
class 22

Machine Learning & Data Systems

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

Machine learning algorithms improve automatically
through experience and by the use of data.

Machine learning algorithms build a model based on
training data, in order to make predictions or decisions

without being explicitly programmed to do so.

Which database systems components can
benefit/be replaced by ML algorithms?

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management

modules

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management

modules

Use ML models to replace the cost-
models of the database Tuner

Tuner

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management

modules

Use ML models to replace the
navigational part of an Index

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management

modules

Use ML models to replace the cost-
model of the Query Optimizer

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management

modules

Use ML models to estimate the actual
data and replace the Query Evaluation

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management

modules

Use ML models to replace the cost-
models of the database Tuner

Tuner

Self-driving Data systems

Types of actions that

a self-driving system

needs to take

automatically

Use-case: Peloton Self-Driving Architecture

(A) Application (B) Workload Monitoring

(C) Workload Classification
[unsupervised learning to
group similar queries]

(D) Workload Forecasting
[predict future workload to
autoscale cloud instances]

(E) Action Planning
[use tools like receding-horizon control
model to select actions that might lead
to better performance in the future]

(F) Action Generator
[select action and log them,
reversals may also happen]

Workload forecasting

Using Recurrent
Neural Networks (RNN)
the model learns patterns
and adapts to changes

Action example: adapting the storage layout

Columns are better for OLAP

Rows are better for OLTP

Hybrid matches the best when workload alternates

Why automatic tuning is hard? (1/2)

Complex interdependencies between
different tuning knobs!

Continuous domain (“too many” knob options)
with irregular benefits

Why automatic tuning is hard? (2/2)

Non-reusable configurations! Increasing tuning complexity

Use case: Ottertune

Two distinct components: the tuning manager does not have access to data,
only to performance metrics and the values of the tuning knobs

All performance data are organized per system and per major version to ensure
that no wrong, deprecated, or non-existing knobs are tuned.

OtterTune Machine Learning Pipeline

A workload is characterized based on the system metrics when it is executed
(e.g., #pages reads/writes, cache utilization, locking overhead)

How to classify/characterize a workload? What are possible challenges of this approach?

OtterTune Machine Learning Pipeline

Collect statistics at the global level (system-wide), per table proves to be challenging for various systems

Prune redundant metrics (e.g., data read and pages read are directly linked) via factor analysis and k-means clustering

OtterTune Machine Learning Pipeline

Identify important knobs

Order the knobs based on their significance on the system’s performance (and identify knobs interdependencies)

Store in a repository observations

OtterTune Machine Learning Pipeline

Automated Tuning: an Example

Use the systems metrics to identify (classify)
the workload

Iterative configuration recommendation balancing exploration vs. exploitation

Exploration: try out a configuration for which there is not enough data in the repository
 this is done when (i) there is not enough data for this workload (so more data are needed), or
 (ii) the system decides to try out new configurations that help collect more data in general

Exploitation: the systems uses small variations of a configuration that is close to optimal using the existing data

OtterTune in Action

The optimal number of knobs varies per DBMS and workload! Increasing the number of knobs gradually is the best
approach, because it balances complexity and performance.

OtterTune tunes MySQL and Postgres that have few impactful knobs, and Actian Vector
that requires more knobs to be tuned in order to achieve good performance.

Start by sweeping values of knobs to collect “training data”

OtterTune vs iTunes on TPCC

OtterTune is trained with more data, so it can achieve a better end result!

iTuned uses an initial set of 10 DBMS configurations at the beginning of the tuning session.

OtterTune vs iTunes on TPCH

Actian Vector allows fewer “bad” options, so the training is easier.

“A tuning knob is a database engineer not knowing what do”

take this with a grain of salt!

OtterTune Efficacy Comparison

MySQL PostgreSQL

It is hard (but not impossible) to beat an expert DBA!

A Learned
Database System

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management

modules

Use ML models to replace the cost-
model of the Query Optimizer

Learned Query Optimization

Learned Query Optimization

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management

modules

Use ML models to estimate the actual
data and replace the Query Evaluation

Motivation

Agarwal, Sameer, et al. "BlinkDB: queries with bounded errors and bounded response times on very large data." Proceedings
of the 8th ACM European Conference on Computer Systems. ACM, 2013.

