
class 7

Design Tradeoffs in Key-Value Stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

Do we have a quiz today … ?

No!

what to do now?

A) read the syllabus and the website

B) register to Piazza + Gradescope

C) finish project 0

D) finish project 1 (due 2/14)

E) register for the student-presentations (by 2/17)

F) start working on project proposal (due 2/23)

http://tinyurl.com/S25-CS561-presentations

Fast Scans on Key-Value Stores (KVS)
Key-Value Stores are designed for transactional workloads (put and get operations)

Analytical workloads require efficient scans and aggregations
(typically offered by column-store systems)

Can we do both in one system?

Why combine KVS and analytical systems?

memory

flash

HDD

cheaper and cheaper storage

more data ingestion

need for write-optimized
data structures

what about analytical queries?

Both transactional and analytical systems

Most organizations maintain both

• transactional systems (often as key-value stores)

• analytical systems (often as column-stores)

problems?

requires additional expertise and management (e.g., two DBAs)

harder to maintain (more systems, more code)

time consuming data integration/transfer

1140

46 36

2.4
1.8

0.78

0.197
0.133

0.084

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

Sc
an

 T
im

e
(s

ec
on

d
s)

Scan Time of 50M records (~4GB of data)Log scale!

Prohibitively slow!

Acceptable performance!

Goal!

Goals of this paper

Bridge the conflicting goals of get/put and scan operations

get/put operations need sparse data structures

scans require locality (relevant data to be packed together)

we will discuss how to compromise, via the design of Tellstore

how to amend the SQL-over-NoSQL architecture for mixed workloads

→ locality is not required, access one object

SQL over NoSQL

Elasticity

Snapshot Isolation

Support for:
 Scans
 Versioning
 Batching

e.g., MVCC, no locking, timestamp based

Scans

selection

projection

(simple) aggregates

shared scans
remember them?

Versioning

multiple versions
through timestamps

garbage collection

discarding old versions
during scans might be costly

Batching

batch several
requests to the
storage layer

amortize the
network time

Challenges

scans vs. get/put

#1, John, 2/4/88, Boston
2/4/88
2/1/87
7/7/93
4/1/92
3/9/91
9/3/96

Scans need columnar locality

get/put need row-wise locality

why?

Challenges

scans vs. get/put

scans vs. versioning

#1, John, 2/4/88, Boston, v1

versioning reduces locality in scans

#1, John, 2/4/88, Cambridge, v2

checking for the latest version in scans needs CPU time

Challenges

scans vs. get/put

scans vs. versioning

scans vs. batching

batching multiple scans or multiple put/get requests is ok

but …

batching scans and puts/gets is a bad idea!

why?

puts/gets need fast predictable performance

scans inherently have high and variable latency

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured delta-main

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

in-place log-structured delta-main

column

A B C D A B C D A B C D

PAX (columnar per page)

Small detour: page layouts

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

a page
Row-store Column-store

middle ground?

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

B
C DA, Β

A B C D

A B C D

A B C D

A B C D

mini row-store

something more than that!

Partition Attributes Across (PAX)

21

Middle ground?

Decompose a slotted-page internally
in mini-pages per attribute

✓ Cache-friendly
➢ Brings only relevant attributes to cache

• Compatible with slotted-pages?

• Same update abstraction?
– (insert in a page)

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

in-place log-structured delta-main

column (PAX) row

A B C D

A B C D

A B C D

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered A B C D (v1)

A B C D (v2)

A B C D

any other options?

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered

chained

A B C D (v1)

A B C D

A B C D

A B C D (v2)

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered chained

what comes as a result of versioning?

Garbage Collection (GC)

(A) Periodic

(B) Piggy-backed GC during scans

separate dedicated thread(s)

increases scan time but frequently read tables benefit

avoids re-reading for GC (since data is already accessed)

Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

hybrid designs are also valid!
should we consider all possible designs?

Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

some combinations can be discarded:

log-structured & column worse than delta-main & column

log-structured & clustered worse than log-structured & chained

note that each combination here represents multiple options

Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

focus on two extremes:
 (1) log-structured & row & chained

TellStore-Log

Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

focus on two extremes:
 (1) log-structured & row & chained
 (2) delta-main & column & clustered

TellStore-Log

TellStore-Col

TellStore-Log

immutable log

head

lock-free hash table

previous entry for the same key

one log per table (locality for scans)

inserts, updates, and deletes are all logged

why?

TellStore-Log Insertion

Hash Table

Log

a record is considered valid after the hash table pointer is updated

the log contains rows

TellStore-Log Update

Hash Table

Log

previous pointer

the log contains rows

TellStore-Log Delete

Hash Table

Log

previous pointer

the log contains rows

D

TellStore-Log Garbage Collection

Hash Table

Log

the log contains rows

D

invalidated entries hurt scan performance

during scan, health (% of invalid entries) per page is calculated

if health < threshold, page is re-written in the head of the log &
 update hash table & old page is reclaimed

TellStore-Log in a nutshell

log-structure: efficient puts

hash-table: efficient gets (always points to the latest entry)

snapshot Isolation: high throughput, no locks needed

self-contained log: efficient scans (valid from/to needed)

lazy GC: Optimize tables that are scanned

TellStore-Col
four data structures

before inserting we query

new entries go to insert log

updates go to update log

logs are write-optimized
row-oriented: append-only

main is read-only
columnar: read-optimized

TellStore-Col Layout

fixed-size data is stored in columnar format

variable-size data is indexed in columnar format
but stored in row-wise format

why row-wise?

