BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

class 3

Relational Recap & Column-Stores Basics

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

what to do now?

A) read the syllabus and the website

B) register to Piazza + Gradescope

C) finish project 0 (due 1/31)

D) start working on project 1 (due 2/14)

E) register for the presentation (week 2-3)

F) start reading papers & prepare for tech. questions (week 3)
G) go over the class project (end of next week will be available)
H) start working on the proposal (week 3)

BOSTON
UNIVERSITY

How can | prepare?

1) Read background research material

* Architecture of a Database System.
By J. Hellerstein, M. Stonebraker and J. Hamilton.
Foundations and Trends in Databases, 2007

* The Design and Implementation of Modern Column-store Database Systems.
By D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden.
Foundations and Trends in Databases, 2013

» Data Structures for Data-Intensive Applications: Tradeoffs and Design Guidelines.
By M. Athanassoulis, S. Idreos, D. Shasha.
Foundations and Trends in Databases, 2024

2) Start going over the papers

BOSTON
UNIVERSITY

Database Design Abstraction Levels

()

Logical Design
. J

()

Physical Design

System Design

\. J

BOSTON
UNIVERSITY

Data can be messy!

{ clean J@{schema}@

BOSTON
UNIVERSITY

Data can be messy!

e |[senem = o | -

2k

e U

BOSTON
UNIVERSITY

Data can be messy! e of memory buffe

how many threads to use

e <l x| e

BOSTON
UNIVERSITY

Data can be messy!

4 O)
{ clean J@{schema}@{ load }@{ tune J
_experts and DBAs y
~ L p
{ guery J
any user!
N by

BOSTON
UNIVERSITY

Database Design Abstraction Levels

()

Logical Design
. J

()

Physical Design

System Design

\. J

BOSTON
UNIVERSITY

Logical design
What is our data? How to model them?

Hierarchical? Network? Object-oriented? Flat?

BOSTON
UNIVERSITY

Logical design

What is our data? How to model them?

actor
|
v
student employee
v v o -
UG grad PhD staff faculty
|

project

|
v v

project A project B

[T

dept1 || dept 2 || dept3

relational data model
key-value data model

rd
e

Logical design
What is our data? How to model them?
Hierarchical? Network? Object-oriented? Flat?

Relational & Key-value

A collection of tables, each being a collection of rows and columns

[schema: describes the columns of each table]

BOSTON
UNIVERSITY

Logical Schema of “University” Database

Students

sid: string, name: string, login: string, year_birth: integer, gpa: real

Courses
cid: string, cname: string, credits: integer

?\

A
Enrolled attributes for Enrolled ? @

sid: string, cid: string, grade: string

BOSTON
UNIVERSITY 18

Relational Model and SQL

relations

cid: string, chame: string, credits: integer

Enrolled

sid: string, cid: string,

grade: string

BOSTON
UNIVERSITY

PK for Enrolled ?

Relational Model and SQL

how to create the table students?
create table students (sid:char(10), name:char(40), login:char(8), age:integer, ...)

Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

how to add a new student?

insert into students (U1398217312, John Doe, john19, 19, ...)
Courses

cid: string, cname: string, credits: integer

bring me the names of all students
EnI’O//ed select name from students where GPA > 3.5

sid: string, cid: string, grade: string

BOSTON
UNIVERSITY

Relational Model and SQL

chdent \

(sid1, namel, loginl, yearl, gpal)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpab)
(sid6, name6, loginG, year6, gpab)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)

@9, name9, login9, year9, gpa9)/
BOSTON
UNIVERSITY

\

cardinality: 9

Relational Model and SQL

chdent \ \

(sid1, namel, loginl, yearl, gpal)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpab)
(sid6, name6, loginG, year6, gpab)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)

@9, name9, login9, year9, gpa9)/ j

BOSTON 7\1\ what if a student does not have a login ID yet?
£\

cardinality: 9

Relational Model and SQL

chdent \ \

(sid1, namel, loginl, yearl, gpal)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpab)
(sid6, name6, loginG, year6, gpab)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)

(sid9, name9, NULL, year9, gpa9) / j

7‘}1 what if a student does not have a login ID yet?
'
e v

BOSTON
UNIVERSITY

cardinality: 9

- ?\
Relational Model and SQL i

how to show all enrollments in CS561°7

cid: string, chame: string, credits: integer

Enrolled

sid: string, cid: string,

grade: string

BOSTON
UNIVERSITY

&
Relational Model and SQL 7\

how to show all enrollments in DSA?

Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

| using foreign keys we can join

Courses information of all three tables
cid: string, cname: string, credits: integer select student.name
from students, courses, enrolled
Enrolled where course.cname="“DSA”
sid: string, cid: string, grade: string and course.cid=enrolled.cid
foreign keys and student.sid=enrolled.sid

BOSTON
UNIVERSITY

Database Design Abstraction Levels

()

Logical Design
. J

()

Physical Design

System Design

\. J

BOSTON
UNIVERSITY

Physical Design

File Organization

BOSTON
UNIVERSITY

-~

.

heap files

~

sorted files

clustered files

more ...

/

heap file

query cost

sorted file
—o

insert cost

Physical Design

BOSTON
UNIVERSITY

File Organization

4 N

heap files

sorted files

clustered files

Indexes

should | build an index?

on which attributes/tables?

what index structure?

B-Tree Trie

Hash gitmap

more ...

. /

k Zonemap /

Physical Design

File Organization

-~

.

heap files

~

sorted files

clustered files

more ...

Indexes

should | build an index?

on which attributes/tables?

what index structure?

B-Tree Trie

/

BOSTON
UNIVERSITY

Hash gitmap

k Zonemap /

k-ary prefix tree

rd'
»

. . s
Physical Design bitmap?
File Organization Indexes
/ \ \ rid Column rid 10 20 30
should | build an index? 1 130 110 ol |1
heap files , , 2 |20 2)0] 1|0
on which attributes/tables?| 3 30| 30 |0/ | 1
sorted files , , 4 |10 41 0 0
what index structure: s [0l 5ol |1 0
clustered files B-Tree Trie S ;z S ; 2 ?
Hash p:
Bitmap 8 200 8. 0| 1| |0

more ...
k / k Zonemap / data bitmap

works great for columns with

BOSTON few distinct values
UNIVERSITY

Data systems are declarative!

ask what you want

data system

design decisions, physical design
indexing, tuning knobs

system decides how research to automate!
to store & access / \
adaptivity autotuning

BOSTON
UNIVERSITY

Database Design Abstraction Levels

()

Logical Design
. J

()

Physical Design

System Design

. J

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

algorithms
and
operators

Indexing

BOSTON \. /
UNIVERSITY

modules

BOSTON
UNIVERSITY

N

select max(B) from R where A>5 and C<10

Parser

Optimizer

Evaluation

Storage

registers/CPU

on chip cache

on board cache

memory

disk

[J
[J
[J
[J
[J
[J

BOSTON
UNIVERSITY

. my head
registers/CPU 0

2x| on chip cache this room
1min

10x this building
on board cache LOmin

Washington, DC

[J
[J
[J
t00x(_memory]
[J
[J

5 hours

. Pluto

106x disk 2 vears
9 Andromeda
10°x tape 2000 years

memory wall

=
cache miss: looking . . A
for somethingthat % [on-chip cache J
is not in the cache *+| . S
on-board cache &
. J :C:)
O e . A\ as
] _ ol main memory o
memory miss: looking =} ¢ /
for somethingthat 3| () o7
: : V flash storage Old times! * Time
is notin memory 2f {)
g 4 N\
5| | disks | | flash

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

data movement & page-based access

[CPUJ

[on-chip cache J

on-board cache

main memory

flash storage

: disks] [flash

data go through
all necessary levels

also read
unnecessary data

need to read only X
read the whole page

8 page

BOSTON
UNIVERSITY

access granularity

DBMS block size\

N

OS block sizh

\s

~

memory/storage
device block size

/ /

/

file system and DBMS “pages”

understanding data placement

2\
e U

how to physically place data?

data storage

Student (sid: string, name: string, login:
string, year_birth: integer, gpa: real)

Gudent \ ﬁ'"] (e@e® \

(sid1, namel, loginl, yearl, gpal) o0 @ o0 ()
_ J J

(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpab)
(sid6, name6, login6, year6, gpab)
(sid7, name7, login7, year7, gpa7) \)] L y
(sid8, name8, login8, year8, gpa8)

