CS 561: Data Systems Architectures

class 22

Machine Learning & Data Systems

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

Machine learning algorithms improve automatically
through experience and by the use of data.

Machine learning algorithms build a model based on
training data, in order to make predictions or decisions
without being explicitly programmed to do so.

Which database systems components can |
benefit/be replaced by ML algorithms? 7\1

L

BOSTON
UNIVERSITY

modules

BOSTON
UNIVERSITY

Vv VvV VvV VvV VvV VvV

~N

Query
Parser

-

_ O\

Query
Compiler

~N

-

J

_ J

~N

Optimizer

Evaluation
Engine

~N

-

O\

Memory/Storage
Management

~N

J

Indexing

_ .

(" N\ (

Transaction
Management

~

?\

J

application/SQL
access patterns
complex queries

modules

BOSTON
UNIVERSITY

Vv VvV VvV VvV VvV VvV

application/SQL
access patterns
complex queries

4 N [N N
Query Query .
: Optimizer
Parser | | Compiler P V
_ J J L Y,
4 N N
Evaluation Memory/Storage (] Tuner &3
Engine Management o
_ J Y,
g \(Tran Yse ML models to replace the cost-
Indexing Man: models of the database Tuner
N\ J L -

modules

Vv VvV VvV VvV VvV VvV

Use ML models to replace the
navigational part of an Index

BOSTON
UNIVERSITY

4 N [N N
uer uer .
Query Q .y Optimizer

Parser Compiler
_ J J L Y,
(N ()
Memory/Storage
Management)
r N R
. Transaction
Indexing
Management
. AN y,

application/SQL
access patterns
complex queries

Tuner
- eaﬁ

modules

BOSTON
UNIVERSITY

Vv VvV VvV VvV VvV VvV

~N

Query
Parser

O\

-

Query
Compiler

N\ [

J

Optimizer

~N

J

application/SQL
access patterns
complex queries

N\

Use ML models to replace the cost-

N 7
Evaluation Memc

Engine Mar|<:|5C|||C||L

J U)
r N | A
. Transaction
Indexing
Management

_ J U Y

model of the Query Optimizer

——

Vv VvV VvV VvV VvV VvV

4 N [N N
uer uer .
modules Query Q .y Optimizer
Parser Compiler
_ J J L Y,
4 N [N
Evaluation Memory/Storage
Engine Management
- J Y,
: N
Use ML models to estimate the actcfal Transaction
data and replace the Query Evaluation
.Nlanagement
k J y,

BOSTON
UNIVERSITY

application/SQL
access patterns
complex queries

Tuner
- eaﬁ

modules

BOSTON
UNIVERSITY

Vv VvV VvV VvV VvV VvV

application/SQL
access patterns
complex queries

4 N [N N
Query Query .
: Optimizer
Parser | | Compiler P V
_ J J L Y,
4 N N
Evaluation Memory/Storage (] Tuner &3
Engine Management o
_ J Y,
g \(Tran Yse ML models to replace the cost-
Indexing Man: models of the database Tuner
N\ J L -

Selt-driving Data systems

Types of actions that
a self-driving system
needs to take
automatically

BOSTON
UNIVERSITY

Query Optimizations

Types Actions
ﬁ Indexes AddIndex, DropIndex, Rebuild, Convert
E Materialized Views AddMatView, DropMatView
& Storage Layout Row—Columnar, Columnar—Row, Compress
= Location MoveUpTier, MoveDownTier, Migrate
E Partitioning RepartitionTable, ReplicateTable
E Resources AddNode, RemoveNode
E Configuration Tuning IncrementkKnob, DecrementKnob, SetKnob
=
= -

CostModelTune, Compilation, Prefetch

Use-case: Peloton Self-Driving Architecture

(E) Action Planning

(A) Application (B) Workload Monitoring

o

Application

Execution Threads

2.

