BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

class 2

Data Systems 101

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

/’/J

some reminders

no smartphones® no aptop®

What do we do in this class?

é’iﬁ \K?
=5l
> Cﬁ%%m I

presentations

reading papers quizzes + exam projects

BOSTON
UNIVERSITY

class summary

2 classes per week & OH/Labs 4 multiple per week

each student
1 paper discussion (as presenter or critic or proponent) + Quizzes + exam

project O (individual project) + project 1 (group project)
systems or research project (group project)
proposal + mid-semester report + final report/presentation

BOSTON
UNIVERSITY

Projects AND

project 0 project 1
A small implementation project A medium project to give you a flavor of
to sharpen dev skills large-scale production system
independent project groups of 3

et |

Due on Jan 31, 2025

BOSTON
UNIVERSITY

Projects AND

project 0 project 1
A small implementation project A medium project to give you a flavor of
to sharpen dev skills large-scale production system
independent project groups of 3

smma

Due on Jan 31, 2025

Start forming groups NOW!
Due on Feb 14, 2025

Projects

systems project research project
groups of 3 groups of 3
implementation-heavy C/C++ project pick a subject (list available on the website)

design & analysis

121
{0]-b[2]*

e Sl experimentation

01 forfio k=0¢k:
oL

BOSTON
UNIVERSITY

Projects

systems project research project
groups of 3 groups of 3
implementation-heavy C/C++ project pick a subject (list available on the website)

more to come!
design & analysis

float (3]
long float |1

(i [
b{3]-b[O]*
3)-cl0)*

experimentation

Ialé ”/‘bx?) o .' 0‘7[‘7‘ ¢ 10 : 1. Proposal

2. Mid-semester report

3. Final report + Presentation — -~

7
class timeline ‘0

discussions
interaction in OH & Lab
questions
Week 1 Week 5 Week 15: Project presentations
submit project proposal by 2/23 submit all material by 4/26

form groups for project 1

Week 4 Week 9

project 1 by 2/14 submit mid-semester

project report by 3/22
Week 2
project 0 by 31/1
start project 1

now

Quizzes may start from class 5!
Week 7 (March 3-7) Week 11 (March 31-April 4)

|

|

|

|

!

|

meeting with Project Mentor/TF meeting with Project Mentor/TF

BOSTON & ’
UNIVERSITY

Piazza

P>

PN N S A N N

2 classes per week & OH/Labs multiple times per week

all discussions & announcements
http://piazza.com/bu/spring2025/cs561/
also available on class website

We have added everyone who already registered!
BOSTON -
Please double-check!

http://piazza.com/bu/spring2025/cs561/

size (volume)
big data

(it’s not only about size)

sources (variety) The 3 Vs
veracity & value

rate (velocity)

size (volume)

rate (velocity) (b/g/?’bata)
sources (variety) The 3 V’s

veracity & value

+ our ability to collect machine-generated data

0\5 scientific experiments Iﬂsensors

social 28 Internet-of-things

a data system is a large software system
that stores data, and provides the interface to

o\ﬁ update and access them efficiently
4 knowledge
cata, analysis —— insights
decisions

BOSTON
UNIVERSITY

a data system is a large software system
that stores data, and provides the interface to

update and access them efficientl

knowledge
data

data system [mmmd analysis insights
decisions

BOSTON
UNIVERSITY

a data system is a large software system
that stores data, and provides the interface to

update and access them efficiently

some analysis

knowledge

REWSIE —— insights
decisions

data system

BOSTON
UNIVERSITY

data system: breaking the blackbox

2k
e w

algorithms
&
operators

data &
metadata

BOSTON
UNIVERSITY

application/SQL
access patterns

V V V V V N/ N/ complex queries

_

Indexing

J

selection
projection

join
aggregate
hashing
sorting

modules

BOSTON
UNIVERSITY

application/SQL
access patterns

V V V V V N/ N/ complex queries

N
Query

Parser

O\

Compiler

N
Query

J

Optimizer -

N memory

hierarchy

J

N
Evaluation

Engine
y,

.

