CS 561: Data Systems Architectures

class 5

Row-stores vs. Column-stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

with slides based on Dan Abadi’s

https://bu-disc.github.io/CS561/

Do we have a quiz today ... ?

NO!

BOSTON
UNIVERSITY

Row-stores vs. Col-Stores: How Different Are They Really?

Are column-stores really novel?

If we profile their performance, what is the breakdown? Why?

The paper tries to clarify which part of the “column stores” hype was
marketing and which was fundamental

BOSTON
UNIVERSITY

Row-Stores

Student (sid: string, name: string, login:
string, year_birth: integer, gpa: real)

Gudent \ (" o | (oo

(sid1, namel, loginl, yearl, gpal) o0 @ o0 ()
_ J J

(sid2, name2, login2, year2, gpa2)

(sid3, name3, login3, year3, gpa3)

(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpab)
(sid6, name6, login6, year6, gpab)
(sid7, name7, login7, year7, gpa7) \)] L

(sid8, name8, login8, year8, gpa8)

@9, name9, login9, year9, gpa9)/ \

BOSTON
UNIVERSITY

Row-Stores: slotted page

/i

g -

\

// rowl
r‘ I

J

/

row3

Row-Stores: slotted page

/ #rows, row offsets, free space offsets,
#fixed length attributes, #var length attributes

: / / rowl J [row?2
r‘ I

BOSTON
UNIVERSITY

)
Row-Stores 7‘\\\‘ pros and cons?

Easy to add a new record

¥ Might access unnecessary data

-
)
\
1

|

|

|

|

|

|
> ||
o1
O |
O i
|

|

|

|

|

|
—----—/}

each page contains entire rows (all their columns)

> pages

VI
I’\\
/

S
) (

\

>
vy
(@
O

/4
>
o
O
O
K
\-

BOSTON
UNIVERSITY

rows are contiguous
(with possible free space at the end)

Row-stores: query processing

(C

ABCD

)

ABCD

ABCD

ABCD

ABCD

ABCD

\
Z
\

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

[ABCD]

one row at a time

?\
Column-Stores \y pros and cons?

(——N——N—. —— Read only relevant data
! r |
!
______________________ |
r : . :
_____________________ ' ¥ Tuple writes require multiple accesses
-.é- --E- --.D--c each page contains columns!

e t___a____a > a/
BOSTON
UNIVERSITY

Column-stores: query processing

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

)

—

IDs
N

\

)

=

IDs
N

\

)

= (max)

Let’s revisit the main question of the paper

Prior to this paper there several studies showing

column-stores outperforming row-stores (~5x better performance in TPCH)
especially for

read-mostly data warehouses that have

1. column scans and aggregations

2. few and batched writes

Key question:

(a) are the benefits inherent to the new column-store design, or

(b) a row-store with a “more columnar” physical design can achieve the same?
In other words: can you “simulate a col-store in a row-store ?”

BOSTON
UNIVERSITY

Paper’s Methodology

Compare row-store vs. row-store and col-store vs. col-store.
How?

1. Simulate a column-store inside a row-store

2. Remove col-store features one-by-one

BOSTON
UNIVERSITY

State-of-the-art Col-Store features

Late Materialization
“stich the column together as late as possible”

Block iteration

“execute the same columnar operation over a block of values”

Compression
“column-specific compression, due to the nature of data”

BOSTON
UNIVERSITY

Late Materialization

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

N——

—

IDs
N

\

N——

=

IDs
N

\

—

= (max)

“the full tuple (or the necessary subset) is not materialized until it is needed”

“Column-at-a-time”

select max(B) from R where A>5 and C<10

IDs IDs whole column?