Workload

| |

~ Runtime Architecture

BOSTON

UNIVERSITY

In-Memory
Database

(C) Workload Classification
[unsupervised learning to
group similar queries]

Workload Classification

Clustering
Algorithm

Wiorkiogd Clusters

i
———

Workload Forecasting

[use tools like receding-horizon control
model to select actions that might lead
to better performance in the future]

Action
Generator

FPhysical Opts

Data Opts

Execution Opts

Action
Catalog

" Workload Modeling

(D) Workload Forecasting
[predict future workload to
autoscale cloud instances]

A

[Cost Estimator]

Deplayment History
Time Eatimales
Aesource Estimates

" Control Framework

(F) Action Generator
[select action and log them,
reversals may also happen]

Workload forecasting

%)
=",
=
=

Using Recurrent

Neural Networks (RNN)
the model learns patterns
and adapts to changes

— Actual Workload

Queries (min)

00:00 0300 0600 09:00 12:00 1500 18:00 21:00 00:00
(a) RNN Forecast Model (24-Hour Horizon)

120

0o
-

Queries (k/hour)
B
=

Jah25 Jan26 Jan27 Jan28 Jan29 Jan30 Jan31 Feb-01
(b) RNN Forecast Model (7-Day Horizon)

BOSTON
UNIVERSITY

Action example: adapting the storage layout

1800|0-2 Row Layout B0 ColumnLayout V-V Hybrid Layout

1350 -0-© o eee U9 1T
v 0O
o-o-a M-oO o-a8-0 ED% gvv
00 7 v

450} -

lgg ey zg o9 By go

Jan-25 Jan-26 Jan-27 Jan-28 Jan-29 Jan-30 Jan-31

Workload Latency (sec)
o
=
o

Columns are better for OLAP
Rows are better for OLTP

Hybrid matches the best when workload alternates

BOSTON
UNIVERSITY

Why automatic tuning is hard? (1/2)

600 1000 1500 2000 2500 3000
Buffer pool size (MB)

(a) Dependencies (b) Continuous Settings
Complex interdependencies between Continuous domain (“too many” knob options)
different tuning knobs! with irregular benefits

BOSTON
UNIVERSITY

Why automatic tuning is hard? (2/2)

i
(=)

B Workload #1
B Workload #2
- N Workload #3

o
=

89th %-tile (sec)
i
[

Config#1 Config#2 Config #3 #hoo zooa 2008 201z 2016
Release date

Non-reusable configurations! Increasing tuning complexity

BOSTON
UNIVERSITY

Use case: Ottertune

T o o o e e e o e e e e e e e T e = e o e o e e e e e e e e

Two distinct components: the tuning manager does not have access to data,
only to performance metrics and the values of the tuning knobs

BOSTON
UNIVERSITY

All performance data are organized per system and per major version to ensure
that no wrong, deprecated, or non-existing knobs are tuned.

OtterTune Machine Learning Pipeline

Workload Characterization Knob Ildentification Automatic Tuner

i

L

Samples

— s o e m e e S

How to classify/characterize a workload? \l What are possible challenges of this approach? |

A workload is characterized based on the system metrics when it is executed
(e.g., #pages reads/writes, cache utilization, locking overhead)

BOSTON
UNIVERSITY

OtterTune Machine Learning Pipeline

Knob Ildentification Automatic Tuner

Samples

Collect statistics at the global level (system-wide), per table proves to be challenging for various systems

Prune redundant metrics (e.g., data read and pages read are directly linked) via factor analysis and k-means clustering

BOSTON
UNIVERSITY

OtterTune Machine Learning Pipeline

Workload Characterization Knob Ildentification Automatic Tuner

Identify important knobs
Order the knobs based on their significance on the system’s performance (and identify knobs interdependencies)

Store in a repository observations

BOSTON
UNIVERSITY

OtterTune Machine Learning Pipeline

Workload Characterization Knob lIdentification Automatic Tuner

Automated Tuning: an Example

Use the systems metrics to identify (classify)
the workload

Iterative configuration recommendation balancing exploration vs. exploitation

Exploration: try out a configuration for which there is not enough data in the repository
this is done when (i) there is not enough data for this workload (so more data are needed), or
(ii) the system decides to try out new configurations that help collect more data in general

Exploitation: the systems uses small variations of a configuration that is close to optimal using the existing data

