BOSTON . -
CS 561: Data Systems Architectures

class 4

Systems & Research Project

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

Let’s revisit Zonemaps

» Light-weight auxiliary data structure (“scan accelerator”)

BOSTON
UNIVERSITY

Let’s revisit Zonemaps

Z0Nnemaps file = collection of pages

page O
page 1
page 2

page 3

BOSTON
UNIVERSITY

Z0Nnemaps file = collection of pages

oEINON 3, 16, 34, 31, 21
page 1 1,5, 12, 24, 23
page 2 2,7,13,9, 8

oIl 10, 11, 6, 14, 15

BOSTON
UNIVERSITY

Z20Nemaps
page O
page 1
page 2

page 3

BOSTON
UNIVERSITY

file = collection of pages

3,16, 34,31, 21

1,5,12, 24,23

2,7,13,9,8

10, 11, 6, 14, 15

But what if the data is sorted?®

3,34

1,24

2,13

6,15

light-weight

typically retained
in memory

%\

\\
W

Z0Nnemaps file = collection of pages

)
page O 1,2,3,5,6 16
’ light-weight
page 1 7,8,9 10, 11 711 typically retained
! in memory
page 2 12, 13, 14, 15, 16 12,16
page 3 | EAWPERPLZREIREY 21,34

- '1

vl

\.
But what if the data is sorted?® *“

UNIVERSITY

f‘
zonemaps flo ?\,

Range Queries

oEINON 3, 16, 34, 31, 21 \
[25, 100] 1 page

page 1 1,5,12, 24, 23 20,25] 2 pages

10, 13] 4 pages

page 2 2,7,13,9,8

oIl 10, 11, 6, 14, 15

BOSTON
UNIVERSITY

But what if the data is sorted?
Z0Nemaps 7ﬂ
P file o U

Range Queries

[25, 100] 1 page

page O 1,2,3,5,6

page 1 /,8,9, 10, 11

20, 25] 1 page

FIWA | 12, 13,14, 15,16 10, 13] 2 pages

page 3 | EPANPERPY ECNRCY:!

=
N x: -
0 N o

Zonemaps efficiency depends on data & queries!

UNIVERSITY

Microsoft

BOSTON
UNIVERSITY

ORACLE

data systems

Google

complex analytics

simple queries

access data

store, maintain, update

&

v

\{
o
A

.
7

™

11

data systems

Google

I

>5200B by 2020, growing at 11.7% every year

' [The Forbes, 2016]
ORACLE

,. complex analytics %
Microsoft

simple queries

access data

store, maintain, update

" .
BOSTON access methods* algorithms and data structures
UNIVERSITY

for organizing and accessing data

data systems core: storage engines

main decisions

how to store data? how to access data?

how to update data?

BOSTON
UNIVERSITY

let’s simplify: key-value storage engines

collection of keys-value pairs

qguery on the key, return both key and value

remember C ‘
Ougle %

o HERCE BigTaole Asterixe» “EI¥ Cassandra

DynamoDB ' l . mongoDB

£~ RocksDB

Couchbase
state-of-the-art design

how general is a key value store?

. i\
can we store relational data? 7 \\
@

yves! {<primary_key>,<rest _of the row>}

example: { student_id, { name, login, yob, gpa } }

} what is the caveat?

how to index these attributes?
index: { name, { student_id } }

index: { yob, { student_id,, student_id,, ... } }

other problems?

how general is a key value

store?

. L
can we store relational data? 7 \

yves! {<primary_key>,<rest _of the row>}

how to efficiently code i
the structure of t

- we do not know

ne “value”

index: { yob, { student_id,, student_id,, ... } }

how to use a key-value store?

basic interface

\)
put(k,v) more?‘\g
vi=get(k) vy, v, ..} = get(k)

{vy, vy, ..} =get_range(k. i, Kmax) {V1, Vs, ...} = full_scan()
c = count(k, i, Kiay)

deletes: delete(k)
updates: update(k,v) is it different than put?

BOSTON
get set: {v,, v, ...} = get_set(kq, k;, ...)

how to build a key-value store?

append
if we haveonlyputoperations (@ @ @ @ © © © © © © © |
if we mostly have get operations —']

N N A

1 \
what about full scan? ’» and then \«

range queries?

