

Insert Log

Main

Update Log

newest pointer

previous pointer
newest pointer

dedicated thread
   (conversion from row to column)

all main pages with invalid entries

all pages from insert log + update 
    to main

run GC frequently + truncate logs



TellStore-Col in a nutshell

delta-main: compromise between puts and scans

hash-table: efficient gets (always points to the latest entry, may need 
       one more pointer to follow)

PAX layout: minimize disk I/O, maintain locality for scans

separate insert/update logs: efficient GC

eager GC: improve scans 



Implementation Details

scans are assigned to dedicated threads scan coordinator for shared scans



Implementation Details
efficient predicate evaluation via code generation and predicate pushdown

all queries in CNF

reuse work



Yahoo! Cloud Serving Benchmark# (YCSB#)

main_table (P, A, B, C, D, E, F, G, H, I, J) P: 8-byte ley | A-H: 2-bytes, 4-bytes, 8-bytes | I-J: strings 12-16 bytes

based on YSCB, a put/get benchmark



Experiments: Transactional Workload

Kudu is used as it was the most competitive to begin with

All TellStore approaches are not that far!



Experiments: Scans

10x faster scans!

several orders of magnitude
faster scans!

Q3 does not have projections,
so no benefit from columnar



Experiments: Mixed Workload

Contrary to competition,
scan perf. is stable with
more gets/puts

In the absence of updates
TellStore scales perfectly:
scans+gets go to different 
cores

With 50% updates 
eventually logging wins



Things to remember

KVS vs. Scans: how to compromise, navigate the design space

✓delta-main vs. log-structure

✓chained vs. clustered versions

✓row-major vs. column-major

✓lazy vs. eager GC



A new set of requirements: 

point put/get operations (need for high throughput, ideally full in-memory for hot data)

larger-than-memory working set (so full in-memory not possible)

high skew in access patterns (reads/writes)

The target application has no scans!

which design should they follow?



Key-value stores
Log-structured Merge (LSM) Trees

• Handle larger-than-memory workloads

• Organized in levels; first is in-memory

• Support both point & range queries

• Avoid I/O by employing (Bloom) filters

• Judicious use of main memory

Point-optimized Stores

• Focus on use-cases like web caching

• Large in-memory index structures

• Latch-free concurrent designs

• Saturate I/O (even for NVMe SSDs)

• Very high throughput (>1M ops/sec)

[with slides from Konstantinos Kanellis]



Real-world, large skewed workloads
• Point queries and high throughput paramount

• Working sets larger than main-memory – most data rarely accessed or updated

• Total indexed data order of magnitude larger than main-memory

• Natural skew in key access pattern – both for reads and writes

• Memory resources scarce – disk wear is a practical concern

Search Engine Workload

Per-user
Statistics

Queries
Insert / Update statistics (e.g., clicks, statistics)

Millions of active users at any time – critical path

Many more inactive, but we still need to keep data!

We fetch clicks for active users (during browsing)
We count viewed ads, from active users

Ads clicks



Limitations of Existing Systems (1)
Log-structured Merge (LSM) Trees

+ Enable and tune (Bloom) filters

+ Use hash indices

+ Efficient compaction policies

– Filters may no longer fit in memory

– CPU overhead (10s of filters / query)

– Need tuning

[1] Dayan et. al. Monkey: Optimal Navigable Key-Value Store (SIGMOD’17)



Limitations of Existing Systems (2)

KVell

• Adjust page-cache size

– Large in-memory B-tree (19B per key)

– B-tree continuously paged out to disk

FASTER

• Tune record log in-memory size / hash index

– Reducing index size increases I/O ops

– Log compaction “pollutes” in-memory log



Limitations of Existing Systems (2)

KVell

• Adjust page-cache size

– Large in-memory B-tree (19B per key)

– B-tree continuously paged out to disk

FASTER

• Tune record log in-memory size / hash index

– Reducing index size increases I/O ops

– Log compaction “pollutes” in-memory log

BEGIN TAIL
FASTER Hybrid Log

BEGIN TAIL

Copy write-cold records to tail

HEAD HEAD HEAD TAIL

SSD DRAMSSD DRAMSSD DRAM

New records compete with old compacted 
records for a spot at in-memory regions

Increases write-amplification due 
to rewriting of records



Introducing F2
Key Idea: separate management of records across both read/write and hot/cold domains

BEGIN TAIL

Hot-Log 

Index

Key 2, Value

Key  5, Value

Key 1 Value

…

Key 3, Value

Record Log of

write-hot keys

Read Cache

BEGIN TAIL Cold-Log 

Index

Record Log of write-cold keys

SSD/HDD DRAM

Hot-Cold Records Compaction Cold-Cold Records Compaction



Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

similar to TellStore-Log, but with periodic compaction

compaction aggressively optimized



F2 – Read Cache

Contains read-hot records of both hot log and cold log
• Hash index entries can point to either read cache entries or (hot) record log (single bit in address)

       

             

                      

    

         

          

    

Reads go from hot-log index → (optionally) read cache → hot log

Reads from cold-log are always inserted at the tail of the read cache

Upserts and RMWs write directly to hot log tail, eliminating read cache chain

• If record with same key in read cache, it’s invalidated!

Periodically, read cache is evicting in-memory records (HEAD), by altering the hash chains



F2 – Performance Comparison

Zipfian Hotspot 10%

Zipfian: SplinterDB (1.78x), RocksDB (4.61x), FASTER (4.94x)  

Hotspot 10%: SplinterDB (1.66x), RocksDB (1.88x), FASTER (1.92x)  

YCSB: 250M keys, 8B keys, 100B values; 3GiB mem budget (10% of dataset size); 24 threads, NVMe SSD   



F2 – I/O Amplification & Scalability Comparison

YCSB-A

YCSB: 250M keys, 8B keys, 100B values; 3GiB mem budget (10% of dataset size); 24 threads, NVMe SSD   

F2 achieve less WA than Baselines F2 saturates at 8-12 threads

2.62x

→ Varying memory-budget, YCSB skewness; F2 detailed evaluation  
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