In the era of big data, exact analytical query processing is too
“expensive”.

Motivation

In the era of big data, exact analytical query processing is too
“expensive”.

A large class of analytical queries takes the form:

 SELECT AF(y) FROM table

 WHERE x BETWEEN lb AND ub

 [GROUP BY z]

Such queries are very popular on emerging datasets/workloads: IoT,
sensors, scientific, etc.

Approximate Query Processing

Targeting Analytical Queries – why?

Goal: fast data analytics over large volumes of data

Tradeoff: accuracy vs. latency – why?

Is an accurate response always necessary?

 exploratory analytics, business intelligence, analytics for ML

Basic tool: sampling

Current Solutions

• Online Aggregations

• Data Sketches

• Sample-based Approaches (the dominating approach)

Uniform Sampling

Stratified Sampling

Hash Sampling

Limited supported aggregate functions

Still, very time-consuming

Space Overhead – samples can be very large

Support for join (multi-way)

Support for nesting

Query-time sampling

Queries explicitly specify sample operations

Sample then execute query

 Uniform sampling: may miss small groups
 Distinct sampler: online sampling of distinct values

 With joins: want to sample before joins not after – why?

Online aggregation

Execute query on growing random samples

Preliminary outputs are constantly updated – which?

 Query result

 Estimated error

Data Table

expected mean: 1003
[990, 1020] with confidence 95%

Data Table

expected mean: 1002
[995, 1007] with confidence 96%

Data Table
expected mean: 1001
[1001, 1001] with confidence 100%

Online aggregation

Execute query on growing random samples

Preliminary outputs are constantly updated – which?

 Query result

 Estimated error

Hard to execute efficiently – why?

 Random sample → Random access

 Random samples might contain few rows that join

 Can be improved using join indices

Queries on Pre-Computed Samples

Low latency because sampling cost is assumed offline
 operate only on the sample

Additional space (to keep sample)

Cannot provide fixed error bounds
 Error bounds are data dependent (high variance = large error)
 They can be arbitrarily large

Data Table

Sampled
Data

SQL additions

Aggregate is computed on a group

Group is defined based on certain columns

Extend specification with bounds

Error-bound query

SELECT count(*)

FROM Sessions

WHERE Genre=`western`

GROUP BY OS

ERROR WITHIN 10% AT CONFIDENCE 95%

Time-bound query

SELECT count(*)

FROM Sessions

WHERE Genre=`western`

GROUP BY OS

WITHIN 5 SECONDS

Offline vs online sampling

Offline Online

Assumption: (partially) known workload No assumption

Speedup: High Low

Offline vs online sampling

Offline Online

Assumption: (partially) known workload No assumption

Speedup: High Low

Offline vs online sampling

Offline Online

Assumption: (partially) known workload No assumption

Speedup: High Low

Both are helpful:
• offline sampling is used for (partially) predictable workloads,
• online sampling is for the rest.

DBEst: transparent AQP

Very small query execution times (e.g., ms),

With small state (memory/storage footprint) (e.g., KBs), and

High accuracy (e.g., a few % relative error)

Regardless of data size?

YES! (for a large class of analytical queries)
rests on simple SML models

Built over samples of tables

DBEst Contributions

DBEst shows that
Models can be built over small samples

Can generalize nicely, ensuring accuracy

Model state is small (KBs)

AQP over models is much faster than over samples

Model training overhead is acceptable – inline with sample generation.

DBEst Architecture

DBEst and ML models

• Problem SQL query

 SELECT AF(y) from table

 WHERE x between low and high

 [GROUP BY z]

• What models?

• LR, PR...

• XGBoost, GBoost...Regression y=R(x)

• Kernel Density

• Nearest neighbor method
• Orthogonal series estimator

Density Estimator
D(x)

which aggregate functions are very hard to
answer via approximate query processing?

which are easy?

Density Estimator

Histograms is the simplest form of density estimator

DBEst is gradually learning a function
 that approximates the actual density function of the data

*image from wikipedia

e.g., “how many values exist between low and hi?”

