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Machine learning algorithms improve automatically
through experience and by the use of data.

Machine learning algorithms build a model based on
training data, in order to make predictions or decisions
without being explicitly programmed to do so.

Which database systems components can |
benefit/be replaced by ML algorithms? 7\1
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Selt-driving Data systems

Types of actions that
a self-driving system
needs to take
automatically
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Query Optimizations

Types Actions
ﬁ Indexes AddIndex, DropIndex, Rebuild, Convert
E Materialized Views AddMatView, DropMatView
& Storage Layout Row—Columnar, Columnar—Row, Compress
= Location MoveUpTier, MoveDownTier, Migrate
E Partitioning RepartitionTable, ReplicateTable
E Resources AddNode, RemoveNode
E Configuration Tuning IncrementkKnob, DecrementKnob, SetKnob
=
= -

CostModelTune, Compilation, Prefetch



Use-case: Peloton Self-Driving Architecture

(E) Action Planning

(A) Application  (B) Workload Monitoring

o

Application

Execution Threads

2.

Workload

| |

~ Runtime Architecture
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In-Memory
Database

(C) Workload Classification
[unsupervised learning to
group similar queries]

Workload Classification

Clustering
Algorithm

Wiorkiogd Clusters

i
———

Workload Forecasting

[use tools like receding-horizon control
model to select actions that might lead
to better performance in the future]

Action
Generator

FPhysical Opts

Data Opts

Execution Opts

Action
Catalog

" Workload Modeling

(D) Workload Forecasting
[predict future workload to
autoscale cloud instances]

A

[ Cost Estimator ]

Deplayment History
Time Eatimales
Aesource Estimates

" Control Framework

(F) Action Generator
[select action and log them,
reversals may also happen]




Workload forecasting
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Using Recurrent

Neural Networks (RNN)
the model learns patterns
and adapts to changes

—  Actual Workload

# Queries (min)
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(a) RNN Forecast Model (24-Hour Horizon)
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(b) RNN Forecast Model (7-Day Horizon)
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Action example: adapting the storage layout

1800|0-2 Row Layout B0 ColumnLayout V-V Hybrid Layout
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Workload Latency (sec)
o
=
o

Columns are better for OLAP
Rows are better for OLTP

Hybrid matches the best when workload alternates
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Why automatic tuning is hard? (1/2)

600 1000 1500 2000 2500 3000
Buffer pool size (MB)

(a) Dependencies (b) Continuous Settings
Complex interdependencies between Continuous domain (“too many” knob options)
different tuning knobs! with irregular benefits
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Why automatic tuning is hard? (2/2)

i
(=)

B Workload #1
B Workload #2
- N Workload #3

o
=

89th %-tile (sec)
i
[

Config#1  Config#2  Config #3 #hoo  zooa 2008 201z 2016
Release date

Non-reusable configurations! Increasing tuning complexity
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Use case: Ottertune

T o o o e e e o e e e e e e e T e = e o e o e e e e e e e e

Two distinct components: the tuning manager does not have access to data,
only to performance metrics and the values of the tuning knobs
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All performance data are organized per system and per major version to ensure
that no wrong, deprecated, or non-existing knobs are tuned.



OtterTune Machine Learning Pipeline

Workload Characterization Knob Ildentification Automatic Tuner

i

L

Samples

— s o e m e e S

How to classify/characterize a workload? \l What are possible challenges of this approach? |

A workload is characterized based on the system metrics when it is executed
(e.g., #pages reads/writes, cache utilization, locking overhead)
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OtterTune Machine Learning Pipeline

Knob Ildentification Automatic Tuner

Samples

Collect statistics at the global level (system-wide), per table proves to be challenging for various systems

Prune redundant metrics (e.g., data read and pages read are directly linked) via factor analysis and k-means clustering
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OtterTune Machine Learning Pipeline

Workload Characterization Knob Ildentification Automatic Tuner

Identify important knobs
Order the knobs based on their significance on the system’s performance (and identify knobs interdependencies)

Store in a repository observations
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OtterTune Machine Learning Pipeline

