
class 5

Row-stores vs. Column-stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

with slides based on Dan Abadi’s

https://bu-disc.github.io/CS561/

Do we have a quiz today … ?

No!

Row-stores vs. Col-Stores: How Different Are They Really?

Are column-stores really novel?

If we profile their performance, what is the breakdown? Why?

The paper tries to clarify which part of the “column stores” hype was
marketing and which was fundamental

Row-Stores

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)

Student (sid: string, name: string, login:
string, year_birth: integer, gpa: real)

Row-Stores: slotted page

header

row1 row2

row3

free space

Row-Stores: slotted page

#rows, row offsets, free space offsets,
#fixed length attributes, #var length attributes

row1 row2

row3

free space

Row-Stores

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

each page contains entire rows (all their columns)

rows are contiguous
(with possible free space at the end)

file

pages

Easy to add a new record

Might access unnecessary data

pros and cons?

select max(B) from R where A>5 and C<10

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

one row at a time

Row-stores: query processing

Column-Stores

A B C D
each page contains columns!

row1

row2

pros and cons?

Read only relevant data

Tuple writes require multiple accesses

select max(B) from R where A>5 and C<10

Column-stores: query processing

A B C D

IDs

C

max

IDs

BA

Prior to this paper there several studies showing

 column-stores outperforming row-stores (~5x better performance in TPCH)

especially for

 read-mostly data warehouses that have

 1. column scans and aggregations

 2. few and batched writes

Key question:

(a) are the benefits inherent to the new column-store design, or

(b) a row-store with a “more columnar” physical design can achieve the same?

In other words: can you “simulate a col-store in a row-store?”

Let’s revisit the main question of the paper

Paper’s Methodology

Compare row-store vs. row-store and col-store vs. col-store.

How?

1. Simulate a column-store inside a row-store

2. Remove col-store features one-by-one

State-of-the-art Col-Store features

Late Materialization

 “stich the column together as late as possible”

Block iteration

 “execute the same columnar operation over a block of values”

Compression

 “column-specific compression, due to the nature of data”

select max(B) from R where A>5 and C<10

Late Materialization

A B C D

IDs

C

max

IDs

BA

“the full tuple (or the necessary subset) is not materialized until it is needed”

max

whole column?

column at a time

block/vector at a time

select max(B) from R where A>5 and C<10

“Column-at-a-time”

IDs

C

IDs

BA

IDs

C
max

IDs

B

A

whole column?

A C

B

select max(B) from R where A>5 and C<10

Block Iteration

column at a time

block/vector at a time

What is easier to compress?

#1, John, 2/4/88, Boston

#2, Joe, 2/1/87, New York

#3, Lina, 7/7/93, Boston

#4, Anna, 4/1/92, Chicago

#5, Tim, 3/9/91, Seattle

#6, Rose, 9/3/96, Boston

#1
#2
#3
#4
#5
#6

John
Joe
Lina

Anna
Tim
Rose

2/4/88
2/1/87
7/7/93
4/1/92
3/9/91
9/3/96

Boston
New York

Boston
Chicago
Seattle
Boston

exploit patterns, duplicates, small differences

How to simulate a col-store with a row-store?

Vertical Partitioning

 “physically partition the data per column”

Index-only Plans

 “use only indexes in query plans that contain only relevant columns”

Materialized Views

 “temporary tables that contain exactly the answer to a query”

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Vertical Partitioning

A B C D

select max(B) from R where A>5 and C<10

row1

row2

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Index-only plans

A

C

select max(B) from R where A>5 and C<10

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Materialized Views
select B, C from R where A>5 and C<10

B C

B C

Benchmarking

When comparing database systems we need a common “language”

Benchmarks from the Transaction Performance Council

 TPC-B, TPC-C, TPC-H, TPC-DS etc

Also, a benchmark for data warehousing:

 Star Schema Benchmark

TPC-H is a decision support benchmark

• developed by the Transaction Processing
Performance Council (TPC)

• has 22 business-oriented ad-hoc queries
and concurrent data modifications

• based on real production environments to
simulate the data warehouse of a sales
system

Example:

Q1

Star-Schema Benchmark

select sum(lo_extendedprice*lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey and

 d_year = 1993 and

 lo_discount between 1 and 3 and

 lo_quantity < 25;

select sum(lo_revenue), d_year, p_brand1

from lineorder, date, part, supplier

where lo_orderdate = d_datekey and

 lo_partkey = p_partkey and

 lo_suppkey = s_suppkey and

 p_category = 'MFGR#12' and

 s_region = 'AMERICA’

group by d_year, p_brand1

order by d_year, p_brand1;

13 queries

Fact table

Dimension tables

Performance Metrics

throughput latency

why care about both?