Regression Model

*image from wikipedia

A regression model describes the relationship between two variables
𝑦 = 𝐹(𝑥)

DBEst uses a regression model to capture “matches” from selection

e.g., “which values of 𝑦 exist for 𝑥 between low and hi?”

SELECT count(*)

FROM Table

WHERE x between lb and ub

How to use regression and density estimation to answer queries?

SELECT avg(y)

FROM Table

WHERE x between lb and ub

fraction of values in [lb,ub]

fraction of values in [lb,ub]

relationship of x values with y values

SELECT sum(y)

FROM Table

WHERE x between lb and ub

How to use regression and density estimation to answer queries?

SELECT variance(y)

FROM Table

WHERE x between lb and ub

SELECT percentile(x,p)

FROM Table

Note that 𝐹−1 𝑝 is derived using F p = 𝑖𝑛𝑓−׬
𝑝

𝐷 𝑥 𝑑𝑥

More support on SQL

Supporting GROUP BY
• build models for each group by value,
• create model bundles:

• E.g., each bundle stores ~500 groups
• Store bundles in, say, an SSD (~100 ms to deserialize and compute AF on bundle).

Supporting join
• Join table is flattened -> make samples -> build models.

SELECT avg(y)

FROM Table

WHERE x1 between lb1 and ub1

 AND x2 between lb2 and ub2

Limitations

• Group By Support ->too many groups
• Model Training time ↑, Query Response time ↑, space overhead ↑.

• No error guarantee

DBEst Summary

• DBEst: a model-based AQP engine, using simple SML models:
• Much smaller query response times
• High(er) accuracy
• Much smaller space-time overheads
• Scalability

• Ensuring high accuracy, efficiency, scalability with low money
investments -- resource (cpu, memory/storage/ network) usage.

• Future work: more efficient support for
• Joins
• Categorical attributes
• Improved parallel/distributed DBEst

A perspective on
ML in Database Systems
from: ML-In-Databases: Assessment and Prognosis, IEEE Data Engineering Bulletin

New Forces

(1) End-user want to

 democratize data (all business units to have access to all data)

 make data-driven decisions (often in real time)

(2) New applications

 structured query processing (SQL) + natural language processing
(NLP) + Complex Analytics (exploratory + predictive ML)

New Forces

(3) Data integration

 diverse and inconsistent datasets are combined in common data
repositories (data lakes)

(2) New hardware + the move to the cloud

 moving from full ownership to pay-as-you-go

 self-tuning systems en masse in the cloud (as we discussed today)

Consequences and New Directions

Storage hierarchy is still relevant, but the layers are elastic (in the cloud)

ML models can be deployed at-will as “functions”

New push for serverless computing
use only services and not rent an entire server

class 22

Machine Learning & Data Systems

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

DBEst experiments

Evaluation

systematically showing sensitivities on
• range predicate selectivity + sample sizes + AFs

Performance under Group By and Joins

Comparisons against
• State of the art AQP (VerdictDB and BlinkDB)

• State of the art columnar DB (MonetDB)

Using data from TPC-DS and 3 different UCI-ML repo datasets.

Experimental Setup

Ubuntu 18.04 with Xenon X5650 12-core CPU, 64 GB RAM And 4TB SSD

Datasets: TPC-DS, Combined Cycle Power Plant (CCPP), Beijing PM2.5

Query types:
• Synthetic queries: 0.1%, 1%, to 10% query range
• Number of queries: vary between 30 to1000 queries.
• Complex TPC-DS queries: Query 5, 7, and 77.