— s = column at a time
\ \ block/vector at a time

BOSTON N) N
UNIVERSITY

Block lteration

select max(B) from R where A>5 and C<10

IDs IDs whole column?
— column at a time
= = = (max)
A C B block/vector at a time
T
— —>
A C B

BOSTON N — —
UNIVERSITY

| | 71‘
What is easier to compress? £\

#1, John, 2/4/88, Boston

#2, Joe, 2/1/87, New York

#3, Lina, 7/7/93, Boston

#4, Anna, 4/1/92, Chicago

#5, Tim, 3/9/91, Seattle

#6, Rose, 9/3/96, Boston

&

~\

J

BOSTON
UNIVERSITY

exploit patterns, duplicates, small differences

— 4 AY4 N/ \\

#1 || John || 2/4/88 Boston

#2 || Joe 2/1/87 || New York

#3 || Lina 7/7/93 Boston

#4 || Anna || 4/1/92 Chicago

#5 | Tim 3/9/91 Seattle

#6 || Rose || 9/3/96 Boston
/&/ 7’/‘/ 7/ /’>/)

How to simulate a col-store with a row-store?

Vertical Partitioning
“physically partition the data per column”

Index-only Plans

“use only indexes in query plans that contain only relevant columns”

Materialized Views
“temporary tables that contain exactly the answer to a query”

BOSTON
UNIVERSITY

Vertical Partitioning

select max(B) from R where A>5 and C<10

/ \ C_;_f__g ___‘_'__3
\ ABCD) ro%jl

ABCD || row2]|
ABCD

—>| |a[|B]||c||D
ABCD
ABCD

"/
BOSTON
UNIVERSITY

Index-only plans

([

ABCD

)

ABCD

ABCD

ABCD

ABCD

ABCD

\
Z
\

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

o0

Materialized Views

([

ABCD

)

ABCD

ABCD

ABCD

ABCD

ABCD

' BC
> :

|\
Z
\

BOSTON
UNIVERSITY

select B, C from R where A>5 and C<10

BC

Benchmarking

When comparing database systems we need a common “language”

Benchmarks from the Transaction Performance Council
TPC-B, TPC-C, TPC-H, TPC-DS etc

Also, a benchmark for data warehousing:
Star Schema Benchmark

BOSTON
UNIVERSITY

Example:

BOSTON
UNIVERSITY

TPC-H is a decision support benchmark

» developed by the Transaction Processing
Performance Council (TPC)

* has 22 business-oriented ad-hoc queries
and concurrent data modifications

* based on real production environments to
simulate the data warehouse of a sales

system

Q1

ORDERS (0_)
SF*1,500,000

ORDERKEY

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

CLERK

SHIP-
PRIORITY

COMMENT

PART (P_) PARTSUPP (PS) LINEITEM (L)
SF*200,000 SF*800,000 SF*6,000,000
PARTKEY —® | PARTKEY ORDERKEY
NAME — ™| SUPPKEY]1_[: PARTKEY
MFGR AVAILQTY SUPPKEY
BRAND SUPPLYCOST LINENUMBER
TYPE COMMENT QUANTITY

EXTENDEDPRICH
SIZE CUSTOMER (C_)
CONTAINER SF*150,000 DISCOUNT
CUSTKEY
RETAILPRICE TAX
NAME
COMMENT RETURNFLAG
ADDRESS
LINESTATUS
SUPPLIER (S_) —=| NATIONKEY
SF*10,000 SHIPDATE
PHONE
SUPPKEY COMMITDATE
ACCTBAL
NAME RECEIPTDATE
MKTSEGMENT
ADDRESS SHIPINSTRUCT
NATIONKEY COMMENT SHIPMODE
PHONE NATIgI; (N COMMENT
AGCTBAL
L | NATIONKEY REGION (R_)
COMMENT 5
NAME (— | REGIONKEY
REGIONKEY |™%—
NAME
COMMENT
COMMENT

