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Let’s revisit Zonemaps

» Light-weight auxiliary data structure (“scan accelerator”)
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Let’s revisit Zonemaps

Z0Nnemaps file = collection of pages
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Z0Nnemaps file = collection of pages

oEINON 3, 16, 34, 31, 21
page 1 1,5, 12, 24, 23
page 2 2,7,13,9, 8

oIl 10, 11, 6, 14, 15
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Z20Nemaps
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file = collection of pages

3,16, 34,31, 21

1,5,12, 24,23

2,7,13,9,8

10, 11, 6, 14, 15

But what if the data is sorted?®

3,34

1,24

2,13

6,15

light-weight

typically retained
in memory

%\

\\
W



Z0Nnemaps file = collection of pages

)
page O 1,2,3,5,6 16
’ light-weight
page 1 7,8,9 10, 11 711 typically retained
! in memory
page 2 12, 13, 14, 15, 16 12,16
page 3 | EAWPERPLZREIREY 21,34
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But what if the data is sorted?® *“
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f‘
zonemaps flo ?\,

Range Queries

oEINON 3, 16, 34, 31, 21 \
[25, 100] 1 page

page 1 1,5,12, 24, 23 20,25] 2 pages

10, 13] 4 pages

page 2 2,7,13,9,8

oIl 10, 11, 6, 14, 15
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But what if the data is sorted?
Z0Nemaps 7ﬂ
P file o U

Range Queries

[25, 100] 1 page

page O 1,2,3,5,6

page 1 /,8,9, 10, 11

20, 25] 1 page

FIWA | 12, 13,14, 15,16 10, 13] 2 pages

page 3 | EPANPERPY ECNRCY:!

=
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Zonemaps efficiency depends on data & queries!
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Microsoft
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ORACLE

data systems

Google

complex analytics

simple queries

access data

store, maintain, update

&

v

\{
o
A

.
7

™

11



data systems

Google

I

>5200B by 2020, growing at 11.7% every year

' [The Forbes, 2016]
ORACLE

,. complex analytics %
Microsoft

simple queries

access data

store, maintain, update

" .
BOSTON access methods* algorithms and data structures
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for organizing and accessing data



data systems core: storage engines

main decisions

how to store data? how to access data?

how to update data?

BOSTON
UNIVERSITY



let’s simplify: key-value storage engines

collection of keys-value pairs

qguery on the key, return both key and value

remember C ‘
Ougle %

o HERCE BigTaole Asterixe» “EI¥ Cassandra

DynamoDB ' l . mongoDB

£~ RocksDB

Couchbase
state-of-the-art design



how general is a key value store?

. i\
can we store relational data? 7 \\
@

yves! {<primary_key>,<rest _of the row>}

example: { student_id, { name, login, yob, gpa } }

} what is the caveat?

how to index these attributes?
index: { name, { student_id } }

index: { yob, { student_id,, student_id,, ... } }

other problems?



how general is a key value

store?

. L
can we store relational data? 7 \

yves! {<primary_key>,<rest _of the row>}

how to efficiently code i
the structure of t

- we do not know

ne “value”

index: { yob, { student_id,, student_id,, ... } }



how to use a key-value store?

basic interface

\ )
put(k,v) more?‘\g
vi=get(k) vy, v, ..} = get(k)

{vy, vy, ..} =get_range(k. i, Kmax)  {V1, Vs, ...} = full_scan()
c = count(k, i, Kiay)

deletes: delete(k)
updates: update(k,v) is it different than put?

BOSTON
get set: {v,, v, ...} = get_set(kq, k;, ...)



how to build a key-value store?

append
if we haveonlyputoperations (@ @ @ @ © © © © © © © |
if we mostly have get operations —' ]

N N A

1 \
what about full scan? ’» and then \«

range queries?
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can we separate keys and values?

EEEEPDPEDDDED]

[ )

v

90000000000 1
at what price??wg

locality? code?
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read queries inserts
(point or range) (or updates)
sort data simply append
amortize sorting cost avoid resorting after every update

37
how to bridge? # \\
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LSM-tree
Key-Value Stores

What are they really?
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updates memory storage

|

buffer
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updates memory storage

|

sort & flush

runs
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updates memory storage

|

buffer sort & flush

runs

sort-merge
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memory storage

exponentially increasing sizes

- 0(log(N)) levels
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lookup X memory

|

fence
pointers
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lookup X memory

|

fence
pointers
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performance & cost trade-offs

lookup X memory storage
| more merging > fewer runs
Bloom fence read cost vs. update cost

true O
e @D %oy

perr
Gl
positive ;
true _
positive :

bigger filters > fewer false positives
memory space vs. read cost
UNIVERSITY

filters pointers .




other operations

va

range scans?

lookup X memory storage

|

Bloom  fence deletes?
filters pointers .
true O
negative . Ne //O,O
e

r
false . /'Un
positive

true
positive

i.
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remember merging?

