
class 3

Relational Recap & Column-Stores Basics

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

what to do now?

A) read the syllabus and the website

B) register to Piazza + Gradescope

C) finish project 0 (due 1/31)

D) start working on project 1 (due 2/14)

E) register for the presentation (week 2-3)

F) start reading papers & prepare for tech. questions (week 3)

G) go over the class project (end of next week will be available)

H) start working on the proposal (week 3)

How can I prepare?

1) Read background research material
• Architecture of a Database System.

By J. Hellerstein, M. Stonebraker and J. Hamilton.
Foundations and Trends in Databases, 2007

• The Design and Implementation of Modern Column-store Database Systems.
By D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden.
Foundations and Trends in Databases, 2013

• Data Structures for Data-Intensive Applications: Tradeoffs and Design Guidelines.
By M. Athanassoulis, S. Idreos, D. Shasha.
Foundations and Trends in Databases, 2024

2) Start going over the papers

Database Design Abstraction Levels

Logical Design

Physical Design

System Design

Data can be messy!

clean schema …

Data can be messy!

clean schema load …

Data can be messy!

clean schema load tune

what kind of indexes
size of memory buffer
how many threads to use
…

Data can be messy!

clean schema load tune

query

experts and DBAs

any user!

Database Design Abstraction Levels

Logical Design

Physical Design

System Design

Logical design

What is our data? How to model them?

Hierarchical? Network? Object-oriented? Flat?

Logical design

What is our data? How to model them?

actor

student employee

UG grad PhD staff faculty

teaching non-teaching

project

project A project B

dept 1 dept 2 dept 3

hierarchical network graph

object-oriented, flat, timeseries, …

relational data model
key-value data model

Logical design

What is our data? How to model them?

Hierarchical? Network? Object-oriented? Flat?

Relational & Key-value

A collection of tables, each being a collection of rows and columns

[schema: describes the columns of each table]

Logical Schema of “University” Database

 Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

 Courses
cid: string, cname: string, credits: integer

 Enrolled
sid: string, cid: string, grade: string

18

attributes for Enrolled ?

Relational Model and SQL

 Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

 Courses
cid: string, cname: string, credits: integer

 Enrolled
sid: string, cid: string, grade: string

relations keys

PK for Enrolled ?

Relational Model and SQL

 Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

 Courses
cid: string, cname: string, credits: integer

 Enrolled
sid: string, cid: string, grade: string

how to create the table students?

create table students (sid:char(10), name:char(40), login:char(8), age:integer, …)

how to add a new student?

insert into students (U1398217312, John Doe, john19, 19, …)

bring me the names of all students

select name from students where GPA > 3.5

Relational Model and SQL

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)

cardinality: 9

Relational Model and SQL

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)

cardinality: 9

what if a student does not have a login ID yet?

Relational Model and SQL

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, NULL, year9, gpa9)

cardinality: 9

what if a student does not have a login ID yet?

Relational Model and SQL

 Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

 Courses
cid: string, cname: string, credits: integer

 Enrolled
sid: string, cid: string, grade: string

how to show all enrollments in CS561?

keys

Relational Model and SQL

 Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

 Courses
cid: string, cname: string, credits: integer

 Enrolled
sid: string, cid: string, grade: string

how to show all enrollments in DSA?

foreign keys

using foreign keys we can join
information of all three tables

select student.name
from students, courses, enrolled
where course.cname=“DSA”
and course.cid=enrolled.cid
and student.sid=enrolled.sid

Database Design Abstraction Levels

Logical Design

Physical Design

System Design

Physical Design
File Organization

heap files

sorted files

clustered files

more …

insert cost

q
u

er
y

 c
o

st

heap file

sorted file

Physical Design
File Organization Indexes

heap files

sorted files

clustered files

should I build an index?

on which attributes/tables?

what index structure?

B-Tree

Hash Bitmap

Trie

Zonemap
more …

Physical Design
File Organization Indexes

heap files

sorted files

clustered files

should I build an index?

on which attributes/tables?

what index structure?

B-Tree

Hash Bitmap

Trie

Zonemap
more …

trie?

k-ary prefix tree

Physical Design
File Organization Indexes

heap files

sorted files

clustered files

should I build an index?

on which attributes/tables?

what index structure?

B-Tree

Hash Bitmap

Trie

Zonemap
more …

bitmap?

bitmapdata

works great for columns with
few distinct values

Data systems are declarative!

data system

ask what you want

system decides how
to store & access

design decisions, physical design
indexing, tuning knobs

DBA

research to automate!

adaptivity autotuning

Database Design Abstraction Levels

Logical Design

Physical Design

System Design

select max(B) from R where A>5 and C<10

Indexing Data

op

op
op

op

op
algorithms

and
operators

Parsermodules

select max(B) from R where A>5 and C<10

Optimizer

Evaluation

Storage

registers/CPU

on chip cache

on board cache

memory

disk

tape

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2000 years

memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

fa
st

er
ch

ea
p

er
/l

ar
ge

r

cache miss: looking
for something that
is not in the cache

memory miss: looking
for something that

is not in memory

data movement & page-based access

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

data go through
all necessary levels

also read
unnecessary data pageX

need to read only X
read the whole page

access granularity

DBMS block size

OS block size

memory/storage
device block size

file system and DBMS “pages”

understanding data placement

data storage

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)

Student (sid: string, name: string, login:
string, year_birth: integer, gpa: real)

how to physically place data?

slotted page

header

row1 row2

row3

free space

slotted page

#rows, row offsets, free space offsets,
#fixed length attributes, #var length attributes

row1 row2

row3

free space

querying over slotted pages

schema: R (A,B,C,D)

file

querying over slotted pages

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains entire rows (all their columns)

rows are contiguous
(with possible free space at the end)

file

pages A B C D

A B C D

querying over slotted pages

A B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains columns!

any drawbacks?row1

row2

column store

querying over slotted pages

A B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains columns!

select (A+B) from Rrow1

row2

querying over slotted pages

A B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains columns!

select (A+B) from R where A>10

querying over slotted pages

B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains columns or groups of columns!