Fact table

Star-Schema Benchmark et
CUSTKEY ORDERKEY PARTKEY
13 queries NAME \LlNENUMBER NAME
ADDRESS CUSTKEY MFGR
CITY PARTKEY CATEGOTY
select sum(lo extendedprice*lo discount) as revenue |NATION SUPPKEY BRAND1
from lineorder, date - REGION ORDERDATE COLOR
where lo orderdate = d datekey and PHONE ORDPRIORITY TYPE
d _year = 1993 and MKTSEGMENT SHIPPRIORITY SIZE
lo_discount between 1 and 3 and Size=scalefactor x QUANTITY CONTAINER
1o_quantity < 25; 30,0000 EXTENDEDPRICE Size=200,000 x
ORDTOTALPRICE (1 + logz scalefactor,
SUPPLIER
SUPPKEY DISCOUNT SATE
REVENUE
select sum(lo revenue), d year, p brandl NAME SUPPLYCOST DATEKEY
from lineorder, date, part, supplier ADDRESS TAX DATE
where lo orderdate = d datekey and CITY COMMITDATE DAYOFWEEK
lo partkey = p partkey and NATION SHIPMODE MONTH
lo suppkey = s suppkey and REGION X YEAR
p category = 'MFGR#12' and PHONE ng(e)zsgg(l)ef tor x YEARMONTHNUM
s_region = 'AMERICA’ Size=scalefactor x S YEARMONTH
group by d year, p brandl 2000 / DAYNUMWEEK
order by d year, p brandl; -
- - (9 add’l attributes)
Size= 365 x 7

BOSTON Dimension tables
UNIVERSITY

. L
Pe rfOrma Nnce MetrlCS ?\\\L why care about both?

4000 7

3000 7

L)
o &0
throughput latency | ,]{ MHWMWWM

] 400 200 1200
response time (ms)

BOSTON
UNIVERSITY

Performance Metrics I

O

2 & O TR
o — Y memory
I!o @ SSD miss/hit
throughput latency device lifetime
&

stalls bandwidth

Eggﬁggﬁ utilization

Experiments

1 CPU 2.8GHz, 3GB RAM, Red Hat Linux 5

4-disk HDD array with 160-200MB/s aggregate bandwidth

(older paper, so small numbers!)

Report averages with “warm” bufferpool (smaller than data size)

Focus on SSB averages (the paper has more detailed graphs)

BOSTON
UNIVERSITY

Experimenting with row-stores (SSB averages)

tuple overheads (additional record IDs)
+ could not horizontally partition + more expensive hash joins

250.0

200.0
»
select sum(lo revenue), d year, p brandl 'g

from lineorder, date, part, supplier 8 150.0 -
where lo orderdate = d datekey and Q
lo partkey = p partkey and ~

lo suppkey = s suppkey and qEJ 100.0 +
p _category = 'MFGR#12' and =

s region = 'AMERICA' 50.0 -
group by d year, p brandl

order by d year, p brandl; 4—
0.0 -

Vertically Partitioned | Row-Store With All
Normal Row-Store
Row-Store Indexes
M Average 25.7 79.9 221.2

BOSTON
UNIVERSITY

Details on Vertical Partitioning

1 1 1

2 2 2
3 3 3

Complete fact table 4GB (compressed)
Vertical partitioned tables are 0.7-1.1GB per column (compressed)

Note that a “real column-store” would only store the raw values as an array.
In this example it would be only 240MB.

BOSTON
UNIVERSITY

Vertical Partitioning Interferes With Horizontal Partitioning

BOSTON
UNIVERSITY

The fact table is horizontally partitioned (on date, allows to skip lots of data)

(C

ABCD

)

ABCD

ABCD

ABCD

ABCD

ABCD

a0)
ABCD
\ ABCD |
' ABCD \
_ '
(t ABCD :\
ABCD
\ ABCD |
_ _J

Vertical Partitioning Interferes With Horizontal Partitioning

The fact table is horizontally partitioned (on date, allows to skip lots of data)

/() 4 N\ () (\\

Cannot horizontally partition because the
vertical partitions do not contain date info

\\)\)\ ,\)/

Experimenting with row-stores (SSB averages)

tuple reconstruction (via expensive joins)