BOSTON
UNIVERSITY

OtterTune Iin Action

Start by sweeping values of knobs to collect “training data”

s 4 knobs e 8 knobs ess= 16 knobs == ©Max knobs Incremental

280 4400

310

a3
oy
=]
1
1

Total runtime (ms)
o o
Cad %}
= o
= =

99th %-tile (ms)
B
=
99th %-tile (ms)
N
=

280 220 vk — 4250
S L S R SR O W P @ O W @@
Tuning time (minutes) Tuning time (minutes) Tuning time {minutes)
(¢) Vector (TPC-H)

(a) MySQL (TPC-C) (b) Postgres (TPC-C)

The optimal number of knobs varies per DBMS and workload! ~ Increasing the number of knobs gradually is the best
approach, because it balances complexity and performance.

OtterTune tunes MySQL and Postgres that have few impactful knobs, and Actian Vector
that requires more knobs to be tuned in order to achieve good performance.

BOSTON
UNIVERSITY

OtterTune vs iITunes on TPCC

iTuned uses an initial set of 10 DBMS configurations at the beginning of the tuning session.

= Tuned === OtterTune

60D N
) I P —
5500---1--------- E
= 2
B A0 - °
Ennn- E
O &P b R rlg‘ﬁ:-" fﬁ afP
Tuning time (minutes) Tuning time (minutes)
(a) MySQL (b) Postgres

OtterTune is trained with more data, so it can achieve a better end result!

BOSTON
UNIVERSITY

OtterTune vs ITunes on TPCH

= Tuned === OtterTune

— 4800
E
“é“-nnnr
€ 4600
E-ﬁﬂﬂ =
ﬁﬁﬂﬂqﬂ.ﬁﬁ,ﬁfﬁ@ﬁ ﬁﬁgﬂﬂﬂ\%ﬂ'ﬁ(ﬁarﬂj}
Tuning time (minutes) Tuning time (minutes)
(a) Vector (TPC-H #1) (b) Vector (TPC-H #2)

Actian Vector allows fewer “bad” options, so the training is easier.

BOSTON
UNIVERSITY

“A tuning knob is a database engineer not knowing what do”

take this with a grain of salt!

BOSTON
UNIVERSITY

OtterTune Efficacy Comparison

(77 Default [OtterTune HEEEE Tuning script [goog DBA KSCY RDS-config

81000 __1000
A R S g

g 70 pegeg £ 750
E_ 500 % g 500
g 250 % 250 1
= i = [
oo, = 0

(a) TPC-C (Throughput) (b) TPC-C (99%-tile Latency) (a) TPC-C (Throughput) (b) TPC-C (99%-tile Latency)
MySQL PostgreSQL

It is hard (but not impossible) to beat an expert DBA!

BOSTON
UNIVERSITY

Query Optimization Data Access
- Ear-::linalitf Estimation - EC}I’T‘IPI"E'EEi-DI"i
A Le alrne d - Cost Model Storage layout

Database System | orerig ﬁ . ‘Q +Indexes

Data Cubes

- Sorting -
- Joins Q -AQF
- Aggrggaﬂﬂn - Machine

- Scheduling Learning
Query Execution Advanced Analytics

Q & s

Data Hardware Workload

BOSTON
UNIVERSITY

modules

BOSTON
UNIVERSITY

Vv VvV VvV VvV VvV VvV

~N

Query
Parser

O\

-

Query
Compiler

N\ [

J

Optimizer

~N

J

application/SQL
access patterns
complex queries

N\

Use ML models to replace the cost-

N 7
Evaluation Memc

Engine Mar|<:|5C|||C||L

J U)
r N | A
. Transaction
Indexing
Management

_ J U Y

model of the Query Optimizer

——

Learned Query Optimization

BOSTON
UNIVERSITY

Sample ‘
Workload
User Query .