BOSTON
UNIVERSITY

can we separate keys and values?

EEEEPDPEDDDED]

[)

v

90000000000 1
at what price??wg

locality? code?

BOSTON
UNIVERSITY

read queries inserts
(point or range) (or updates)
sort data simply append
amortize sorting cost avoid resorting after every update

37
how to bridge? # \\

BOSTON
UNIVERSITY

LSM-tree
Key-Value Stores

What are they really?

BOSTON
UNIVERSITY

updates memory storage

|

buffer

BOSTON
UNIVERSITY

updates memory storage

|

sort & flush

runs

BOSTON
UNIVERSITY

updates memory storage

|

buffer sort & flush

runs

sort-merge

BOSTON
UNIVERSITY

memory storage

exponentially increasing sizes

- 0(log(N)) levels

BOSTON
UNIVERSITY

lookup X memory

|

fence
pointers

BOSTON
UNIVERSITY

storage

lookup X memory

|

fence
pointers

BOSTON
UNIVERSITY

storage

BOSTON
UNIVERSITY

lookup X

|

Bloom
filters
t

f

rue
negative

memory storage

fence
pointers

alse 'I'
positive

true

>
<
S

i

positive

performance & cost trade-offs

lookup X memory storage
| more merging > fewer runs
Bloom fence read cost vs. update cost

true O
e @D %oy

perr
Gl
positive ;
true _
positive :

bigger filters > fewer false positives
memory space vs. read cost
UNIVERSITY

filters pointers .

other operations

va

range scans?

lookup X memory storage

|

Bloom fence deletes?
filters pointers .
true O
negative . Ne //O,O
e

r
false . /'Un
positive

true
positive

i.

BOSTON
UNIVERSITY

remember merging?

7t

updates memory storage
| what strategies?
buffer i sort & flush
. runs
sort-merge

BOSTON
UNIVERSITY

Merge Policies

Tiering Leveling
write-optimized read-optimized

BOSTON
UNIVERSITY

Tiering Leveling

write-optimized read-optimized
— ——— ———
/ | Truns per level (|
— 'L x_ - /
| l
\ - ~—

BOSTON
UNIVERSITY

Tiering Leveling

write-optimized read-optimized
- - - -
(| Truns per level (|
(N (
\ merge & flush ¥ | ‘
- ~—

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

Tiering
write-optimized

| Truns per level

Leveling
read-optimized

BOSTON
UNIVERSITY

Tiering
write-optimized

| Truns per level

Leveling
read-optimized

Tiering Leveling

write-optimized read-optimized
(T (- T 0
\ | Truns per level \ | Ttimes bigger
(- (
| | flush |
\ - ~

BOSTON
UNIVERSITY

tuning knobs

| Systems Project: LSM-Trees ‘@

merge polic

lookup X memory storage

buffer B.Ioom tence l size ratio
\flliiers pointers
5 On k /
: © Y0 b
— : " rup
positive I
———
w @ %
positive .

BOSTON
UNIVERSITY

more on LSM-Tree performance

Tiering
write-optimized

Try
s pey leye /

lookup cost: O(T - logr(N) - e”M/¥N)

/0 \

runs false
per level levels positive rate

BOSTON
UNIVERSITY

Leveling
read-optimized

1r
Un Pey Iel/e /

O(logr(N) - e M/N)

[\

false

levels positive rate

40

lookup cost:

update cost:

BOSTON
UNIVERSITY

Tiering
write-optimized

7'r
u
NS per leve,

O(T - logr(N) - eM/N)

0(logT(N))

T

levels

Leveling
read-optimized

1r
Un pey leve

0(logr(N) - e™M/N)

O(T - log(N))

[\

merges per level levels
41

lookup cost:

update cost:

BOSTON
UNIVERSITY

Tiering

write-optimized

Tr
u
NS per leve

O(T - logr(N) - e™M/N)

0(l0gT(N))

forsizeratioT

Y/

Leveling
read-optimized

1r
Un Per /eVe/

0(logr(N) - e M/N)

O(T - logr(N))

42

lookup cost:

update cost:

BOSTON
UNIVERSITY

Tiering Leveling
write-optimized read-optimized

1 r Y| r
Un per /eVe/ Un ,Oef' /eVe/

0(logr(N) - e™™/V) = 0(logr(N) - e™™/N)

O(IOQT(N)) = O(ZOQT(N))

for sizeratioT ¥

43

Tiering Leveling

write-optimized read-optimized
. ! "Un Per
am -
. =
lookup cost: O(T - logr(N) - e M/N) 0(logr(N) - e M/N)
update cost: 0(logr(N)) O(T - logr(N))

for size ratioT A

BOSTON a4
UNIVERSITY

Tiering Leveling

write-optimized read-optimized
O(N) runs per level 1 run per level
log sorted array
lookup cost: O(T - logr(N) - e M/N) 0(logr(N) - e~M/N)
update cost: 0(logy(N)) = 0(1) \ O(N - logy(N)) = O(N)

forsizeratioT A

BOSTON .
UNIVERSITY

BOSTON
UNIVERSITY

read
cost

log

Tiering

Leveling

sorted array

update cost

T : size ratio

46

Research Question on LSM-Trees

how can we minimize the duplicate space during compaction? W‘

\

e U
how to ensure that we can tune without sharing workload details?

How much is the real write-amplification on SSDs?
Bloom fence

buffer : .
filters pointers

study these questions and navigate LSM
design space using Facebook’s RocksDB

BiE oo

UNIVERSITY

Research on PostgreSQL
Postgre SQL

A state-of-the-art relational database

How can we implement a skew-aware efficient join algorithm?

How much a noise in the existing cardinality estimation can impact the
selected query plan, and the overall query performance

BOSTON
UNIVERSITY

Syste ms P roj ect: Buffe gejele) | Implementation of a bufferpool

e Application requests a page

Page Requests from Higher Levels * Ifin the bufferpool
return it
‘ * If not in the bufferpool
BUFFER POOL

fetch it from the disk
e If bufferpoolis full
select page to evict

S e € F) % >
< o
o 5

disk page
/\4/
free frame Core Idea: Eviction Policy
' — . L?ast Refent/y Used
_ _ * FirstIn First Out
choice of frame dictated more ...
by replacement policy

BOSTON
UNIVERSITY

Research Topics on Buffer Management & SSDs

How to deploy ACE buffer management on emulated SSDs?

How can we achieve storage parallelism in ZNS SSDs?

BOSTON
UNIVERSITY

Other Research Topics on Indexing and beyond

How to apply sortedness-aware concepts on Adaptive Radix Tree?
How to build cache-friendly sortedness-aware indexing?

How to desigh a sortedness-aware join algorithm?

BOSTON
UNIVERSITY

what to do now?

systems project
form groups of 3
(speak to me in OH if you want a different arrangement)

research project
form groups of 3
pick one of the subjects & read background
material
define the behavior you will study and address
sketch approach and success metric
(if LSM-related get familiar with RocksDB)

BOSTON
UNIVERSITY

what to do now?

systems project
form groups of 2
(speak to me in OH if you want to work on your own)

research project

r _~

come to OH/Labs
submit project O this Friday on 1/31
start working on project 1 (due on 2/14)
submit semester project proposal on 2/23

BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

class 4

Systems & Research Project

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

	Slide 1: class 4 Systems & Research Project
	Slide 2: Let’s revisit Zonemaps
	Slide 3: zonemaps
	Slide 4: zonemaps
	Slide 5: zonemaps
	Slide 6: zonemaps
	Slide 7: zonemaps
	Slide 8: zonemaps
	Slide 11: data systems
	Slide 12: data systems
	Slide 13: data systems core: storage engines
	Slide 14: let’s simplify: key-value storage engines
	Slide 15: how general is a key value store?
	Slide 16: how general is a key value store?
	Slide 17: how to use a key-value store?
	Slide 18: how to build a key-value store?
	Slide 19: can we separate keys and values?
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: more on LSM-Tree performance
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Research Question on LSM-Trees
	Slide 48: Research on PostgreSQL
	Slide 51
	Slide 52: Research Topics on Buffer Management & SSDs
	Slide 53: Other Research Topics on Indexing and beyond
	Slide 54
	Slide 55
	Slide 56: class 4 Systems & Research Project