@9, name9, login9, year9, gpa9)/ \ /

BOSTON
UNIVERSITY

slotted page

/i

g -

\

// rowl
r‘ I

J

/

row3

slotted page

/ #rows, row offsets, free space offsets,
#fixed length attributes, #var length attributes

1/ | T —

BOSTON
UNIVERSITY

querying over slotted pages rdd

C schema: R (A,B,C,D))
file/ \

querying over slotted pages rdd

schema: R (A,B,C,D)) select A,B,C,D from R
______________________ x select A from R

ABCD ‘ E
ABCD)]

ABCD] : each page contains entire rows (all their columns)
"1
Pages ABCD)
ABCD : E
ABCD ;
ABCD I

ABCD E rows are contiguous

k‘_ ____________________ _/ (with possible free space at the end)
BOSTON
UNIVERSITY

querying over slotted pages rdd

C schema: R (A,B,C,D)) select A,B,C,D from R

select A from R

any drawbacks?

each page contains columns!

column store

BOSTON
UNIVERSITY

querying over slotted pages rdd

C schema: R (A,B,C,D) select A,B,C,D from R
ﬂ:'_::: Peeen select A from R
!(::::: -:::_[_ _ select (A+B) from R
i: —————————— ' each page contains columns!
L Al B

-----q

’

BOSTON \‘----' ===
UNIVERSITY

querying over slotted pages rdd

C schema: R (A,B,C,D)) select A,B,C,D from R
ﬂ'“': T TTTY ;“'\\ select A from R
1
1
m I select (A+B) from R where A>10
1
i each page contains columns!
1
1

>

oy

(@]
TTTTTTETEEE ,D__________q

4

\-

& : = ' J
BOSTON mmmm Tmmmm V- - -—-—
UNIVERSITY

’-

querying over slotted pages rdd

BOSTON
UNIVERSITY

schema: R (A,B,C,D))

-y,

p 1

’-----q

T
D
i
’-----NI’-----N
|
@
]

=\

1
1
1
1
1
1
1
1
1
1
1

select A,B,C,D from R

select A from R

select (A+B) from R where A>10

each page contains columns or groups of columns!

. s
querying over slotted pages 2\

C schema: R (A,B,C,D)) select A,B,C,D from R

ﬁ - \ select A from R

select (A+B) from R where A>10

each page contains columns or groups of columns!

A, B C D what if | had all three queries?
what if only inserts/updates?

can there be something in between?

\ /L /AN J
BOSTON \ /
UNIVERSITY

\
Z
\

BOSTON
UNIVERSITY

ABCD

ABCD

ABCD

A/&r D A

7 f T\\
A, B D

ABCD E\\
ABCD \
ABCD

AllB Il cl|l D

ABCD

\
J
N\

ABCD

ABCD

the way we physical store data dictates

)

ﬁ \

A

B

C

B

D

what are the possible efficient access methods

BOSTON
UNIVERSITY

A, B

\

uy

ABCD

-

column-stores history line

1985: first complete 2000: first complete 2012+: expanding
column-store model column-store system on hybrid layouts
/

2001: first idea for
hybrid layouts

rows rows rows rows rows rows*

BOSTON
UNIVERSITY

guery evaluation

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

\
Z
\

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

tuple reconstruction/early materialization

|

ABCD

|

one row at a time

2k
?)

w

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

tuple reconstruction/early materialization

[ABCD]

one row at a time

late materialization

A column at a time

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

—> int* input=A;
int* output; /*needs allocation*/
for (i=0; i<num_tuples; i++,input++)

A if (*input>5)
{
*output=i;
output++,

\4\}

~

/

IDs
)

BOSTON
UNIVERSITY

72k
e U

what is the benefit?