Neo
I- ------------------------------
SR N (3 AT (N |
| Optimizer mE
' Executed Plans i
— P Featurizer |

awnuny

aoualadxy |-

b —
8 T L Prediction
2
8

Selected plan ii:\

Database Execution Engine

Value Model

:
:
EC(ID
;
:
!
1
:
-
i
-
0
@
2

Learned Query Optimization

Initial Policy

Expert System
(e.g., PnstgrESQLj
L earned Policy
Search overv,

Value Network
Trained from Experience

BOSTON
UNIVERSITY

PostgreSQL SQLite MS SQL Server Oracle

2.5 . . 25 ; ; s 2.5 2.5 ' .
Postgres ——==-= 50Lite ———- Oracle ———-
ol MNeo {R"‘H‘EEIDFSII _— =] PDSIEITE‘SG'L on SGL“:E = - 2 e e e e = 3 Pﬂs_tgregﬂl_ on Oracle =—==—-==
c 2 1 z Neo (Row Vectors) —— z SOL Sry ———- £ Neo (Row Vectors) ——
E 1.5 § § 15t PostgreS0L on 50L Srv —-—-- §
m = o o MNeo (Row Vectors) —— -
o & i __ . & L . N L
= = = =
D E TN o E : :
S05 ; k] S o5t S 05}
0 20 40 60 80 100 05 20 40 60 80 100 0% 20 40 60 80 100 %% 20 40 60 80 100
Iterations Iterations Iterations Iterations
25 2.5
e e e e
£ & R O S S -
b E § § 15} § I
I 3 3 3 B
) = H LY = e L] —
= = = = e -y
&2 £ z g
205 S S o5} S05
05 20 40 60 80 100 05 30 40 60 80 100 05 70 40 60 B0 100 0g 70 40 80 80 100
Iterations lterations Iterations Iterations
e = = =
L L) L) L)
[= [=4 = [=4
a a 2 k)
LET | | |
E* = = = =]
& & & &
O = = = =
o £ z z z
g S 205 S05
00— =20 40 60 80 100 05— =20 40 60 80 100 Op—=20 40 60 80 100 05— =20 a0 60 80 100
Iterations lterations Iterations Iterations

BOSTON

UNIVERSITY

Vv VvV VvV VvV VvV VvV

4 N [N N
uer uer .
modules Query Q .y Optimizer
Parser Compiler
_ J J L Y,
4 N [N
Evaluation Memory/Storage
Engine Management
- J Y,
: N
Use ML models to estimate the actcfal Transaction
data and replace the Query Evaluation
.Nlanagement
k J y,

BOSTON
UNIVERSITY

application/SQL
access patterns
complex queries

Tuner
- eaﬁ

Motivation

In the era of big data, exact analytical query processing is too
“expensive”.

100000 R R R R R PR R L R R R PR
: Hive on Hadoop IR

Hive on Spark (without caching) R
Hive on Spark (with caching) Ema

10000

Query Response Time
(seconds)

2.5TB 7.5TB

Data Size (TB)

Agarwal, Sameer, et al. "BlinkDB: queries with bounded errors and bounded response times on very large data." Proceedings
of the 8th ACM European Conference on Computer Systems. ACM, 2013.

Motivation

In the era of big data, exact analytical query processing is too
“expensive”.

A large class of analytical queries takes the form:
SELECT AF(y) FROM table
WHERE x BETWEEN |Ib AND ub
[GROUP BY z]

Such queries are very popular on emerging datasets/workloads: 10T,
sensors, scientific, etc.

BOSTON
UNIVERSITY

Approximate Query Processing

Targeting Analytical Queries — why?

Goal: fast data analytics over large volumes of data
Tradeoff: accuracy vs. latency — why?

Is an accurate response always necessary?
exploratory analytics, business intelligence, analytics for ML

Basic tool: sampling

BOSTON
UNIVERSITY

Current Solutions

* Online Aggregations
e Data Sketches
* Sample-based Approaches (the dominating approach)

BOSTON
UNIVERSITY

Uniform Sampling

Stratified Sampling

Hash Sampling

mt Limited supported aggregate functions

= Still, very time-consuming

e Space Overhead —samples can be very large

e Support for join (multi-way)

mam SUpport for nesting

Query-time sampling

Queries explicitly specify sample operations
Sample then execute query

Uniform sampling: may miss small groups
Distinct sampler: online sampling of distinct values

With joins: want to sample before joins not after — why?

