
class 2

Data Systems 101
Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

some reminders

no smartphones no laptop

What do we do in this class?

reading papers projects

presentations

quizzes + exam

class summary

2 classes per week & OH/Labs 4 multiple per week

each student

1 paper discussion (as presenter or critic or proponent) + Quizzes + exam

project 0 (individual project) + project 1 (group project)

systems or research project (group project)

 proposal + mid-semester report + final report/presentation

project 0

A small implementation project
to sharpen dev skills

independent project

project 1

A medium project to give you a flavor of
large-scale production system

groups of 3

ANDProjects

Due on Jan 31, 2025

Project
project 0

A small implementation project
to sharpen dev skills

independent project

project 1

A medium project to give you a flavor of
large-scale production system

groups of 3

ANDProjects

Due on Jan 31, 2025

Start forming groups NOW!

Due on Feb 14, 2025

systems project

groups of 3

implementation-heavy C/C++ project

research project

groups of 3

pick a subject (list available on the website)

design & analysis

experimentation

ORProjects

Project
systems project

groups of 3

implementation-heavy C/C++ project

research project

groups of 3

pick a subject (list available on the website)
more to come!

design & analysis

experimentation

ORProjects

1. Proposal

2. Mid-semester report

3. Final report + Presentation

class timeline

Week 1
form groups for project 1

now

Week 5
submit project proposal by 2/23

Week 2
project 0 by 31/1

start project 1

Week 15: Project presentations
submit all material by 4/26

Week 4
project 1 by 2/14

Week 9
submit mid-semester
project report by 3/22

discussions
interaction in OH & Lab

questions

Quizzes may start from class 5!

Week 7 (March 3-7)
meeting with Project Mentor/TF

Week 11 (March 31-April 4)
meeting with Project Mentor/TF

Piazza

all discussions & announcements
http://piazza.com/bu/spring2025/cs561/

also available on class website

We have added everyone who already registered!
Please double-check!

2 classes per week & OH/Labs multiple times per week

http://piazza.com/bu/spring2025/cs561/

sources (variety)

big data
(it’s not only about size)

size (volume)

rate (velocity)

The 3 V’s
veracity & value

big data
(it’s not only about size)

+ our ability to collect machine-generated data

social

scientific experiments sensors

Internet-of-things

The 3 V’ssources (variety)

size (volume)

rate (velocity)

veracity & value

a data system is a large software system

that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge

insights
decisions

data

a data system is a large software system

that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge

insights
decisions

data

a data system is a large software system

that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge

insights
decisions

data

some analysis

data system: breaking the blackbox

application/SQL
access patterns
complex queries

Indexing Data

op

op
op

op

op
algorithms

&
operators

selection

projection

join

aggregate

hashing

sorting

data &
metadata

memory
hierarchy

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler

Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing
Transaction

Management Disk

Memory

Caches

CPU

modules

growing environment

DB

ACID
large systems

complex
lots of tuning

noSQL
BASE

simple, clean
“just enough”

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

growing environment

$3B by 2020, growing at 20% every year
[Forrester, 2016]

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

DB

ACID
large systems

complex
lots of tuning

noSQL
BASE

simple, clean
“just enough”

growing environment

newSQL

more complex
applications

need for
scalability

$3B by 2020, growing at 20% every year
[Forrester, 2016]

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

DB

ACID
large systems

complex
lots of tuning

noSQL
BASE

simple, clean
“just enough”

growing environment

newSQL

more complex
applications

need for
scalability

$3B by 2020, growing at 20% every year
[Forrester, 2016]

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

DB

ACID
large systems

complex
lots of tuning

noSQL
BASE

simple, clean
“just enough”

growing need for tailored systems

new applicationsnew hardwaremore data new performance
goals

data systems & the hardware

memory hierarchy

CPU

on-chip cache

on-board cache

main memory

flash storage

magnetic disks

faster
expensive (GB/$)
smaller (B v. TB)

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2000 years

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2 years

tape?
sequential-only magnetic storage

still a multi-billion industry
45TB @ $150

Jim Gray (a great scientist and engineer)

Jim Gray, IBM, Tandem, Microsoft, DEC
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

the first collection of
technical visionary research on

a data-intensive scientific discovery

memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

fa
st

er
ch

ea
p

er
/l

ar
ge

r

magnetic disks

memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

fa
st

er
ch

ea
p

er
/l

ar
ge

r

be careful when you go below the green line

magnetic disks

cache/memory misses

CPU

on-chip cache

on-board cache

main memory

flash storage

cache miss: looking
for something that
is not in the cache

memory miss: looking
for something that

is not in memory

what happens if I miss?

be careful when you go below the green line

what happens if I miss again?

be very careful when you go below the green line
magnetic disks

computations
happen here

data movement

CPU

on-chip cache

on-board cache

main memory

flash storage

data goes through
all necessary levels

also read
unnecessary data pageX

Photo by Gary Dineen/NBAE via Getty Images

need to read only X
read the whole page

magnetic disks

data movement

CPU

on-chip cache

on-board cache

main memory

flash storage

data goes through
all necessary levels

pageX

need to read only X
read the whole page

Photo by Gary Dineen/NBAE via Getty Images

magnetic disks remember!
disk is millions (mem, hundreds) of times slower than CPU

also read
unnecessary data

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

1, 5, 12, 24, 23

scan output

1, 5

40 bytes

query x<7

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5

40 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

40 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output

1, 5, 2, 6

80 bytes

2, 7, 13, 9, 8

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output (32 bytes)

1, 5, 2, 6

120 bytes

2, 7, 13, 9, 8

what if we had an oracle (perfect index)?