\

tuple overheads (additional record IDs) prior to the join between tables
+ could not horizontally partition + more expensive hash joins
250.0
200.0 -
%)
select sum(lo revenue), d year, p brandl 'g
from lineorder, date, part, supplier 8 150.0 -
where lo orderdate = d datekey and Q
lo partkey = p partkey and ~ |
lo suppkey = s suppkey and QE) 100.0
p _category = 'MFGR#12' and =

s region = 'AMERICA' 50.0 -
group by d year, p brandl

order by d year, p brandl; 4—
0.0

Normal Row-Store

Vertically Partitioned
Row-Store

Row-Store With All
Indexes

M Average 25.7

79.9

221.2

BOSTON

UNIVERSITY

Details on All Indexes

A common query pattern:

SELECT store name, SUM(revenue)
FROM Facts, Stores
WHERE fact.store 1d = stores.store id AND

stores.country = “Canada”
GROUP BY store name

All qualifying tuples (based on where clause) are selected and reconstructed (“stitched together”)
Note that indexes map to TIDs, and then from TIDs we get the column’s value

Tuple reconstruction is SLOW!

BOSTON
UNIVERSITY

Can we simulate a column-store with a row-store?

(a) All Indexes is a poor way to do it 7*\1
4

w

(b) Vertical Partitioning’s problem are NOT fundamental
i. tuple header can be removed
ii. TIDs can be virtual
iii. horizontal partitioning can be based on the values of a different VP

But still, column-stores and row-stores are apples and oranges!!

BOSTON
UNIVERSITY

Row-Stores vs. Column-Stores (SSB average)

30.0

MV have the result readily available

N

e

S
|

N

o

S
|

A native dol-store is faster

Time (seconds)
—
(6,
o
]

Why?
10.0 -
5.0 -
Row-Store Row-Store (MV) C-Store
mAverage 25.7 1.7 44

BOSTON
UNIVERSITY

Methodology

Start from a native column-store
Remove column-store-specific performance optimizations

End with a column-store with a row-oriented query engine

BOSTON
UNIVERSITY

A. Compression

)

Ql
Ql
Ql
Q2
Q2

&
BOSTON 7\\\‘
UNIVERSITY @ |

Run-length Encoding

g Q1, 1, 300 h

:> Q2, 301, 500
Q3, 501, 550

Q4, 551, 800

. /

Alternative: Dictionary Compression
» Replace variable size with
minimal fixed length e.g., integer

?\
e U
Benefits of col-store compression

Reduces |/O

Can operate directly on compressed data

2k
e U

How?

Are the same benefits applicable for row-store compression?

Reduces I/O = yes, but with lower ratio (less data value locality)

No! Requires decompression before processing

B. Early vs. Late Materialization

Late: Column-at-a-time

IDs
N

BOSTON
UNIVERSITY

\

)

=

IDs
N

\

)

= (max)

B. Early vs. Late Materialization

Early: Row-at-a-time

rowl

row?2

BOSTON
UNIVERSITY

?\
e U

At what cost?

Poor memory bandwidth utilization

Lose opportunity for vectorized execution

C. Block Iteration

select max(B) from R where A>5 and C<10

IDs IDs whole column?
— column at a time
= = = (max)
A C B block/vector at a time
T
— —>
A C B

UNIVERSITY

D. Invisible Joins

|dea: rewrite joins as predicates on foreign keys in fact table

Algorithm:
1. apply each predicate to the appropriate dimension table
2. build a hash table on matching keys
3. compute bitvector with bits set for qualifying positions (tuples)
4. intersect bitvectors (positions) via bitwise AND
5. for each resulting position reconstruct the resulting tuple

BOSTON
UNIVERSITY

1. apply each predicate to the appropriate dimension table
2. build a hash table on matching keys