BOSTON
UNIVERSITY

Online aggregation

Execute query on growing random samples
Preliminary outputs are constantly updated — which?
Query result
Estimated error

BOSTON
UNIVERSITY

\.

Data Table

BOSTON
UNIVERSITY

expected mean: 1003
[990, 1020] with confidence 95%

\.

Data Table

\

BOSTON
UNIVERSITY

expected mean: 1002
[995, 1007] with confidence 96%

\ expected mean: 1001

Data Table (1001, 1001] with confidence 100%

BOSTON
UNIVERSITY

Online aggregation

Execute query on growing random samples

Preliminary outputs are constantly updated — which?
Query result
Estimated error

Hard to execute efficiently — why?
Random sample = Random access
Random samples might contain few rows that join
Can be improved using join indices

BOSTON
UNIVERSITY

Queries on Pre-Computed Samples

Low latency because sampling cost is assumed offline
operate only on the sample

Additional space (to keep sample)

Cannot provide fixed error bounds
Error bounds are data dependent (high variance = large error)

They can be arbitrarily large

BOSTON
UNIVERSITY

Data Table

BOSTON
UNIVERSITY

Sampled
Data

SQL additions

Aggregate is computed on a group
Group is defined based on certain columns
Extend specification with bounds

Error-bound query Time-bound query

SELECT count (*) SELECT count (*)

FROM Sessions FROM Sessions

WHERE Genre= western’ WHERE Genre= western’
GROUP BY OS GROUP BY OS

ERROR WITHIN 10% AT CONFIDENCE 95% WITHIN 5 SECONDS

BOSTON
UNIVERSITY

Offline vs online sampling

Offline
Assumption: (partially) known workload No assumption
Speedup: High - Low -

BOSTON
UNIVERSITY

Offline vs online sampling

Assumption: (partially) known workload No assumption

e

[Speedup: High Low J

e e e

BOSTON
UNIVERSITY

Offline vs online sampling

Assumption: (partially) known workload No assumption

Speedup: High Low

Both are helpful:
» offline sampling is used for (partially) predictable workloads,
* online sampling is for the rest.

BOSTON
UNIVERSITY

DBEst: transparent AQP

Very small query execution times (e.g., ms),
With small state (memory/storage footprint) (e.g., KBs), and

High accuracy (e.g., a few % relative error)
Regardless of data size?

YES! (for a large class of analytical queries)
rests on simple SML models
Built over samples of tables

BOSTON
UNIVERSITY

DBEst Contributions

DBEst shows that
Models can be built over small samples
Can generalize nicely, ensuring accuracy
Model state is small (KBs)
AQP over models is much faster than over samples
Model training overhead is acceptable — inline with sample generation.

BOSTON
UNIVERSITY

DBEst Architecture

DBEst QP Engine Data Store
Samples -—
Exact QP
v A
Catalog :
¢ A 9
Models Do

BOSTON
UNIVERSITY

DBEst and ML models

which aggregate functions are very hard to
answer via approximate query processing ?

* Problem SQL query
SELECT AF(y) from table
WHERE x between low and high
[GROUP BY z]

* What models?

¢ LR, PR...
Reg FESSion y=R(X) * XGBoost, GBoost...
Density Estimator [Rsisass
* Nearest neighbor method
D(X) e Orthogonal series estimator

which are easy?

BOSTON
UNIVERSITY

Density Estimator

0.25
Histograms is the simplest form of density estimator
020
. DBEst is gradually learning a function
that approximates the actual density function of the data
0.10
e.g., “how many values exist between low and hi?”
0.05
0.00
-3 —& -4 -2 0 2 4 B 8

*image from wikipedia

BOSTON
UNIVERSITY

Regression Model

0.14 4

A regression model describes the relationship between two variables
° R . -
e] = y=F(x)
0.104 o weekday 6| 20 0.0026

0.08

DBEst uses a regression model to capture “matches” from selection

0.06

0.04

e.g., “which values of y exist for x between low and hi?”