Workload Characterization Knob lIdentification Automatic Tuner

Automated Tuning: an Example

Use the systems metrics to identify (classify)
the workload

Iterative configuration recommendation balancing exploration vs. exploitation

Exploration: try out a configuration for which there is not enough data in the repository
this is done when (i) there is not enough data for this workload (so more data are needed), or
(ii) the system decides to try out new configurations that help collect more data in general

Exploitation: the systems uses small variations of a configuration that is close to optimal using the existing data
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OtterTune Iin Action

Start by sweeping values of knobs to collect “training data”

s 4 knobs e 8 knobs ess= 16 knobs == ©Max knobs Incremental

280 4400
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1
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Total runtime (ms)
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Cad %}
= o
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99th %-tile (ms)
B
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99th %-tile (ms)
N
=

280 220 vk — 4250
S L S R SR O W P @ O W @@
Tuning time (minutes) Tuning time (minutes) Tuning time {minutes)
(¢) Vector (TPC-H)

(a) MySQL (TPC-C) (b) Postgres (TPC-C)

The optimal number of knobs varies per DBMS and workload! ~ Increasing the number of knobs gradually is the best
approach, because it balances complexity and performance.

OtterTune tunes MySQL and Postgres that have few impactful knobs, and Actian Vector
that requires more knobs to be tuned in order to achieve good performance.
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OtterTune vs iITunes on TPCC

iTuned uses an initial set of 10 DBMS configurations at the beginning of the tuning session.

= Tuned === OtterTune

60D N
) I P —
5500---1--------- E
= 2
B A0 - °
Ennn- E
O &P b R rlg‘ﬁ:-" fﬁ afP
Tuning time (minutes) Tuning time (minutes)
(a) MySQL (b) Postgres

OtterTune is trained with more data, so it can achieve a better end result!
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OtterTune vs ITunes on TPCH

= Tuned === OtterTune

— 4800
E
“é“-nnnr
€ 4600
E-ﬁﬂﬂ =
ﬁﬁﬂﬂqﬂ.ﬁﬁ,ﬁfﬁ@ﬁ ﬁﬁgﬂﬂﬂ\%ﬂ'ﬁ(ﬁarﬂj}
Tuning time (minutes) Tuning time (minutes)
(a) Vector (TPC-H #1) (b) Vector (TPC-H #2)

Actian Vector allows fewer “bad” options, so the training is easier.
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“A tuning knob is a database engineer not knowing what do”

take this with a grain of salt!
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OtterTune Efficacy Comparison

(77 Default [ OtterTune HEEEE Tuning script [goog DBA KSCY RDS-config

81000 __1000
A R S g

g 70 pegeg £ 750
E_ 500 % g 500
g 250 % 250 1
= i = [
oo, = 0

(a) TPC-C (Throughput) (b) TPC-C (99%-tile Latency) (a) TPC-C (Throughput) (b) TPC-C (99%-tile Latency)
MySQL PostgreSQL

It is hard (but not impossible) to beat an expert DBA!
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Query Optimization Data Access
- Ear-::linalitf Estimation - EC}I’T‘IPI"E'EEi-DI"i
A Le alrne d - Cost Model Storage layout

Database System | orerig ﬁ . ‘Q +Indexes

Data Cubes

- Sorting -
- Joins Q -AQF
- Aggrggaﬂﬂn - Machine

- Scheduling Learning
Query Execution Advanced Analytics

Q & s
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Learned Query Optimization

BOSTON
UNIVERSITY

Sample ‘
Workload
User Query .

Neo
I- ------------------------------
SR N (3 AT (N |
| Optimizer mE
' Executed Plans i
— P Featurizer |

awnuny

aoualadxy |-

b —
8 T L Prediction
2
8

Selected plan ii:\

Database Execution Engine

Value Model

:
:
EC(ID
;
:
!
1
:
-
i
-
0
@
2




Learned Query Optimization

Initial Policy

Expert System
(e.g., PnstgrESQLj
L earned Policy
Search overv,

Value Network
Trained from Experience

BOSTON
UNIVERSITY



PostgreSQL SQLite MS SQL Server Oracle
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Motivation

In the era of big data, exact analytical query processing is too
“expensive”.