(1) faster materialization (contiguous copying)

(2) less metadata (one offset for many columns)

TellStore-Col Versioning

in main storage multiple versions
are clustered contiguously

newest pointers
may exist

previous pointers may
exist only in update log

logs work like before
and they are row-wise

TellStore-Col Insertion

Hash Table

Insert Log

Main

Update Log

TellStore-Col Update

Hash Table

Insert Log

Main

Update Log

newest pointer

TellStore-Col Update

Hash Table

Insert Log

Main

Update Log

newest pointer

previous pointer
newest pointer

TellStore-Col Garbage Collection

Hash Table

Insert Log

Main

Update Log

newest pointer

previous pointer
newest pointer

dedicated thread
 (conversion from row to column)

all main pages with invalid entries

all pages from insert log + update
 to main

run GC frequently + truncate logs

TellStore-Col in a nutshell

delta-main: compromise between puts and scans

hash-table: efficient gets (always points to the latest entry, may need
 one more pointer to follow)

PAX layout: minimize disk I/O, maintain locality for scans

separate insert/update logs: efficient GC

eager GC: improve scans

Implementation Details

scans are assigned to dedicated threads scan coordinator for shared scans

Implementation Details
efficient predicate evaluation via code generation and predicate pushdown

all queries in CNF

reuse work

Yahoo! Cloud Serving Benchmark# (YCSB#)

main_table (P, A, B, C, D, E, F, G, H, I, J) P: 8-byte ley | A-H: 2-bytes, 4-bytes, 8-bytes | I-J: strings 12-16 bytes

based on YSCB, a put/get benchmark

Experiments: Transactional Workload

Kudu is used as it was the most competitive to begin with

All TellStore approaches are not that far!

Experiments: Scans

10x faster scans!

several orders of magnitude
faster scans!

Q3 does not have projections,
so no benefit from columnar

Experiments: Mixed Workload

Contrary to competition,
scan perf. is stable with
more gets/puts

In the absence of updates
TellStore scales perfectly:
scans+gets go to different
cores

With 50% updates
eventually logging wins

Things to remember

KVS vs. Scans: how to compromise, navigate the design space

✓delta-main vs. log-structure

✓chained vs. clustered versions

✓row-major vs. column-major

✓lazy vs. eager GC

A new set of requirements:

point put/get operations (need for high throughput, ideally full in-memory for hot data)

larger-than-memory working set (so full in-memory not possible)

high skew in access patterns (reads/writes)

The target application has no scans!

which design should they follow?

Key-value stores
Log-structured Merge (LSM) Trees

• Handle larger-than-memory workloads

• Organized in levels; first is in-memory

• Support both point & range queries

• Avoid I/O by employing (Bloom) filters

• Judicious use of main memory

Point-optimized Stores

• Focus on use-cases like web caching

• Large in-memory index structures

• Latch-free concurrent designs

• Saturate I/O (even for NVMe SSDs)

• Very high throughput (>1M ops/sec)

[with slides from Konstantinos Kanellis]

Real-world, large skewed workloads
• Point queries and high throughput paramount

• Working sets larger than main-memory – most data rarely accessed or updated

• Total indexed data order of magnitude larger than main-memory

• Natural skew in key access pattern – both for reads and writes

• Memory resources scarce – disk wear is a practical concern

Search Engine Workload

Per-user
Statistics

Queries
Insert / Update statistics (e.g., clicks, statistics)

Millions of active users at any time – critical path

Many more inactive, but we still need to keep data!

We fetch clicks for active users (during browsing)
We count viewed ads, from active users

Ads clicks

Limitations of Existing Systems (1)
Log-structured Merge (LSM) Trees

+ Enable and tune (Bloom) filters

+ Use hash indices

+ Efficient compaction policies

– Filters may no longer fit in memory

– CPU overhead (10s of filters / query)

– Need tuning

[1] Dayan et. al. Monkey: Optimal Navigable Key-Value Store (SIGMOD’17)

Limitations of Existing Systems (2)

KVell

• Adjust page-cache size

– Large in-memory B-tree (19B per key)

– B-tree continuously paged out to disk

FASTER

• Tune record log in-memory size / hash index

– Reducing index size increases I/O ops

– Log compaction “pollutes” in-memory log

Limitations of Existing Systems (2)

KVell

• Adjust page-cache size

– Large in-memory B-tree (19B per key)