Apply region = 'Asia' on Customer table . . . ep o -
e T T 3. compute bitvector with bits set for qualifying positions (tuples)
1 Asia_ | China | .. Hash table 4. intersect bitvectors (positions) via bitwise AND
2 Europe France 1 andg
3 Asia India Fact Table
Apply region = 'Asia’ on Supplier table orderkey | | custkey | | suppkey | | orderdate revenue
. . 1 3 1 01011997 43256
suppkey | region nation
1 Asia Ruseia Hash table 2 3 2 01011997 33333
- I with key 1 3 2 1 01021997 12121
2 Europe Spain
4 1 1 01021997 23233
Apply year in [1992,1997] on Date table 5 2 2 01021997 45456
dateid year 6 1 2 01031997 43251
Hash table with 7 3 2 01031997 34235
owser] o | | tertiony
01021997, and robe robe
01031997 | 1997 01031997 P:’V) / .
SELECT c.nation, s.nation, d.year, Hash table 1 Hash table | _ | 1 Hash table with 1
sum (lo.revenue) as revenue with keys | = ; with key 1 0 keys 01011997, _ |
FROM customer AS ¢, lineorder AS lo, 1and3 1 : 01021997, and 1
supplier AS s, dwdate AS d matching fact | o 0 01031997 r
WHERE lo.custkey = c.custkey AND table bitmap [0 1
lo.suppkey = s.suppkey AND for cust. dim. [0 . 1
lo.orderdate = d.datekey AND Join 0
c.region = 'ASIA’ AND s.region = ’'ASIA’ AND 0
d.year >= 1992 and d.year <= 1997 Bitwise | _ [1 tzac;tefggt
GROUP BY c.nation, s.nation, d.year And 0 satrgfyalljofn
ORDER BY d.year asc, revenue desc; 0 predicates
0

5. For each resulting position, extract the values

from the columns that are in the result

SELECT c.nation, s.nation, d.year,
sum (lo.revenue) as revenue

FROM customer AS c, lineorder AS 1lo,
supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey AND
lo.suppkey = s.suppkey AND
lo.orderdate = d.datekey AND
c.region = "ASTIA’ AND s.region = "ASIA'
d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year

ORDER BY d.year asc, revenue desc;

)\

e U

Are invisible joins a general join algorithm?

No! They works only for Star Schemas

Fact Table Columns

S S T R S I S I A S T S T R I I

01031997

1
0 fact table
0 tuples that
1| satisfy all join
0 predicates
- 0
custkey 0
3
3
2 bitmap
1 value
2 extraction
1
3
suppkey
1
: bitmap
1 value
3 extraction
2
2
orderdate
01011997
01011997 X
01021997 - b\::;::"
01021997 extraction
01021997
01031997

dimension table

nation

China

France

India

N\

3 position | _| India
1 |Pesitions | Jookup | | China
nation
Russia
Spain
1 position | _| Russia
1 Positions | ookup B Russia
dateid year
01011997 1997
01021997 1997
01031997 1997
01011997 P = 1997
01021997 | Vages * Lo |~ [1997

sj)insay ujor

50.0

To make the most of a col-store
4]]
1. Efficient support of 0.0
vertical partitioning
(compression)
2. Column-specific

execution
(late materialization) &
QEJ 20.0 -
=
10.0]
0.0 N
C-Store,N C-Store, Earl
Original C-Store ore, o ore, =arly
Compression Materialization
El\?\?];g\g"rNY l Average 4.4 14.9 40.7

Row-Store

25

Average

550.0 - Average | 45.0 | 1
C-store appears to do even better than fully materialized joins
[]
200.0 - Block processing buys you 5 to 50%
. . . . 10'0]
Invisible join buys you 50-75%
150.0

ond

25.0 A

-~
(=

Compression buys you 2X
g 200

' | !

Late materialization gets you almost 3X
10.0 A 1 1

50.0 - 1

l

0.0 -
0.0 —J - tICL | TICL| tiCL | TiCL

T T(B) MV VP Al
M Average| 25.7 64.0 10.2 799 | 221.2

Time (seconds)
Ti

ticLL | TicL | Ticl
M Average| 40 | 64 | 75 | 93 | 14.7]16.0 | 41.0

, . _ . _ T=tuple-at-a-time processing, t=block processing;
T is traditional, T(B) is traditional (bitmap), |=invisible join enabled, i=disabled:

BOSTON M\é zlrﬁatﬁr.lacljlzed views, VP is vertical partitioning, C=compression enabled, c=disabled;
UNIVERSITY |k IS all INGEXES L=late materialization enabled, |=disabled