7t

updates memory storage
| what strategies?
buffer i sort & flush
. runs
sort-merge
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Merge Policies

Tiering Leveling
write-optimized read-optimized
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Tiering Leveling

write-optimized read-optimized
— ——— ———
/ | Truns per level ( |
— 'L x\\\_ - /
| l
\ - ~—
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Tiering Leveling

write-optimized read-optimized
- - - -
( | Truns per level ( |
( N (
\ merge & flush ¥ | ‘
- ~—
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Tiering
write-optimized

| Truns per level

Leveling
read-optimized
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Tiering
write-optimized

| Truns per level

Leveling
read-optimized




Tiering Leveling

write-optimized read-optimized
(T (- T 0
\ | Truns per level \ | Ttimes bigger
( - (
| | flush |
\ - ~
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tuning knobs

| Systems Project: LSM-Trees ‘@

merge polic

lookup X memory storage

buffer B.Ioom tence l size ratio
\flliiers pointers
5 On k /
: © Y0 b
— : " rup
positive I
———
w @ %
positive .
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more on LSM-Tree performance



Tiering
write-optimized

Try
s pey leye /

lookup cost: O(T - logr(N) - e”M/¥N)

/0 \

runs false
per level levels positive rate
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Leveling
read-optimized

1r
Un Pey Iel/e /

O(logr(N) - e M/N)

[\

false

levels positive rate
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lookup cost:

update cost:
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Tiering
write-optimized

7'r
u
NS per leve,

O(T - logr(N) - eM/N)

0(logT(N))

T

levels

Leveling
read-optimized

1r
Un pey leve

0(logr(N) - e™M/N)

O(T - log(N))

[\

merges per level levels
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lookup cost:

update cost:
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Tiering

write-optimized

Tr
u
NS per leve

O(T - logr(N) - e™M/N)

0(l0gT(N))

forsizeratioT

Y/

Leveling
read-optimized

1r
Un Per /eVe/

0(logr(N) - e M/N)

O(T - logr(N))
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lookup cost:

update cost:
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Tiering Leveling
write-optimized read-optimized

1 r Y| r
Un per /eVe/ Un ,Oef' /eVe/

0(logr(N) - e™™/V) = 0(logr(N) - e™™/N)

O(IOQT(N)) = O(ZOQT(N))

for sizeratioT ¥

43



Tiering Leveling

write-optimized read-optimized
. ! "Un Per
am -
. =
lookup cost: O(T - logr(N) - e M/N) 0(logr(N) - e M/N)
update cost: 0(logr(N)) O(T - logr(N))

for size ratioT A
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Tiering Leveling

write-optimized read-optimized
O(N) runs per level 1 run per level
log sorted array
lookup cost: O(T - logr(N) - e M/N) 0(logr(N) - e~M/N)
update cost: 0(logy(N)) = 0(1) \ O(N - logy(N)) = O(N)

forsizeratioT A
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read
cost

log

Tiering

Leveling

sorted array

update cost

T : size ratio
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Research Question on LSM-Trees

how can we minimize the duplicate space during compaction? W‘

\

e U
how to ensure that we can tune without sharing workload details?

How much is the real write-amplification on SSDs?
Bloom fence

buffer : .
filters pointers

study these questions and navigate LSM
design space using Facebook’s RocksDB

BiE oo
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Research on PostgreSQL
Postgre SQL

A state-of-the-art relational database

How can we implement a skew-aware efficient join algorithm?

How much a noise in the existing cardinality estimation can impact the
selected query plan, and the overall query performance
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Syste ms P roj ect: Buffe gejele) | Implementation of a bufferpool

e Application requests a page

Page Requests from Higher Levels * Ifin the bufferpool
return it
‘ * If not in the bufferpool
BUFFER POOL

fetch it from the disk
e If bufferpoolis full
select page to evict

S e € F) % >
< o
o 5

disk page
/\4/
free frame Core Idea: Eviction Policy
' — . L?ast Refent/y Used
_ _ * FirstIn First Out
choice of frame dictated more ...
by replacement policy
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Research Topics on Buffer Management & SSDs

How to deploy ACE buffer management on emulated SSDs?

How can we achieve storage parallelism in ZNS SSDs?

BOSTON
UNIVERSITY



Other Research Topics on Indexing and beyond

How to apply sortedness-aware concepts on Adaptive Radix Tree?
How to build cache-friendly sortedness-aware indexing?

How to desigh a sortedness-aware join algorithm?
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what to do now?

systems project
form groups of 3
(speak to me in OH if you want a different arrangement)

research project
form groups of 3
pick one of the subjects & read background
material
define the behavior you will study and address
sketch approach and success metric
(if LSM-related get familiar with RocksDB)
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what to do now?

systems project
form groups of 2
(speak to me in OH if you want to work on your own)

research project

r _~

come to OH/Labs
submit project O this Friday on 1/31
start working on project 1 (due on 2/14)
submit semester project proposal on 2/23
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