Compared against VerdictDB, BlinkDB and MonetDB, for error

• VerdictDB uses 12 cores while DBEst runs on 1 core. (Multi-threaded DBEst
is also evaluated)

Report execution times + system throughput for the parallel version

Report performance of joins and group by

Performance – Sensitivity Analysis
Query range effect

Influence of query range on relative error

Dataset: TPC-DS
Sample size: 100k
540 synthetic queries
Column pair:
[ss_list_price, ss_wholesale_cost]

Performance – Sensitivity Analysis
Sample size effect

Influence of sample size on relative error Influence of sample size on space overhead

Dataset: TPC-DS
Query range: 1%
1200 synthetic queries
Column pair:
[ss_list_price, ss_wholesale_cost]

Performance Comparison
TPC-DS dataset

Relative Error: DBEst vs VerdictDB Query Response Time: DBEst vs VerdictDB

Query range: 0.1%, 1%, 10%
~100 queries, involving 16
column pairs.
Sample size: 10k, 100k

Performance Comparison
CCPP dataset

Relative error (10k sample) Relative error (100k sample)

2.6 billion records, 1.4TB
Query range: 0.1%, 0.5%, 1.0%
108 queries, involving 3 column
pairs.
Sample size: 10k, 100k

Performance Comparison
Group By

Accuracy histogram for SUMRelative error for group by queries

SELECT AF(ss_list_price)
FROM store_sales
WHERE ss_wholesale_cost_sk …

GROUP BY ss_store_sk

• 90 queries, 57 groups
• Sample size: 10k

Performance Comparison Join

Join accuracy comparison for the TPC-DS dataset Query response time (s) for the TPC-DS dataset

SELECT AF(ss_wholesale_cost), AF(ss_net_profit)
FROM store_sales, store
WHERE ss_store_sk=s_store_sk
AND s_number_of_employees BETWEEN …

• 42 queries.

Parallel Query Execution

Group by query response time reduction (TPC-DS) Throughput of parallel execution (CCPP)

1 core versus 12 cores

	Default Section
	Slide 1: class 22 Machine Learning & Data Systems
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Self-driving Data systems
	Slide 11: Use-case: Peloton Self-Driving Architecture
	Slide 12: Workload forecasting
	Slide 13: Action example: adapting the storage layout
	Slide 14: Why automatic tuning is hard? (1/2)
	Slide 15: Why automatic tuning is hard? (2/2)
	Slide 16: Use case: Ottertune
	Slide 17: OtterTune Machine Learning Pipeline
	Slide 18: OtterTune Machine Learning Pipeline
	Slide 19: OtterTune Machine Learning Pipeline
	Slide 20: OtterTune Machine Learning Pipeline
	Slide 21: OtterTune in Action
	Slide 22: OtterTune vs iTunes on TPCC
	Slide 23: OtterTune vs iTunes on TPCH
	Slide 24
	Slide 25: OtterTune Efficacy Comparison
	Slide 26: A Learned Database System
	Slide 27
	Slide 28: Learned Query Optimization
	Slide 29: Learned Query Optimization
	Slide 30
	Slide 31
	Slide 32: Motivation
	Slide 33: Motivation
	Slide 34: Approximate Query Processing
	Slide 35: Current Solutions
	Slide 36: Query-time sampling
	Slide 37: Online aggregation
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Online aggregation
	Slide 42: Queries on Pre-Computed Samples
	Slide 43
	Slide 44: SQL additions
	Slide 45: Offline vs online sampling
	Slide 46: Offline vs online sampling
	Slide 47: Offline vs online sampling
	Slide 48: DBEst: transparent AQP
	Slide 49: DBEst Contributions
	Slide 50: DBEst Architecture
	Slide 51: DBEst and ML models
	Slide 52: Density Estimator
	Slide 53: Regression Model
	Slide 54
	Slide 55
	Slide 56: More support on SQL
	Slide 57: Limitations
	Slide 58: DBEst Summary
	Slide 59: A perspective on ML in Database Systems
	Slide 60: New Forces
	Slide 61: New Forces
	Slide 62: Consequences and New Directions
	Slide 63: class 22 Machine Learning & Data Systems

	Additional Slides
	Slide 64: DBEst experiments
	Slide 65: Evaluation
	Slide 66: Experimental Setup
	Slide 67: Performance – Sensitivity Analysis Query range effect
	Slide 68: Performance – Sensitivity Analysis Sample size effect
	Slide 69: Performance Comparison TPC-DS dataset
	Slide 70: Performance Comparison CCPP dataset
	Slide 71: Performance Comparison Group By
	Slide 72: Performance Comparison Join
	Slide 73: Parallel Query Execution