0.02

0.00 4 ceee® o
T T T T T T T T
24/02/2020 09/03/2020 23/03/2020 06/04/2020 20/04/2020 04/05/2020 18/05/2020 01/06/2020

*image from wikipedia

How to use regression and density estimation to answer queries?

SELECT count (*) b - o b
FROM Table COUNT(y) ~ N(f D(x)dx raction of values in [lb,u
Ib

WHERE x between lb and ub

AVG(y) = Ely]

SELECT avg(y) ~ E[R()] relationship of x values with y values
FROM Table

WHERE x between l1lb and ub

SUM(y) = COUNT(y) - AVG(y)
~ COUNT(y) - E[R(x)]

SELECT sum(y) ub % D(x)R(x)dx
FROM Table :N'_/. D(x)dx - 2%
WHERE x between lb and ub Ib fIEbD(x)dx

ub
=N- f D(x)R(x)dx
Ib

BOSTON
UNIVERSITY

How to use regression and density estimation to answer queries?

SELECT variance(y)
FROM Table
WHERE x between lb and ub

SELECT percentile (x,p)
FROM Table

BOSTON
UNIVERSITY

VARIANCE y(y) = E [y*] - [E[y]]*

~ E [R*(x)] - [E [R(x)])

_ fiy R@DR)x \ ! R(x)D(x)dxr

ub ub
i, D(x)dx ', D(x)dx

PERCENTILE.

If the reverse of the CDF, F~!(p), could be obtained, then the
p'" percentile for Column x is

a=F ' (p) (5)

Note that F~1(p) is derived using F(p) = fme(x)dx

More support on SQL

SELECT avg (y) AVG(y) = Ely]

FROM Table ~ E [R(x1, x2)]
WHERE x1 between 1bl and ubl uby, rub?
AND x2 between 1b2 and ub2 fzb] 152 D(x1, x2)R(x1, x2)dxodx;

ub; rub
/”?1 | b, 2 D(xl’ xZ)dedxl

Supporting GROUP BY

* build models for each group by value,
* create model bundles:
* E.g., each bundle stores ~500 groups
« Store bundles in, say, an SSD (~100 ms to deserialize and compute AF on bundle).
Supporting join
* Join table is flattened -> make samples -> build models.

BOSTON
UNIVERSITY

Limitations

* Group By Support ->too many groups
* Model Training time %, Query Response time T, space overhead 1.

* No error guarantee

BOSTON
UNIVERSITY

DBEst Summary

* DBEst: a model-based AQP engine, using simple SML models:
* Much smaller query response times
* High(er) accuracy
* Much smaller space-time overheads
 Scalability

* Ensuring high accuracy, efficiency, scalability with low money
investments -- resource (cpu, memory/storage/ network) usage.

* Future work: more efficient support for
* Joins
e Categorical attributes
* Improved parallel/distributed DBEst

BOSTON
UNIVERSITY

A perspective on
ML in Database Systems

from: ML-In-Databases: Assessment and Prognosis, IEEE Data Engineering Bulletin

New Forces

(1) End-user want to
democratize data (all business units to have access to all data)
make data-driven decisions (often in real time)

(2) New applications

structured query processing (SQL) + natural language processing
(NLP) + Complex Analytics (exploratory + predictive ML)

BOSTON
UNIVERSITY

New Forces

(3) Data integration

diverse and inconsistent datasets are combined in common data
repositories (data lakes)

(2) New hardware + the move to the cloud

moving from full ownership to pay-as-you-go
self-tuning systems en masse in the cloud (as we discussed today)

BOSTON
UNIVERSITY

Consequences and New Directions

Storage hierarchy is still relevant, but the layers are elastic (in the cloud)

ML models can be deployed at-will as “functions”

New push for serverless computing
use only services and not rent an entire server

BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

class 22

Machine Learning & Data Systems

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

DBEst experiments

Evaluation

systematically showing sensitivities on
* range predicate selectivity + sample sizes + AFs

Performance under Group By and Joins

Comparisons against

e State of the art AQP (VerdictDB and BlinkDB)
 State of the art columnar DB (MonetDB)

Using data from TPC-DS and 3 different UCI-ML repo datasets.