Performance Metrics

device lifetime

I/O CPU

stalls bandwidth
utilization

memory
miss/hit

cache
miss/hit

throughput latency

Experiments

1 CPU 2.8GHz, 3GB RAM, Red Hat Linux 5

4-disk HDD array with 160-200MB/s aggregate bandwidth

(older paper, so small numbers!)

Report averages with “warm” bufferpool (smaller than data size)

Focus on SSB averages (the paper has more detailed graphs)

Experimenting with row-stores (SSB averages)

tuple overheads (additional record IDs)
+ could not horizontally partition + more expensive hash joins

select sum(lo_revenue), d_year, p_brand1

from lineorder, date, part, supplier

where lo_orderdate = d_datekey and

 lo_partkey = p_partkey and

 lo_suppkey = s_suppkey and

 p_category = 'MFGR#12' and

 s_region = 'AMERICA’

group by d_year, p_brand1

order by d_year, p_brand1;

Details on Vertical Partitioning

TID Column Data

1

2

3

TID Column Data

1

2

3

Tuple Header TID Column Data

1

2

3

Complete fact table 4GB (compressed)

Vertical partitioned tables are 0.7-1.1GB per column (compressed)

Note that a ”real column-store” would only store the raw values as an array.
In this example it would be only 240MB.

Vertical Partitioning Interferes With Horizontal Partitioning

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

The fact table is horizontally partitioned (on date, allows to skip lots of data)

Vertical Partitioning Interferes With Horizontal Partitioning

The fact table is horizontally partitioned (on date, allows to skip lots of data)

A B C D

Cannot horizontally partition because the
vertical partitions do not contain date info

Experimenting with row-stores (SSB averages)

tuple overheads (additional record IDs)
+ could not horizontally partition + more expensive hash joins

select sum(lo_revenue), d_year, p_brand1

from lineorder, date, part, supplier

where lo_orderdate = d_datekey and

 lo_partkey = p_partkey and

 lo_suppkey = s_suppkey and

 p_category = 'MFGR#12' and

 s_region = 'AMERICA’

group by d_year, p_brand1

order by d_year, p_brand1;

tuple reconstruction (via expensive joins)
prior to the join between tables

Details on All Indexes

SELECT store_name, SUM(revenue)

FROM Facts, Stores

WHERE fact.store_id = stores.store_id AND

 stores.country = “Canada”

GROUP BY store_name

A common query pattern:

All qualifying tuples (based on where clause) are selected and reconstructed (“stitched together”)

Note that indexes map to TIDs, and then from TIDs we get the column’s value

Tuple reconstruction is SLOW!

Can we simulate a column-store with a row-store?

(a) All Indexes is a poor way to do it

(b) Vertical Partitioning’s problem are NOT fundamental
i. tuple header can be removed

ii. TIDs can be virtual

iii. horizontal partitioning can be based on the values of a different VP

But still, column-stores and row-stores are apples and oranges!!

Row-Stores vs. Column-Stores (SSB average)

MV have the result readily available

A native col-store is faster

Why?

Methodology

Start from a native column-store

Remove column-store-specific performance optimizations

End with a column-store with a row-oriented query engine

A. Compression

Q1
Q1
Q1
...
Q2
Q2
...

Q1, 1, 300
Q2, 301, 500
Q3, 501, 550
Q4, 551, 800

Run-length Encoding

Alternative: Dictionary Compression
➢ Replace variable size with

minimal fixed length e.g., integer

Reduces I/O

Can operate directly on compressed data

Benefits of col-store compression

Are the same benefits applicable for row-store compression?

Reduces I/O → yes, but with lower ratio (less data value locality)

No! Requires decompression before processing

How?

B. Early vs. Late Materialization

A B C D

IDs

C

max

IDs

BA

Late: Column-at-a-time

B. Early vs. Late Materialization

A B C D

row1

row2

Early: Row-at-a-time

row1

row2

At what cost?

Poor memory bandwidth utilization

Lose opportunity for vectorized execution

IDs

C
max

IDs

B

A

whole column?