A, B

select (A+B) from R where A>10

querying over slotted pages

B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains columns or groups of columns!

A, B what if I had all three queries?

what if only inserts/updates?

can there be something in between?

select (A+B) from R where A>10

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

B
C DA, Β

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

B
C DA, Β

A B C D

A B C D

A B C D

A B C D

the way we physical store data dictates
what are the possible efficient access methods

column-stores history line

70s60s 80s 90s 00s 10s 20s

2000: first complete
column-store system

rows rows rows rows rows

1985: first complete
column-store model

rows*

2012+: expanding
on hybrid layouts

2001: first idea for
hybrid layouts

query evaluation

select max(B) from R where A>5 and C<10
A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

one row at a time

tuple reconstruction/early materialization

select max(B) from R where A>5 and C<10
A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

one row at a time
A B C D

tuple reconstruction/early materialization

column at a timeA

late materialization

select max(B) from R where A>5 and C<10
A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A

int* input=A;
int* output; /*needs allocation*/
for (i=0; i<num_tuples; i++,input++)
 if (*input>5)
 {
 *output=i;
 output++;
 }

select max(B) from R where A>5 and C<10
A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

IDs

C

max

IDs

BA

what is the benefit? read only useful data

easy to code: working over fixed width and dense columns

for (i=0,j=0; i<size; i++)
 if (column[i] qualifies)
 res[j++]=i;

for (i=0,j=0; i<fetch_size; i++)
 intermediate_result[j++]=column[ids[i]];

scan

fetch

no complex checks
no function calls
no aux metadata
easy to prefetch

as few ifs as possible

select max(B) from R where A>5 and C<10

IDs

C

max

IDs

BA

alternative query plans

scan A & C in parallel and merge

start from C (why?)

select max(B) from R where A>5 and C<10

IDs

C

max

IDs

BA

whole column?

row at a time

column at a time

block/vector at a time

select max(B) from R where A>5 and C<10

IDs

C
max

IDs

B

A

whole column?

row at a time

column at a time

block/vector at a time

A C

B

why column-stores are here now?

late materialization – no need to reconstruct tuples

read only useful data

minimize data movement across the memory hierarchy

but it required a complete re-write

why not before?
legacy technology to catch up

more important: analytical workloads (as opposed to only OLTP)

new hardware: larger memories & memory wall

Project details are now online (more to come)

detailed discussion in next class

Readings for the project

The Log-Structured Merge-Tree (LSM-Tree) by Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J.
O'Neil. Acta Inf. 33(4): 351-385, 1996

Monkey: Optimal Navigable Key-Value Store by Niv Dayan, Manos Athanassoulis, Stratos Idreos. SIGMOD
Conference 2017

More readings (for some research projects)

Measures of Presortedness and Optimal Sorting Algorithms by Heikki Mannila. IEEE Trans. Computers 34(4):
318-325 (1985)

Small Materialized Aggregates: A Light Weight Index Structure for Data Warehousing by Guido Moerkotte.
VLDB 1998

The adaptive radix tree: ARTful indexing for main-memory databases by Viktor Leis, Alfons Kemper, Thomas
Neumann. ICDE 2013: 38-49

programming language: C/C++

it gives you control over exactly what is happening
it helps you learn the impact of design decisions

avoid using libraries unless asked to do,
so you can control storage and access patterns

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

class 3

Relational Recap & Column-Stores Basics

https://bu-disc.github.io/CS561/

	Slide 1: class 3 Relational Recap & Column-Stores Basics
	Slide 2: what to do now?
	Slide 3: How can I prepare?
	Slide 8: Database Design Abstraction Levels
	Slide 9: Data can be messy!
	Slide 10: Data can be messy!
	Slide 11: Data can be messy!
	Slide 12: Data can be messy!
	Slide 13: Database Design Abstraction Levels
	Slide 14: Logical design
	Slide 15: Logical design
	Slide 16: Logical design
	Slide 18: Logical Schema of “University” Database
	Slide 19: Relational Model and SQL
	Slide 20: Relational Model and SQL
	Slide 21: Relational Model and SQL
	Slide 22: Relational Model and SQL
	Slide 23: Relational Model and SQL
	Slide 24: Relational Model and SQL
	Slide 25: Relational Model and SQL
	Slide 26: Database Design Abstraction Levels
	Slide 27: Physical Design
	Slide 28: Physical Design
	Slide 29: Physical Design
	Slide 30: Physical Design
	Slide 31: Data systems are declarative!
	Slide 32: Database Design Abstraction Levels
	Slide 33
	Slide 34
	Slide 35
	Slide 36: memory wall
	Slide 37: data movement & page-based access
	Slide 38: access granularity
	Slide 39: understanding data placement
	Slide 40: data storage
	Slide 41: slotted page
	Slide 42: slotted page
	Slide 43: querying over slotted pages
	Slide 44: querying over slotted pages
	Slide 45: querying over slotted pages
	Slide 46: querying over slotted pages
	Slide 47: querying over slotted pages
	Slide 48: querying over slotted pages
	Slide 49: querying over slotted pages
	Slide 50
	Slide 51
	Slide 52: column-stores history line
	Slide 53: query evaluation
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: why column-stores are here now?
	Slide 65: Project details are now online (more to come)
	Slide 66: Readings for the project
	Slide 67
	Slide 68: class 3 Relational Recap & Column-Stores Basics