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

1, 5, 12, 24, 23

oracle output

1, 5

40 bytes

query x<7

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5

40 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

40 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

output

1, 5, 2, 6

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)

disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15 1, 5, 2, 6

120 bytes

2, 7, 13, 9, 8

oracle
was the oracle helpful?

output (32 bytes)

when is the oracle helpful?

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

for which query would an oracle help us?

how to decide whether to use the oracle or not?

every byte counts

how we store data

know the query

index
design space

overheads and tradeoffs

layouts, indexes

access path selection

rules of thumb

sequential access

read one block; consume it completely; discard it; read next

random access

read one block; consume it partially; discard it; (may re-use)

hardware can predict and start prefetching

prefetching can exploit full memory/disk bandwidth

are random accesses always bad?

the one that helps us avoid a large number
of accesses (random or sequential)

a “simple” database operator

select operator (scan)

main-memory optimized-systems

data

qualifying positions

query: value<x
over an array of N slots

data

qualifying positions

how to implement it?

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)
 if (data[i]<x)
 result[j++]=i;

query: value<x
over an array of N slots

what if only 0.1% qualifies?

memory
data

result

data

qualifying positions

how to implement it?

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)
 if (data[i]<x)
 result[j++]=i;

query: value<x
over an array of N slots

what if only 0.1% qualifies?

memory
data

data

qualifying positions

how to implement it?

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)
 if (data[i]<x)
 result[j++]=i;

query: value<x
over an array of N slots

what if 99% qualifies?

how can we know?

branches (if statements)
are bad for the processors,

can we avoid them?
result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)
 result[j+=(data[i]<x)]=i;

how to bring the values?
(remember we have the positions)

data

qualifying positions

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)
 if (data[i]<x)
 result[j++]=i;

query: value<x
over an array of N slots

what about multi-core?
NUMA? SIMD? GPU?

data

core1 core2 core3 core4
needs coordination!

what about result writing?

data

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)
 if (data[i]<x)
 result[j++]=i;

query1: value<x1
query2: value<x2 …what about having multiple queries?

data

query: value<x
over an array of N slots

should I scan?

should I probe an index?

how to decide which one is best?

total data movement
&

computation

zonemaps file = collection of pages

page 0

page 1

page 2

page 3

zonemaps

2, 7, 13, 9, 8

1, 5, 12, 24, 23

10, 11, 6, 14, 15

3, 16, 34, 31, 21

file = collection of pages

page 0

page 1

page 2

page 3

zonemaps

2, 7, 13, 9, 8

1, 5, 12, 24, 23

10, 11, 6, 14, 15

3, 16, 34, 31, 21

file = collection of pages

page 0

page 1

page 2

page 3

3,16

1,24

2,13

6,15

light-weight

typically retained
in memory

But what if the data is sorted?

zonemaps

12, 13, 14, 15, 16

7, 8, 9, 10, 11

21, 23, 24, 31, 34

1, 2, 3, 5, 6

file = collection of pages

page 0

page 1

page 2

page 3

1,6

7,11

12,16

21,34

light-weight

typically retained
in memory

But what if the data is sorted?

the language of efficient systems: C/C++

why?

fewer assumptions

low-level control over hardware

make decisions about physical data placement and consumptions

the language of efficient systems: C/C++

why?

fewer assumptions

low-level control over hardware

make decisions about physical data placement and consumptionswe want you in the project to make low-level decisions

class 2

Data Systems 101

modern main-memory data systems

&

semester project

CS 561: Data Systems Architectures

next :

	Slide 1: class 2 Data Systems 101
	Slide 2: some reminders
	Slide 3: What do we do in this class?
	Slide 4: class summary
	Slide 5: Projects
	Slide 6: Project
	Slide 7
	Slide 8: Project
	Slide 9: class timeline
	Slide 10: Piazza
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: data system: breaking the blackbox
	Slide 17
	Slide 18
	Slide 19: growing environment
	Slide 20: growing environment
	Slide 21: growing environment
	Slide 22: growing environment
	Slide 23: growing need for tailored systems
	Slide 24: data systems & the hardware
	Slide 25: memory hierarchy
	Slide 26: memory hierarchy (by Jim Gray)
	Slide 27: memory hierarchy (by Jim Gray)
	Slide 28: Jim Gray (a great scientist and engineer)
	Slide 29: memory wall
	Slide 30: memory wall
	Slide 31: cache/memory misses
	Slide 32: data movement
	Slide 33: data movement
	Slide 34: page-based access & random access
	Slide 35: page-based access & random access
	Slide 36: page-based access & random access
	Slide 37: page-based access & random access
	Slide 38: page-based access & random access
	Slide 39: page-based access & random access
	Slide 40: page-based access & random access
	Slide 41: page-based access & random access
	Slide 42: what if we had an oracle (perfect index)?
	Slide 43: page-based access & random access
	Slide 44: page-based access & random access
	Slide 45: page-based access & random access
	Slide 46: page-based access & random access
	Slide 47: page-based access & random access
	Slide 48: page-based access & random access
	Slide 49: page-based access & random access
	Slide 50: page-based access & random access
	Slide 51: when is the oracle helpful?
	Slide 52
	Slide 53: rules of thumb
	Slide 54: a “simple” database operator
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: zonemaps
	Slide 62: zonemaps
	Slide 63: zonemaps
	Slide 64: zonemaps
	Slide 65: the language of efficient systems: C/C++
	Slide 66: the language of efficient systems: C/C++
	Slide 67: class 2 Data Systems 101