100000 R R R R R PR R L R R R PR
: Hive on Hadoop IR

Hive on Spark (without caching) R
Hive on Spark (with caching) Ema

10000 ............................................ ............................................

Query Response Time
(seconds)

2.5TB 7.5TB

Data Size (TB)

Agarwal, Sameer, et al. "BlinkDB: queries with bounded errors and bounded response times on very large data." Proceedings
of the 8th ACM European Conference on Computer Systems. ACM, 2013.




Motivation

In the era of big data, exact analytical query processing is too
“expensive”.

A large class of analytical queries takes the form:
SELECT AF(y) FROM table
WHERE x BETWEEN |Ib AND ub
[GROUP BY z]

Such queries are very popular on emerging datasets/workloads: 10T,
sensors, scientific, etc.
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Approximate Query Processing

Targeting Analytical Queries — why?

Goal: fast data analytics over large volumes of data
Tradeoff: accuracy vs. latency — why?

Is an accurate response always necessary?
exploratory analytics, business intelligence, analytics for ML

Basic tool: sampling
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Current Solutions

* Online Aggregations
e Data Sketches
* Sample-based Approaches (the dominating approach)
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Uniform Sampling

Stratified Sampling

Hash Sampling

mt  Limited supported aggregate functions

= Still, very time-consuming

e Space Overhead —samples can be very large

e Support for join (multi-way)

mam  SUpport for nesting




Query-time sampling

Queries explicitly specify sample operations
Sample then execute query

Uniform sampling: may miss small groups
Distinct sampler: online sampling of distinct values

With joins: want to sample before joins not after — why?
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Online aggregation

Execute query on growing random samples
Preliminary outputs are constantly updated — which?
Query result
Estimated error

BOSTON
UNIVERSITY



\.

Data Table
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expected mean: 1003
[990, 1020] with confidence 95%
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Data Table

\
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expected mean: 1002
[995, 1007] with confidence 96%



\ expected mean: 1001

Data Table (1001, 1001] with confidence 100%
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Online aggregation

Execute query on growing random samples

Preliminary outputs are constantly updated — which?
Query result
Estimated error

Hard to execute efficiently — why?
Random sample = Random access
Random samples might contain few rows that join
Can be improved using join indices
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Queries on Pre-Computed Samples

Low latency because sampling cost is assumed offline
operate only on the sample

Additional space (to keep sample)

Cannot provide fixed error bounds
Error bounds are data dependent (high variance = large error)

They can be arbitrarily large
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Data Table
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Sampled
Data




SQL additions

Aggregate is computed on a group
Group is defined based on certain columns
Extend specification with bounds

Error-bound query Time-bound query

SELECT count (*) SELECT count (*)

FROM Sessions FROM Sessions

WHERE Genre= western’ WHERE Genre= western’
GROUP BY OS GROUP BY OS

ERROR WITHIN 10% AT CONFIDENCE 95% WITHIN 5 SECONDS
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Offline vs online sampling

Offline
Assumption: (partially) known workload No assumption
Speedup: High - Low -
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Offline vs online sampling

Assumption: (partially) known workload No assumption

e

[Speedup: High Low J

e e e
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Offline vs online sampling

Assumption: (partially) known workload No assumption

Speedup: High Low

Both are helpful:
» offline sampling is used for (partially) predictable workloads,
* online sampling is for the rest.
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DBEst: transparent AQP

Very small query execution times (e.g., ms),
With small state (memory/storage footprint) (e.g., KBs), and

High accuracy (e.g., a few % relative error)
Regardless of data size?

YES! (for a large class of analytical queries)
rests on simple SML models
Built over samples of tables
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DBEst Contributions

DBEst shows that
Models can be built over small samples
Can generalize nicely, ensuring accuracy
Model state is small (KBs)
AQP over models is much faster than over samples
Model training overhead is acceptable — inline with sample generation.
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DBEst Architecture

DBEst QP Engine Data Store
Samples -—
Exact QP
v A
Catalog :
¢ A 9
Models Do
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DBEst and ML models

which aggregate functions are very hard to
answer via approximate query processing ?