– B-tree continuously paged out to disk

FASTER

• Tune record log in-memory size / hash index

– Reducing index size increases I/O ops

– Log compaction “pollutes” in-memory log

BEGIN TAIL
FASTER Hybrid Log

BEGIN TAIL

Copy write-cold records to tail

HEAD HEAD HEAD TAIL

SSD DRAMSSD DRAMSSD DRAM

New records compete with old compacted
records for a spot at in-memory regions

Increases write-amplification due
to rewriting of records

Introducing F2
Key Idea: separate management of records across both read/write and hot/cold domains

BEGIN TAIL

Hot-Log

Index

Key 2, Value

Key 5, Value

Key 1 Value

…

Key 3, Value

Record Log of

write-hot keys

Read Cache

BEGIN TAIL Cold-Log

Index

Record Log of write-cold keys

SSD/HDD DRAM

Hot-Cold Records Compaction Cold-Cold Records Compaction

Design Space

Updates Layout Versioning GC

in-place

log-structured

delta-main

column (PAX)

row

clustered

chained

periodic

piggy-backed

×× ×

similar to TellStore-Log, but with periodic compaction

compaction aggressively optimized

F2 – Read Cache

Contains read-hot records of both hot log and cold log
• Hash index entries can point to either read cache entries or (hot) record log (single bit in address)

Reads go from hot-log index → (optionally) read cache → hot log

Reads from cold-log are always inserted at the tail of the read cache

Upserts and RMWs write directly to hot log tail, eliminating read cache chain

• If record with same key in read cache, it’s invalidated!

Periodically, read cache is evicting in-memory records (HEAD), by altering the hash chains

F2 – Performance Comparison

Zipfian Hotspot 10%

Zipfian: SplinterDB (1.78x), RocksDB (4.61x), FASTER (4.94x)

Hotspot 10%: SplinterDB (1.66x), RocksDB (1.88x), FASTER (1.92x)

YCSB: 250M keys, 8B keys, 100B values; 3GiB mem budget (10% of dataset size); 24 threads, NVMe SSD

F2 – I/O Amplification & Scalability Comparison

YCSB-A

YCSB: 250M keys, 8B keys, 100B values; 3GiB mem budget (10% of dataset size); 24 threads, NVMe SSD

F2 achieve less WA than Baselines F2 saturates at 8-12 threads

2.62x

→ Varying memory-budget, YCSB skewness; F2 detailed evaluation 

class 7

Design Tradeoffs in Key-Value Stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

	Slide 1: class 7 Design Tradeoffs in Key-Value Stores
	Slide 2: Do we have a quiz today … ?
	Slide 3: what to do now?
	Slide 4: Fast Scans on Key-Value Stores (KVS)
	Slide 5: Why combine KVS and analytical systems?
	Slide 6: Both transactional and analytical systems
	Slide 7
	Slide 8: Goals of this paper
	Slide 9: SQL over NoSQL
	Slide 10
	Slide 11: Challenges
	Slide 12: Challenges
	Slide 13: Challenges
	Slide 14: How to design KVS for efficient scans?
	Slide 15: How to design KVS for efficient scans?
	Slide 16: How to design KVS for efficient scans?
	Slide 17: How to design KVS for efficient scans?
	Slide 18: How to design KVS for efficient scans?
	Slide 19: Small detour: page layouts
	Slide 20
	Slide 21: Partition Attributes Across (PAX)
	Slide 22: How to design KVS for efficient scans?
	Slide 23: How to design KVS for efficient scans?
	Slide 24: How to design KVS for efficient scans?
	Slide 25: How to design KVS for efficient scans?
	Slide 26: Garbage Collection (GC)
	Slide 27: Design Space
	Slide 28: Design Space
	Slide 29
	Slide 30: Design Space
	Slide 31: Design Space
	Slide 32: TellStore-Log
	Slide 33: TellStore-Log Insertion
	Slide 34: TellStore-Log Update
	Slide 35: TellStore-Log Delete
	Slide 36: TellStore-Log Garbage Collection
	Slide 37: TellStore-Log in a nutshell
	Slide 38: TellStore-Col
	Slide 39: TellStore-Col Layout
	Slide 40: TellStore-Col Versioning
	Slide 41: TellStore-Col Insertion
	Slide 42: TellStore-Col Update
	Slide 43: TellStore-Col Update
	Slide 44: TellStore-Col Garbage Collection
	Slide 45: TellStore-Col in a nutshell
	Slide 46: Implementation Details
	Slide 47: Implementation Details
	Slide 48: Yahoo! Cloud Serving Benchmark# (YCSB#)
	Slide 49: Experiments: Transactional Workload
	Slide 50: Experiments: Scans
	Slide 51: Experiments: Mixed Workload
	Slide 52: Things to remember
	Slide 53
	Slide 54: Key-value stores
	Slide 55: Real-world, large skewed workloads
	Slide 56: Limitations of Existing Systems (1)
	Slide 57: Limitations of Existing Systems (2)
	Slide 58: Limitations of Existing Systems (2)
	Slide 59: Introducing F2
	Slide 60: Design Space
	Slide 61: F2 – Read Cache
	Slide 62: F2 – Performance Comparison
	Slide 63: F2 – I/O Amplification & Scalability Comparison
	Slide 64: class 7 Design Tradeoffs in Key-Value Stores