~\

J

p
Memory/Storage

Management

_

~N

Caches

~\

J

(

J

~

Indexing

J

Transaction
Management

4 N L

g Y, N

Memory

~\

J

(

Disk

~\

J

growing environment opacLe

4 I e ™ Bl ====
DB nosaL = ZEx Google
ACID BASE AN
large systems simple, clean *
complex k”just enough”/
\IOtS Oftunmg/ >5200B by 2020, growing at 11.7% every year

[The Forbes, 2016]

BOSTON
UNIVERSITY

growing environment opacLe

4 I e ™ Bl ====
DB nosaL = ZEx Google
ACID BASE AN
large systems simple, clean *
complex k”just enough”/
\IOtS Oftunmg/ >5200B by 2020, growing at 11.7% every year

[The Forbes, 2016]

// APACHE § Cockroach Labs
. mongoDB. - d S CYL LA

Couchbase

i 0]
BOSTON S3B by 2020, growing at 20% every year
UNIVERSITY

[Forrester, 2016]

growing environment opacLe

/ \ ===
DB | posar | . 2=z Google
ACID BASE it
large systems simple, clean *
complex k”just enough” Y
\IOtS of tuning _/ >5200B by 2020, growing at 11.7% every year
more complex need for [The Forbes, 2016]
applications scalability

/ APACHE § CockroachLabs (5
. mongoDB. = . YLLA

Couchbase

newSQL } .
{ S3B by 2020, growing at 20% every year

[Forrester, 2016]

growing environment opacLe

4 I ===
DB | nesar | 2, EZ==E Google
ACID BASE it
large systems simple, clean %
complex k”just enough” Y
\IOtS Oftunmg/ >5200B by 2020, growing at 11.7% every year
more complex need for [The Forbes, 2016]
applications scalability

// APACHE @ Cockroach Labs GR

. .mongoDB® Cou';gase SCYLLA
SQLite
hewSQL S3B by 2020, growing at 20% every year

]
]SQEEESTNY [Forrester, 2016]

growing need for tailored systems

s & 2 % FERE 1006 A

/\/’ A/ f ﬁ ') I

Al 115 “) I.I.-E-O S0 A B

more data new hardware new applications new performance
goals

BOSTON
UNIVERSITY

data systems & the hardware

memory hierarchy

[CPUJ

[on-chip cache J
-

on-board cache

. J

faster
expensive (GB/S)
smaller (B v. TB)

4)

main memory

flash storage

magnetic disks

‘ BOSTON \
UNIVERSITY

memory hierarchy (by Jim Gray)

. my head

[registers/CPU ~0

on chip cache this room

1min

10x this building
on board cache Lomin

Washington, DC

. i 5 hours

Jim Gray, IBM, Tandem, Microsoft, DEC
ACM Turing Award 1998 105 disk Pluto
ACM SIGMOD Edgar F. Codd Innovations award 1993 2 years
Andromeda

10°x

J

2| J

[J
100x [memory]
[J

[] 2000 years

memory hierarchy (by Jim Gray)

my head
~0

[registers/CPU

2X

Imin

this building
10min

J
on chip cache] this room
J

[
10x [on board cache

— e~

Cartouche de données

tape? |
sequential-only magnetic storage 7\‘
still a multi-billion industry ¢ -

-

45TB @ $S150

Jim Gray (a great scientist and engineer)

The
FOURTH
PARADIGM

R T e ———y

the first collection of
technical visionary research on
a data-intensive scientific discovery

Jim Gray, IBM, Tandem, Microsoft, DEC
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

BOSTON
UNIVERSITY

memory wall

[CPU]
L .
2 [on-chip cache]
(4]
Y
4 ~N G-)
on-board cache o
\.) m
) . =
— . —
o main memory O
S . J | -
L O
= () AR
v flash storage
o L)
q°)
q') 4 N\
: . .
<l magnetic disks Time

BOSTON
UNIVERSITY

memory wall

when you go below the green line
CPU

| -] ‘
2 [on-chip cache J
O

e ~ (D

on-board cache -

\\ Y, m
— (A g
Sé, \ main memory) ke
© O
= Y Q
v flash storage
o L)
q°)
Q p N — # 1
: . . . -
o magnetic disks Old times! * Time

BOSTON
UNIVERSITY

cache/memory misses

computations

happen here »[CPU]

[on-chip cache J

Ve

.

on-board cache

~N

J

Vs

.

main memory

J

Ve

flash storage

magnetic disks

BOSTON
UNIVERSITY

when you go below the green line

@
cache miss: looking what happens if | miss?
for something that

is not in the cache 7W1

memory miss: looking \hat happens if | miss agam?
for something that

IS not in memory

be very careful when you go below the green line

data movement

U

[On_ChIp CaChe J data goes through . Photo by Gary Dineen/NBAE via Getty Images
all necessary levels
on-board cache need to read only X
L) read the whole page
(main memor \ also reac
! Y unnecessary data 8 page

flash storage

magnetic disks

BOSTON
UNIVERSITY

data movement

[CPUJ

[on-chip cache J

on-board cache

main memory

flash storage

data goes through ¥

all necessary levels

also read
unnecessary data

5\
remember!