* Problem SQL query
SELECT AF(y) from table
WHERE x between low and high
[GROUP BY z]

* What models?

¢ LR, PR...
Reg FESSion y=R(X) * XGBoost, GBoost...
Density Estimator  [Rsisass
* Nearest neighbor method
D(X) e Orthogonal series estimator

which are easy?
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Density Estimator

0.25
Histograms is the simplest form of density estimator
020
. DBEst is gradually learning a function
that approximates the actual density function of the data
0.10
e.g., “how many values exist between low and hi?”
0.05
0.00
-3 —& -4 -2 0 2 4 B 8

*image from wikipedia
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Regression Model

0.14 4

A regression model describes the relationship between two variables
° R . -
e ] = y=F(x)
0.104 o weekday 6| 20 0.0026

0.08

DBEst uses a regression model to capture “matches” from selection

0.06

0.04

e.g., “which values of y exist for x between low and hi?”

0.02

0.00 4 ceee® o
T T T T T T T T
24/02/2020 09/03/2020 23/03/2020 06/04/2020 20/04/2020 04/05/2020 18/05/2020 01/06/2020

*image from wikipedia




How to use regression and density estimation to answer queries?

SELECT count (*) b - o b
FROM Table COUNT(y) ~ N( f D(x)dx raction of values in [lb,u
Ib

WHERE x between lb and ub

AVG(y) = Ely]

SELECT avg(y) ~ E[R()] relationship of x values with y values
FROM Table

WHERE x between l1lb and ub

SUM(y) = COUNT(y) - AVG(y)
~ COUNT(y) - E[R(x)]

SELECT sum(y) ub % D(x)R(x)dx
FROM Table :N'_/. D(x)dx - 2%
WHERE x between lb and ub Ib fIEbD(x)dx

ub
=N- f D(x)R(x)dx
Ib
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How to use regression and density estimation to answer queries?

SELECT variance(y)
FROM Table
WHERE x between lb and ub

SELECT percentile (x,p)
FROM Table
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VARIANCE y(y) = E [y*] - [E[y]]*

~ E [R*(x)] - [E [R(x)])

_ fiy R@DR)x \ ! R(x)D(x)dxr

ub ub
i, D(x)dx ', D(x)dx

PERCENTILE.

If the reverse of the CDF, F~!(p), could be obtained, then the
p'" percentile for Column x is

a=F ' (p) (5)

Note that F~1(p) is derived using F(p) = fme(x)dx



More support on SQL

SELECT avg (y) AVG(y) = Ely]

FROM Table ~ E [R(x1, x2)]
WHERE x1 between 1bl and ubl uby, rub?
AND x2 between 1b2 and ub2 fzb] 152 D(x1, x2)R(x1, x2)dxodx;

ub; rub
/”?1 | b, 2 D(xl’ xZ)dedxl

Supporting GROUP BY

* build models for each group by value,
* create model bundles:
* E.g., each bundle stores ~500 groups
« Store bundles in, say, an SSD (~100 ms to deserialize and compute AF on bundle).
Supporting join
* Join table is flattened -> make samples -> build models.
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Limitations

* Group By Support ->too many groups
* Model Training time %, Query Response time T, space overhead 1.

* No error guarantee
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DBEst Summary

* DBEst: a model-based AQP engine, using simple SML models:
* Much smaller query response times
* High(er) accuracy
* Much smaller space-time overheads
 Scalability

* Ensuring high accuracy, efficiency, scalability with low money
investments -- resource (cpu, memory/storage/ network) usage.

