
class 4

Systems & Research Project

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

Let’s revisit Zonemaps

• Light-weight auxiliary data structure (“scan accelerator”)

zonemaps file = collection of pages

page 0

page 1

page 2

page 3

Let’s revisit Zonemaps

zonemaps

2, 7, 13, 9, 8

1, 5, 12, 24, 23

10, 11, 6, 14, 15

3, 16, 34, 31, 21

file = collection of pages

page 0

page 1

page 2

page 3

zonemaps

2, 7, 13, 9, 8

1, 5, 12, 24, 23

10, 11, 6, 14, 15

3, 16, 34, 31, 21

file = collection of pages

page 0

page 1

page 2

page 3

3,34

1,24

2,13

6,15

light-weight

typically retained
in memory

But what if the data is sorted?

zonemaps

12, 13, 14, 15, 16

7, 8, 9, 10, 11

21, 23, 24, 31, 34

1, 2, 3, 5, 6

file = collection of pages

page 0

page 1

page 2

page 3

1,6

7,11

12,16

21,34

light-weight

typically retained
in memory

But what if the data is sorted?

zonemaps

2, 7, 13, 9, 8

1, 5, 12, 24, 23

10, 11, 6, 14, 15

3, 16, 34, 31, 21

file

page 0

page 1

page 2

page 3

3,34

1,24

2,13

6,15

Range Queries

[25, 100] 1 page

[20, 25] 2 pages

[10, 13] 4 pages

zonemaps

12, 13, 14, 15, 16

7, 8, 9, 10, 11

21, 23, 24, 31, 34

1, 2, 3, 5, 6

file

page 0

page 1

page 2

page 3

1,6

7,11

12,16

21,34

But what if the data is sorted?

Range Queries

[25, 100] 1 page

[20, 25] 1 page

[10, 13] 2 pages

Zonemaps efficiency depends on data & queries!

data systems

11

complex analytics

simple queries

access data

store, maintain, update

12
*algorithms and data structures
for organizing and accessing data

data systems

complex analytics

simple queries

access data

store, maintain, update

access methods*

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

data systems core: storage engines

main decisions

how to access data?how to store data?

how to update data?

let’s simplify: key-value storage engines

state-of-the-art design

collection of keys-value pairs

query on the key, return both key and value

remember

how general is a key value store?

can we store relational data?

yes! {<primary_key>,<rest_of_the_row>}

example: { student_id, { name, login, yob, gpa } }

what is the caveat?

how to index these attributes?

index: { name, { student_id } }

index: { yob, { student_id1, student_id2, … } }

other problems?

how general is a key value store?

can we store relational data?

yes! {<primary_key>,<rest_of_the_row>}

example: { student_id, { name, login, yob, gop } }

what is the caveat?

how to index these attributes?

index: { name, { student_id } }

index: { yob, { student_id1, student_id2, … } }

other problems?

how to efficiently code if we do not know
the structure of the “value”

how to use a key-value store?

basic interface

put(k,v)

{v} = get(k) {v1, v2, …} = get(k)

{v1, v2, …} = get_range(kmin, kmax)

c = count(kmin, kmax)

{v1, v2, …} = full_scan()

more

deletes: delete(k)

updates: update(k,v)

get set: {v1, v2, …} = get_set(k1, k2, …)

is it different than put?

how to build a key-value store?

if we have only put operations

if we mostly have get operations

sort

and then
what about full scan?

range queries?

append

can we separate keys and values?

at what price?

locality? code?

read queries
(point or range)

sort data

amortize sorting cost

inserts
(or updates)

simply append

avoid resorting after every update

how to bridge?

LSM-tree
Key-Value Stores

What are they really?

memoryupdates

buffer

storage

0

level

0

1

level

sort & flush

runs

memoryupdates

buffer

storage

0

1

level

sort & flush

runs

memoryupdates

buffer

storage

sort-merge

0

1

level memory

buffer

storage

exponentially increasing sizes

𝑂 𝑙𝑜𝑔 𝑁 levels

0

1

level memory storage

buffer fence
pointers

lookup X

X

0

1

level memory storage

buffer fence
pointers

lookup X

X

0

1

level memory storage

fence
pointers

lookup X

X

Bloom
filters

buffer

true
negative

false
positive

true
positive

0

1

level memory storage

fence
pointers

lookup X

X

Bloom
filters

buffer

true
negative

false
positive

true
positive

performance & cost trade-offs

bigger filters → fewer false positives
memory space vs. read cost

more merging → fewer runs
read cost vs. update cost

0

1

level memory storage

fence
pointers

lookup X

X

Bloom
filters

buffer

true
negative

false
positive

true
positive

other operations

range scans?

deletes?

0

1

level

sort & flush

runs

memoryupdates

buffer

storage

sort-merge

remember merging?

what strategies?