Things to remember

Row-stores vs. Col-stores: fundamental differences

v'"Compression
v’ Late Materialization
v'Block Iteration

v'Column-store-specific join optimizaitons

BOSTON
UNIVERSITY

60

E 40 - 3
:)
g 20 -
H
O_JJJ |_|

1111213212223 4.2
B RS 27 1 2.0 | 1.5 |43.8|44.1/46.0/43.0 428312 65 444 14.1
@RS (MV) 10 1.0 02 1155/135/11.8/16.1| 69 | 64 | 3.0 [292|22.4
mCs 04 01]01|57|42 39 110 44|76 |06 |82 | 3.7
[1CS (Row-MV) | 16.0 | 9.1 | 8.4 |33.5/23.5|22.3 485 21.5|17.6 | 17.4|48.6 | 38.4

Figure 5: Baseline performance of C-Store ‘“CS” and System X “RS”, compared with materialized view cases on the same systems.

BOSTON
UNIVERSITY

tuple reconstruction is expensive!!

50

) 40 -
k=
S 30 -
g
= 20 -
= .
= 10 I
0 —

1.1 (12 (13 21 22|23 31|32 |33 |34 4.1
M Base 04 | 0.1 |01 |57 42|39 (11044 | 76 | 0.6 | 8.2
EPJ,NoC | 04 | 0.1 | 0.2 [32.9 254 |12.1|42.7 43.1|31.6|28.4 46.8
OPJ),IntC | 03 | 0.1 |01 |11.8] 3.0 |26 11.7| 83 | 55 | 4.1 |10.0
OPJ,MaxC| 07 | 02 | 02 | 6.1 | 23|19 |73 36| 39|32 6.8

Figure 8: Comparison of performance of baseline C-Store on the original SSBM schema with a denormalized version of the schema.
Denormalized columns are either not compressed (‘“PJ, No C”), dictionary compressed into integers (“PJ, Int C”), or compressed as
much as possible (“PJ, Max C”).

BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

class 5

Row-stores vs. Column-stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

	Slide 1: class 5 Row-stores vs. Column-stores
	Slide 2: Do we have a quiz today … ?
	Slide 3: Row-stores vs. Col-Stores: How Different Are They Really?
	Slide 4: Row-Stores
	Slide 5: Row-Stores: slotted page
	Slide 6: Row-Stores: slotted page
	Slide 7: Row-Stores
	Slide 8: Row-stores: query processing
	Slide 9: Column-Stores
	Slide 10: Column-stores: query processing
	Slide 11
	Slide 12: Paper’s Methodology
	Slide 13: State-of-the-art Col-Store features
	Slide 14: Late Materialization
	Slide 15: “Column-at-a-time”
	Slide 16: Block Iteration
	Slide 17: What is easier to compress?
	Slide 18: How to simulate a col-store with a row-store?
	Slide 19: Vertical Partitioning
	Slide 20: Index-only plans
	Slide 21: Materialized Views
	Slide 22: Benchmarking
	Slide 23
	Slide 24: Star-Schema Benchmark
	Slide 25: Performance Metrics
	Slide 26: Performance Metrics
	Slide 27: Experiments
	Slide 28: Experimenting with row-stores (SSB averages)
	Slide 29: Details on Vertical Partitioning
	Slide 30: Vertical Partitioning Interferes With Horizontal Partitioning
	Slide 31: Vertical Partitioning Interferes With Horizontal Partitioning
	Slide 32: Experimenting with row-stores (SSB averages)
	Slide 33: Details on All Indexes
	Slide 34: Can we simulate a column-store with a row-store?
	Slide 35: Row-Stores vs. Column-Stores (SSB average)
	Slide 36: Methodology
	Slide 37: A. Compression
	Slide 38: B. Early vs. Late Materialization
	Slide 39: B. Early vs. Late Materialization
	Slide 40: C. Block Iteration
	Slide 41: D. Invisible Joins
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Things to remember
	Slide 47
	Slide 48
	Slide 50: class 5 Row-stores vs. Column-stores