\

read only useful data

=

IDs
N

\

select max(B) from R where A>5 and C<10

= (max)

easy to code: working over fixed width and dense columns

scan

e ™~ no complex checks
for (i=0,j=0; i<size; i++) no function calls
if (columnl[i] qualifies) no aux metadata
res[j++]=i; easy to prefetch
- / as few ifs as possible
fetch

for (i=0,j=0; i<fetch_size; i++)
intermediate result[j++]=columnlids[i]];

BOSTON
UNIVERSITY

select max(B) from R where A>5 and C<10

BOSTON
UNIVERSITY

IDs
N

\

=

IDs
N

\

= (max)

72k

e U
alternative query plans

start from C (why?)

scan A & Cin parallel and merge

select max(B) from R where A>5 and C<10

BOSTON
UNIVERSITY

IDs
N

\

=

IDs
N

\

= (max)

72k

u

whole column?

row at a time

column at a time

block/vector at a time

select max(B) from R where A>5 and C<10

BOSTON
UNIVERSITY

—

IDs

=

IDs

= (max)

72k

u

whole column?

row at a time

column at a time

block/vector at a time

why column-stores are here now?

late materialization — no need to reconstruct tuples
read only useful data

minimize data movement across the memory hierarchy
but it required a complete re-write

why not before?
legacy technology to catch up

more important: analytical workloads (as opposed to only OLTP)
new hardware: larger memories & memory wall &

BOSTON
UNIVERSITY

Project details are now online (more to come)

Google
Bi Ta%le W P — —/'-WCassandra
I on HBASE Asterixes

e Ymongons

Couchbase

detailed discussion in next class

BOSTON
UNIVERSITY

Readings for the project

The Log-Structured Merge-Tree (LSM-Tree) by Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J.
O'Neil. Acta Inf. 33(4): 351-385, 1996

Monkey: Optimal Navigable Key-Value Store by Niv Dayan, Manos Athanassoulis, Stratos Idreos. SIGMOD
Conference 2017

More readings (for some research projects)

Measures of Presortedness and Optimal Sorting Algorithms by Heikki Mannila. IEEE Trans. Computers 34(4):
318-325 (1985)

Small Materialized Aggregates: A Light Weight Index Structure for Data Warehousing by Guido Moerkotte.
VLDB 1998

The adaptive radix tree: ARTful indexing for main-memory databases by Viktor Leis, Alfons Kemper, Thomas
Neumann. ICDE 2013: 38-49

BOSTON
UNIVERSITY

programming language: C/C++

it gives you control over exactly what is happening
it helps you learn the impact of design decisions

avoid using libraries unless asked to do,
SO you can control storage and access patterns

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

class 3

Relational Recap & Column-Stores Basics

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

	Slide 1: class 3 Relational Recap & Column-Stores Basics
	Slide 2: what to do now?
	Slide 3: How can I prepare?
	Slide 8: Database Design Abstraction Levels
	Slide 9: Data can be messy!
	Slide 10: Data can be messy!
	Slide 11: Data can be messy!
	Slide 12: Data can be messy!
	Slide 13: Database Design Abstraction Levels
	Slide 14: Logical design
	Slide 15: Logical design
	Slide 16: Logical design
	Slide 18: Logical Schema of “University” Database
	Slide 19: Relational Model and SQL
	Slide 20: Relational Model and SQL
	Slide 21: Relational Model and SQL
	Slide 22: Relational Model and SQL
	Slide 23: Relational Model and SQL
	Slide 24: Relational Model and SQL
	Slide 25: Relational Model and SQL
	Slide 26: Database Design Abstraction Levels
	Slide 27: Physical Design
	Slide 28: Physical Design
	Slide 29: Physical Design
	Slide 30: Physical Design
	Slide 31: Data systems are declarative!
	Slide 32: Database Design Abstraction Levels
	Slide 33
	Slide 34
	Slide 35
	Slide 36: memory wall
	Slide 37: data movement & page-based access
	Slide 38: access granularity
	Slide 39: understanding data placement
	Slide 40: data storage
	Slide 41: slotted page
	Slide 42: slotted page
	Slide 43: querying over slotted pages
	Slide 44: querying over slotted pages
	Slide 45: querying over slotted pages
	Slide 46: querying over slotted pages
	Slide 47: querying over slotted pages
	Slide 48: querying over slotted pages
	Slide 49: querying over slotted pages
	Slide 50
	Slide 51
	Slide 52: column-stores history line
	Slide 53: query evaluation
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: why column-stores are here now?
	Slide 65: Project details are now online (more to come)
	Slide 66: Readings for the project
	Slide 67
	Slide 68: class 3 Relational Recap & Column-Stores Basics