Photo by Gary Dineen/NBAE via Getty Images

need to read only X
read the whole page

page

disk is millions (mem, hundreds) of times slower than CPU

page-based access & random access

query x</

size=120 bytes
memory (memory level N)

disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 40 bytes
page-based access & random access
query x</

scan . output

1,5,12, 24, 23 [
size=120 bytes

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 40 bytes

scan _ output

1,5,12,24,23 @ 2,7,13,9,8
size=120 bytes h

memory (memory level N)

page-based access & random access

query x</

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 40 bytes

scan _ output

1,5,12,24,23 @ 2,7,13,9,8
size=120 bytes h

memory (memory level N)

page-based access & random access

query x</

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 80 bytes

scan _ output

1,5,12,24,23 @ 2,7,13,9,8
size=120 bytes h

memory (memory level N)

page-based access & random access

query x</

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 80 bytes
page-based access & random access
query x</

scan output

10,11,6,14,15 @ 2,7,13,9,8
size=120 bytes h

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 80 bytes
page-based access & random access
query x</

scan output

10,11,6,14,15 @ 2,7,13,9,8 1,5,2,6
size=120 bytes h

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$120 bytes
page-based access & random access
query x</

scan output (32 bytes)

10, 11, 6, 14, 15 2,7,13,9,8 1,5,2,6
size=120 bytes

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

what if we had an oracle (perfect index)?

BOSTON
UNIVERSITY

page-based access & random access

query x</

size=120 bytes
memory (memory level N)

disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 40 bytes
page-based access & random access
query x</

oracle output

size=120 bytes

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 40 bytes
page-based access & random access
query x</

oracle output

1,5,12,24,23 @ 2,7,13,9,8
size=120 bytes h

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 40 bytes
page-based access & random access
query x</

oracle output

1,5,12,24,23 @ 2,7,13,9,8
size=120 bytes h

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 80 bytes
page-based access & random access
query x</

oracle output

1,5,12,24,23 @ 2,7,13,9,8
size=120 bytes h

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 80 bytes
page-based access & random access
query x</

oracle output

10,11,6,14,15 @ 2,7,13,9,8
size=120 bytes h

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$ 80 bytes
page-based access & random access
query x</

oracle output

10,11,6,14,15 @ 2,7,13,9,8 1,5,2,6
size=120 bytes h

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

$120 bytes
page-based access & random access

?\
query x<7 was the oracle helpful?
oracle output (32 bytes =

10, 11, 6, 14, 15 2,7,13,9,8 1,5,2,6
size=120 bytes

memory (memory level N)

disk (memory level N+1)

1,5,12, 24,23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

BOSTON
UNIVERSITY

when is the oracle helpful?

\
7\

for which query would an oracle help us?

2\
o _

how to decide whether to use the oracle or not?

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

BOSTON
UNIVERSITY

every byte counts

overheads and tradeoffs

how we store data

layouts, indexes

index
know the query design space

access path selection

BOSTON
UNIVERSITY

rules of thumb

sequential access

read one block; consume it completely; discard it; read next

hardware can predict and start prefetching

prefetching can exploit full memory/disk bandwidth
random access

read one block; consume it partially; discard it; (may re-use)

7‘\ . are random accesses always bad?

the one that helps us avoid a large number
of accesses (random or sequential)
BOSTON
UNIVERSITY

main-memory optimized-systems

a “simple” database operator

select operator (scan)

qualifying positions

query: value<x (—

over an array of N slots

BOSTON
UNIVERSITY

qgualifying positions

query: value<x
h to | | tit? (_ over an array of N slots
Oow 1O Impiement It:

L
”
£\ , _
@It: new array[dat@ what if only 0.1% qualifies?
J=0;

for (i=0; i<data.size; i++)
if (datali]<x)
N result[j++]=i; Y,

ata

result

BOSTON
UNIVERSITY

qgualifying positions

query: value<x
h to | | tit? (_ over an array of N slots
Oow 1O Impiement It:

\.\T
P\ data
o U — T
@/t: new array[dat@ what if only 0.1% qualifies?
j=0;

for (i=0; i<data.size; i++)
if (datali]<x)
N result[j++]=i; Y,

ata

BOSTON
UNIVERSITY

qgualifying positions

query: value<x
h to | | tit? (_ over an array of N slots
Oow 1O Impiement It:

oL
7\
o U — —
@It: new array[dat@ what if 99% qualifies?
/=Y, y

for (i=0; i<data.size; i++) 7‘\1 how can we know?
if (datafi]<x) o \

_ result(j++]=i; - branches (if statements)
are bad for the processors,
can we avoid them?

o

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)

L result[j+=(datali]<x)]=i, y

UNIVERSITY

how to bring the values?
(remember we have the positions)

BOSTON
UNIVERSITY

qualifying positions

query: value<x
(_ over an array of Nslots

for (i=0; i<data.size; i++) 7\1 what about multi-core?