BOSTON
UNIVERSITY

Experimental Setup

Ubuntu 18.04 with Xenon X5650 12-core CPU, 64 GB RAM And 4TB SSD
Datasets: TPC-DS, Combined Cycle Power Plant (CCPP), Beijing PM2.5

Query types:
* Synthetic queries: 0.1%, 1%, to 10% query range
 Number of queries: vary between 30 t0o1000 queries.
e Complex TPC-DS queries: Query 5, 7, and 77.

Compared against VerdictDB, BlinkDB and MonetDB, for error

* VerdictDB uses 12 cores while DBEst runs on 1 core. (Multi-threaded DBEst
is also evaluated)

Report execution times + system throughput for the parallel version
Report performance of joins and group by

BOSTON
UNIVERSITY

Dataset: TPC-DS

Performance — Sensitivity Analysis
Query range effect S0 oot e

Column pair:
[ss_list_price, ss_wholesale_cost]

10.0% 1
] 0.1% query range
] W 1.0% query range
1 B 10.0% query range
=]
S
W 1.0% o
(] J
2]
E]
q) g
| - I I [
0.1%

BOSTON .
Influence of query range on relative error

Performance — Sensitivity Analysis

Query range: 1%

S a m p | e S I Ze effe Ct 1200 synthetic queries

Column pair:
[ss_list_price, ss_wholesale_cost]

10.0% T 102
‘ 10k 1 DRE
100k 8 _ st
1m 1 .
2 H®]]
o)]]
£ O .
'-5 1.0%': _E |
5 g 100
€ O 5
:)
O
_ S 1
I I B o 10
01% I 1 I 1 T T
$ N & g 3 N :
S N S S T 1 e
s & & £ 7 10° 10 10° 109
& X .
& Sample Size

Influence of sample size on relative error Influence of sample size on space overhead
BOSTON

UNIVERSITY

Performance Comparison
TPC-DS dataset coumnoars

Sample size: 10k, 100k

. DBEst_10k DBEst
14.0% A VerdictDB_10k 0.40 1 VerdictDB
DBEst_100k
12.0% - BN VerdictDB_100k 0357
= 0.30 1
S 10.0% - £
- - 0.25
by o/ a
b 8.0% §
% g 0.20 -
< 6.0% 1 >
o g: 0.15 -
o
4.0% -
0.10 -
2.0% - 0.05 -
0.0% ; . : l ; 0.00

COUNT SUM AVG OVERALL 16k 10|0k

Relative Error: DBEst vs VerdictDB Query Response Time: DBEst vs VerdictDB

Pe rform a n Ce Com pa riSO n 2.6 billion records, 1.4TB

Query range: 0.1%, 0.5%, 1.0%

CC P P d ata S et ;giSrsc?ueries, involving 3 column

Sample size: 10k, 100k

17.5% - DBEst_10k DBEst 100k
BlinkDB_10k 7.0% - BlinkDB_100k
15.0% - P VerdictDB_10k I VerdictDB_100k
' 6.0%
Lh 10.0A) n i 4_.0/0 -
Y £
" 75% - < 3.0% -
é o
5.0% - 2.0% -
2.5% - 1.0% 1
0.0% -
0.0% ; : e ; COUNT SUM AVG OVERALL
COUNT SUM AVG OVERALL

Relative error (10k sample) Relative error (100k sample)

Performance Comparison
Group By

15.0% 1

Relative Error (%)

0.0%

10.0%-

5.0%

DBEst
I VerdictDB
COUNT SUM AVG OVERALL

Relative error for group by queries

BOSTON
UNIVERSITY

Number of Occurence

SELECT AF(ss_list_price)

FROM store_sales

WHERE ss_wholesale_cost_sk ...
GROUP BY ss_store_sk

* 90 queries, 57 groups
* Sample size: 10k

80

70 -

50 4

40 -

30

20

10 1

DBEst
e VerdictDB

5.0% 10.0% 15.0% 20.0% 25.0%
Relative Error (%)

Accuracy histogram for SUM

SELECT AF(ss_wholesale_cost), AF(ss_net_profit)
FROM store_sales, store

Performance Comparison Join e .