A C

B

select max(B) from R where A>5 and C<10

C. Block Iteration

column at a time

block/vector at a time

D. Invisible Joins

Idea: rewrite joins as predicates on foreign keys in fact table

Algorithm:

 1. apply each predicate to the appropriate dimension table

 2. build a hash table on matching keys

 3. compute bitvector with bits set for qualifying positions (tuples)

 4. intersect bitvectors (positions) via bitwise AND

 5. for each resulting position reconstruct the resulting tuple

1. apply each predicate to the appropriate dimension table
2. build a hash table on matching keys

3. compute bitvector with bits set for qualifying positions (tuples)
4. intersect bitvectors (positions) via bitwise AND

SELECT c.nation, s.nation, d.year,

 sum(lo.revenue) as revenue

FROM customer AS c, lineorder AS lo,

 supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey AND

 lo.suppkey = s.suppkey AND

 lo.orderdate = d.datekey AND

 c.region = ’ASIA’ AND s.region = ’ASIA’ AND

 d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year

ORDER BY d.year asc, revenue desc;

5. For each resulting position, extract the values
 from the columns that are in the result

Are invisible joins a general join algorithm?

No! They works only for Star Schemas

SELECT c.nation, s.nation, d.year,

 sum(lo.revenue) as revenue

FROM customer AS c, lineorder AS lo,

 supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey AND

 lo.suppkey = s.suppkey AND

 lo.orderdate = d.datekey AND

 c.region = ’ASIA’ AND s.region = ’ASIA’ AND

 d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year

ORDER BY d.year asc, revenue desc;

Row-Store

25

To make the most of a col-store

1. Efficient support of
 vertical partitioning
 (compression)
2. Column-specific
 execution
 (late materialization)

T=tuple-at-a-time processing, t=block processing;
I=invisible join enabled, i=disabled;
C=compression enabled, c=disabled;
L=late materialization enabled, l=disabled

T is traditional, T(B) is traditional (bitmap),
MV is materialized views, VP is vertical partitioning,
and AI is all indexes

C-store appears to do even better than fully materialized joins

Block processing buys you 5 to 50%

Invisible join buys you 50-75%

Compression buys you 2X

Late materialization gets you almost 3X

Things to remember

Row-stores vs. Col-stores: fundamental differences

✓Compression

✓ Late Materialization

✓Block Iteration

✓Column-store-specific join optimizaitons

tuple reconstruction is expensive!!

class 5

Row-stores vs. Column-stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

	Slide 1: class 5 Row-stores vs. Column-stores
	Slide 2: Do we have a quiz today … ?
	Slide 3: Row-stores vs. Col-Stores: How Different Are They Really?
	Slide 4: Row-Stores
	Slide 5: Row-Stores: slotted page
	Slide 6: Row-Stores: slotted page
	Slide 7: Row-Stores
	Slide 8: Row-stores: query processing
	Slide 9: Column-Stores
	Slide 10: Column-stores: query processing
	Slide 11
	Slide 12: Paper’s Methodology
	Slide 13: State-of-the-art Col-Store features
	Slide 14: Late Materialization
	Slide 15: “Column-at-a-time”
	Slide 16: Block Iteration
	Slide 17: What is easier to compress?
	Slide 18: How to simulate a col-store with a row-store?
	Slide 19: Vertical Partitioning
	Slide 20: Index-only plans
	Slide 21: Materialized Views
	Slide 22: Benchmarking
	Slide 23
	Slide 24: Star-Schema Benchmark
	Slide 25: Performance Metrics
	Slide 26: Performance Metrics
	Slide 27: Experiments
	Slide 28: Experimenting with row-stores (SSB averages)
	Slide 29: Details on Vertical Partitioning
	Slide 30: Vertical Partitioning Interferes With Horizontal Partitioning
	Slide 31: Vertical Partitioning Interferes With Horizontal Partitioning
	Slide 32: Experimenting with row-stores (SSB averages)
	Slide 33: Details on All Indexes
	Slide 34: Can we simulate a column-store with a row-store?
	Slide 35: Row-Stores vs. Column-Stores (SSB average)
	Slide 36: Methodology
	Slide 37: A. Compression
	Slide 38: B. Early vs. Late Materialization
	Slide 39: B. Early vs. Late Materialization
	Slide 40: C. Block Iteration
	Slide 41: D. Invisible Joins
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Things to remember
	Slide 47
	Slide 48
	Slide 50: class 5 Row-stores vs. Column-stores