/

result = new array/[data.size];\
=0;

if (data[i]<x) NUMA? SIMD? GPU?

result[j++]=i;
- .

needs coordination!
what about result writing?

queryl: value<xl
query2: value<x2 ...

7\1 what about having multiple queries?

'
/

result = new array/[data.size];\
=0, S
for (i=0; i<data.size; i++) / —
ﬂ
Itj++1=i; \ S
\ result[j++]=i ? .

if (data[i]<x)

BOSTON
UNIVERSITY

query: value<x
(_ over an array of N slots

7\1 how to decide which one is best?
9

should | scan?

e

total data movement
should | probe an index? &
computation

BOSTON
UNIVERSITY

Z0Nnemaps file = collection of pages

page O
page 1
page 2

page 3

BOSTON
UNIVERSITY

Z0Nnemaps file = collection of pages

oEINON 3, 16, 34, 31, 21
page 1 1,5, 12, 24, 23
page 2 2,7,13,9, 8

oIl 10, 11, 6, 14, 15

BOSTON
UNIVERSITY

Z20Nemaps
page O
page 1
page 2

page 3

BOSTON
UNIVERSITY

file = collection of pages

3,16, 34,31, 21

1,5,12, 24,23

2,7,13,9,8

10, 11, 6, 14, 15

But what if the data is sorted?®

3,16

1,24

2,13

6,15

light-weight

typically retained
in memory

%\

\\
W

Z0Nnemaps file = collection of pages

)
page O 1,2,3,5,6 16
’ light-weight
page 1 7,8,9 10, 11 711 typically retained
! in memory
page 2 12, 13, 14, 15, 16 12,16
page 3 | EAWPERPLZREIREY 21,34

- '1

vl

\.
But what if the data is sorted?® *“

UNIVERSITY

the language of efficient systems: C/C++
why?

fewer assumptions

low-level control over hardware

make decisions about physical data placement and consumptions

BOSTON
UNIVERSITY

the language of efficient systems: C/C++
why?

fewer assumptions

we want you in the project to make low-level decisions

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

class 2

Data Systems 101

4 N

modern main-memory data systems

next : &

semester project
\ %

	Slide 1: class 2 Data Systems 101
	Slide 2: some reminders
	Slide 3: What do we do in this class?
	Slide 4: class summary
	Slide 5: Projects
	Slide 6: Project
	Slide 7
	Slide 8: Project
	Slide 9: class timeline
	Slide 10: Piazza
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: data system: breaking the blackbox
	Slide 17
	Slide 18
	Slide 19: growing environment
	Slide 20: growing environment
	Slide 21: growing environment
	Slide 22: growing environment
	Slide 23: growing need for tailored systems
	Slide 24: data systems & the hardware
	Slide 25: memory hierarchy
	Slide 26: memory hierarchy (by Jim Gray)
	Slide 27: memory hierarchy (by Jim Gray)
	Slide 28: Jim Gray (a great scientist and engineer)
	Slide 29: memory wall
	Slide 30: memory wall
	Slide 31: cache/memory misses
	Slide 32: data movement
	Slide 33: data movement
	Slide 34: page-based access & random access
	Slide 35: page-based access & random access
	Slide 36: page-based access & random access
	Slide 37: page-based access & random access
	Slide 38: page-based access & random access
	Slide 39: page-based access & random access
	Slide 40: page-based access & random access
	Slide 41: page-based access & random access
	Slide 42: what if we had an oracle (perfect index)?
	Slide 43: page-based access & random access
	Slide 44: page-based access & random access
	Slide 45: page-based access & random access
	Slide 46: page-based access & random access
	Slide 47: page-based access & random access
	Slide 48: page-based access & random access
	Slide 49: page-based access & random access
	Slide 50: page-based access & random access
	Slide 51: when is the oracle helpful?
	Slide 52
	Slide 53: rules of thumb
	Slide 54: a “simple” database operator
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: zonemaps
	Slide 62: zonemaps
	Slide 63: zonemaps
	Slide 64: zonemaps
	Slide 65: the language of efficient systems: C/C++
	Slide 66: the language of efficient systems: C/C++
	Slide 67: class 2 Data Systems 101