* Future work: more efficient support for
* Joins
e Categorical attributes
* Improved parallel/distributed DBEst
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A perspective on
ML in Database Systems

from: ML-In-Databases: Assessment and Prognosis, IEEE Data Engineering Bulletin



New Forces

(1) End-user want to
democratize data (all business units to have access to all data)
make data-driven decisions (often in real time)

(2) New applications

structured query processing (SQL) + natural language processing
(NLP) + Complex Analytics (exploratory + predictive ML)
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New Forces

(3) Data integration

diverse and inconsistent datasets are combined in common data
repositories (data lakes)

(2) New hardware + the move to the cloud

moving from full ownership to pay-as-you-go
self-tuning systems en masse in the cloud (as we discussed today)
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Consequences and New Directions

Storage hierarchy is still relevant, but the layers are elastic (in the cloud)

ML models can be deployed at-will as “functions”

New push for serverless computing
use only services and not rent an entire server
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DBEst experiments



Evaluation

systematically showing sensitivities on
* range predicate selectivity + sample sizes + AFs

Performance under Group By and Joins

Comparisons against

e State of the art AQP (VerdictDB and BlinkDB)
 State of the art columnar DB (MonetDB)

Using data from TPC-DS and 3 different UCI-ML repo datasets.
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Experimental Setup

Ubuntu 18.04 with Xenon X5650 12-core CPU, 64 GB RAM And 4TB SSD
Datasets: TPC-DS, Combined Cycle Power Plant (CCPP), Beijing PM2.5

Query types:
* Synthetic queries: 0.1%, 1%, to 10% query range
 Number of queries: vary between 30 t0o1000 queries.
e Complex TPC-DS queries: Query 5, 7, and 77.

Compared against VerdictDB, BlinkDB and MonetDB, for error

* VerdictDB uses 12 cores while DBEst runs on 1 core. (Multi-threaded DBEst
is also evaluated)

Report execution times + system throughput for the parallel version
Report performance of joins and group by
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Dataset: TPC-DS

Performance — Sensitivity Analysis
Query range effect S0 oot e

Column pair:
[ss_list_price, ss_wholesale_cost]

10.0% 1
] 0.1% query range
] W 1.0% query range
1 B 10.0% query range
= ]
S
W 1.0% o
(] J
2 ]
E ]
q) g
| - I I [
0.1%

BOSTON .
Influence of query range on relative error



Performance — Sensitivity Analysis

Query range: 1%

S a m p | e S I Ze effe Ct 1200 synthetic queries

Column pair:
[ss_list_price, ss_wholesale_cost]

10.0% T 102
‘ 10k 1 DRE
100k 8 _ st
1m 1 .
2 H®] ]
o) ] ]
£ O .
'-5 1.0%': _E |
5 g 100
€ O 5
: )
O
_ S 1
I I B o 10
01% I 1 I 1 T T
$ N & g 3 N :
S N S S T 1 e
s & & £ 7 10° 10 10° 109
& X .
& Sample Size

Influence of sample size on relative error Influence of sample size on space overhead
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Performance Comparison
TPC-DS dataset coumnoars

Sample size: 10k, 100k

. DBEst_10k DBEst
14.0% A VerdictDB_10k 0.40 1 VerdictDB
DBEst_100k
12.0% - BN VerdictDB_100k 0357
= 0.30 1
S 10.0% - £
- - 0.25
by o/ a
b 8.0% §
% g 0.20 -
< 6.0% 1 >
o g: 0.15 -
o
4.0% -
0.10 -
2.0% - 0.05 -
0.0% ; . : l ; 0.00

COUNT SUM AVG OVERALL 16k 10|0k

Relative Error: DBEst vs VerdictDB Query Response Time: DBEst vs VerdictDB




Pe rform a n Ce Com pa riSO n 2.6 billion records, 1.4TB

Query range: 0.1%, 0.5%, 1.0%

CC P P d ata S et ;giSrsc?ueries, involving 3 column

Sample size: 10k, 100k

17.5% - DBEst_10k DBEst 100k
BlinkDB_10k 7.0% - BlinkDB_100k
15.0% - P VerdictDB_10k I VerdictDB_100k
' 6.0%
Lh 10.0A) n i 4_.0/0 -
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Performance Comparison
Group By
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SELECT AF(ss_list_price)

FROM store_sales

WHERE ss_wholesale_cost_sk ...
GROUP BY ss_store_sk

* 90 queries, 57 groups
* Sample size: 10k
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SELECT AF(ss_wholesale_cost), AF(ss_net_profit)
FROM store_sales, store

Performance Comparison Join e .

* 42 queries.
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Parallel Query Execution
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