Merge Policies

Leveling
read-optimized

Tiering
write-optimized

Leveling
read-optimized

Tiering
write-optimized

T runs per level

Leveling
read-optimized

Tiering
write-optimized

merge & flush

T runs per level

Leveling
read-optimized

Tiering
write-optimized

T runs per level

merge

Leveling
read-optimized

Tiering
write-optimized

T runs per level

merge

flush

Leveling
read-optimized

Tiering
write-optimized

T runs per level T times bigger

1

level

memory storage

fence
pointers

lookup X

X

Bloom
filters

buffer

true
negative

false
positive

true
positive

Systems Project: LSM-Trees
merge policy

size ratio

tuning knobs

more on LSM-Tree performance

40

Leveling
read-optimized

Tiering
write-optimized

𝑶 𝑻 ∙ 𝒍𝒐𝒈𝑻 𝑵 ∙ 𝒆− Τ𝑴 𝑵lookup cost:

runs
per level levels

false
positive rate

𝑶 𝒍𝒐𝒈𝑻 𝑵 ∙ 𝒆− Τ𝑴 𝑵

levels
false

positive rate

41

Leveling
read-optimized

Tiering
write-optimized

𝑶 𝒍𝒐𝒈𝑻 𝑵update cost:

levels

𝑶 𝑻 ∙ 𝒍𝒐𝒈𝑻 𝑵

levelsmerges per level

𝑂 𝑇 ∙ 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁lookup cost: 𝑂 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁

42

Leveling
read-optimized

Tiering
write-optimized

𝑂 𝑙𝑜𝑔𝑇 𝑁update cost: 𝑂 𝑇 ∙ 𝑙𝑜𝑔𝑇 𝑁

for size ratio T

𝑂 𝑇 ∙ 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁lookup cost: 𝑂 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁

43

Leveling
read-optimized

Tiering
write-optimized

𝑂 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁 = 𝑂 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁lookup cost:

𝑂 𝑙𝑜𝑔𝑇 𝑁 = 𝑂 𝑙𝑜𝑔𝑇 𝑁update cost:

for size ratio T

44

Leveling
read-optimized

Tiering
write-optimized

𝑂 𝑙𝑜𝑔𝑇 𝑁update cost: 𝑂 𝑇 ∙ 𝑙𝑜𝑔𝑇 𝑁

for size ratio T

𝑂 𝑇 ∙ 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁lookup cost: 𝑂 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁

45

Leveling
read-optimized

Tiering
write-optimized

𝑂 𝑙𝑜𝑔𝑁 𝑁 = 𝑶 𝟏update cost: 𝑂 𝑁 ∙ 𝑙𝑜𝑔𝑁 𝑁 = 𝑶 𝑵

for size ratio T

𝑂 𝑁 runs per level 1 run per level

N

log sorted array

𝑂 𝑇 ∙ 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁lookup cost: 𝑂 𝑙𝑜𝑔𝑇 𝑁 ∙ 𝑒− Τ𝑀 𝑁

46

read
cost

update cost

Tiering

Leveling

log

sorted array

T=2

T : size ratio

Research Question on LSM-Trees

fence
pointers

Bloom
filters

buffer

how to ensure that we can tune without sharing workload details?

How much is the real write-amplification on SSDs?

study these questions and navigate LSM
design space using Facebook’s RocksDB

how can we minimize the duplicate space during compaction?

Research on PostgreSQL

A state-of-the-art relational database

How can we implement a skew-aware efficient join algorithm?

How much a noise in the existing cardinality estimation can impact the
selected query plan, and the overall query performance

Systems Project: Bufferpool

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Implementation of a bufferpool

• Application requests a page
• If in the bufferpool

 return it
• If not in the bufferpool

 fetch it from the disk
• If bufferpool is full

select page to evict

Core Idea: Eviction Policy

• Least Recently Used
• First In First Out
• more …

Research Topics on Buffer Management & SSDs

How to deploy ACE buffer management on emulated SSDs?

How can we achieve storage parallelism in ZNS SSDs?

Other Research Topics on Indexing and beyond

How to apply sortedness-aware concepts on Adaptive Radix Tree?

How to build cache-friendly sortedness-aware indexing?

How to design a sortedness-aware join algorithm?

what to do now?

systems project
form groups of 3

(speak to me in OH if you want a different arrangement)

research project
form groups of 3

pick one of the subjects & read background
material

define the behavior you will study and address
sketch approach and success metric

(if LSM-related get familiar with RocksDB)

what to do now?

systems project
form groups of 2

(speak to me in OH if you want to work on your own)

research project
form groups of 3

pick one of the subjects & read background
material

define the behavior you will study and address
sketch approach and success metric

(if LSM-related get familiar with RocksDB)

come to OH/Labs
submit project 0 this Friday on 1/31

start working on project 1 (due on 2/14)
submit semester project proposal on 2/23

class 4

Systems & Research Project

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

	Slide 1: class 4 Systems & Research Project
	Slide 2: Let’s revisit Zonemaps
	Slide 3: zonemaps
	Slide 4: zonemaps
	Slide 5: zonemaps
	Slide 6: zonemaps
	Slide 7: zonemaps
	Slide 8: zonemaps
	Slide 11: data systems
	Slide 12: data systems
	Slide 13: data systems core: storage engines
	Slide 14: let’s simplify: key-value storage engines
	Slide 15: how general is a key value store?
	Slide 16: how general is a key value store?
	Slide 17: how to use a key-value store?
	Slide 18: how to build a key-value store?
	Slide 19: can we separate keys and values?
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: more on LSM-Tree performance
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Research Question on LSM-Trees
	Slide 48: Research on PostgreSQL
	Slide 51
	Slide 52: Research Topics on Buffer Management & SSDs
	Slide 53: Other Research Topics on Indexing and beyond
	Slide 54
	Slide 55
	Slide 56: class 4 Systems & Research Project