* 42 queries.

6.0% A DBEst_10k
DBEst_100k —
S
. B DBEst_1m O
5.0% 1 BN VerdictDB_10m E
= 10°-
u p
— m -
32 4.0% 5
ey o
% :
L _
0 3.0% - - 10 1
2 7} '
< =3
o o
2.0% - <
z;?
1.0% 1 éo
Q
0.0% -

COUNT SUM AVG OVERALL

SIONYNOINR| |oin accuracy comparison for the TPC-DS dataset Query response time (s) for the TPC-DS dataset
UNIVERSITY

Parallel Query Execution

1.50 -

—_
DO
ot

—_
-]
-

=
ot
S

Query Response Time (s)
o
By

=
)
ot

0.00

DBEst DBEst parallel VerdictDB

Group by query response time reduction (TPC-DS)

BOSTON
UNIVERSITY

1 core versus 12 cores

—~ N . .
L 60 A o - ~
£
=
3 .
S 4() - === \/erdictDB_10k
% VerdictDB_100k
d:O DBEst_10k
- DBEst_100k
| -
5 20
e
“©
©
=

O 1 T T T T T

0 2 4 §! 8 10

Number of Processes

Throughput of parallel execution (CCPP)

12

	Default Section
	Slide 1: class 22 Machine Learning & Data Systems
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Self-driving Data systems
	Slide 11: Use-case: Peloton Self-Driving Architecture
	Slide 12: Workload forecasting
	Slide 13: Action example: adapting the storage layout
	Slide 14: Why automatic tuning is hard? (1/2)
	Slide 15: Why automatic tuning is hard? (2/2)
	Slide 16: Use case: Ottertune
	Slide 17: OtterTune Machine Learning Pipeline
	Slide 18: OtterTune Machine Learning Pipeline
	Slide 19: OtterTune Machine Learning Pipeline
	Slide 20: OtterTune Machine Learning Pipeline
	Slide 21: OtterTune in Action
	Slide 22: OtterTune vs iTunes on TPCC
	Slide 23: OtterTune vs iTunes on TPCH
	Slide 24
	Slide 25: OtterTune Efficacy Comparison
	Slide 26: A Learned Database System
	Slide 27
	Slide 28: Learned Query Optimization
	Slide 29: Learned Query Optimization
	Slide 30
	Slide 31
	Slide 32: Motivation
	Slide 33: Motivation
	Slide 34: Approximate Query Processing
	Slide 35: Current Solutions
	Slide 36: Query-time sampling
	Slide 37: Online aggregation
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Online aggregation
	Slide 42: Queries on Pre-Computed Samples
	Slide 43
	Slide 44: SQL additions
	Slide 45: Offline vs online sampling
	Slide 46: Offline vs online sampling
	Slide 47: Offline vs online sampling
	Slide 48: DBEst: transparent AQP
	Slide 49: DBEst Contributions
	Slide 50: DBEst Architecture
	Slide 51: DBEst and ML models
	Slide 52: Density Estimator
	Slide 53: Regression Model
	Slide 54
	Slide 55
	Slide 56: More support on SQL
	Slide 57: Limitations
	Slide 58: DBEst Summary
	Slide 59: A perspective on ML in Database Systems
	Slide 60: New Forces
	Slide 61: New Forces
	Slide 62: Consequences and New Directions
	Slide 63: class 22 Machine Learning & Data Systems

	Additional Slides
	Slide 64: DBEst experiments
	Slide 65: Evaluation
	Slide 66: Experimental Setup
	Slide 67: Performance – Sensitivity Analysis Query range effect
	Slide 68: Performance – Sensitivity Analysis Sample size effect
	Slide 69: Performance Comparison TPC-DS dataset
	Slide 70: Performance Comparison CCPP dataset
	Slide 71: Performance Comparison Group By
	Slide 72: Performance Comparison Join
	Slide 73: Parallel Query Execution

