

CS 561: Data Systems Architectures

Class 18

Correlation-Aware Partitioning for Joins

Manos Athanassoulis

https://bu-disc.github.io/CS561/

Join in Relational Databases

Enroll

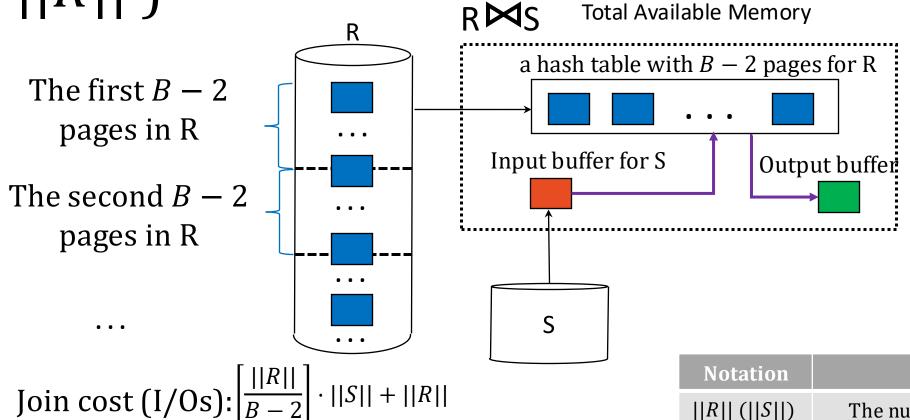
ClassID	StudentID
cs561	0000011
cs561	3078002
0000011	0000011

Select *
From Student, Enroll
Where Student.StudentID = Enroll.StudentID

Student

StudentID	YOB		Gender
0000001	1970/01/02	•••	M
0000002	1966/03/02	•••	F
6534702	2000/10/02		M

Block Nested Loop Join (assuming ||S|| > ||R||)



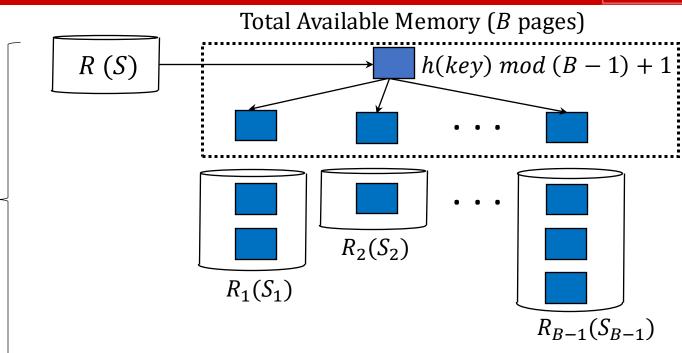
NotationMeaning||R|| (||S||)The number of pages of relation R (S)BBuffer size (in pages)

If B is large, the minimum #I/O is ||S|| + ||R|| when $||R|| \le B - 2$

Grace Hash Join R⋈S

$$2 \times (||S|| + ||R||)$$

Partitioning-both R and S

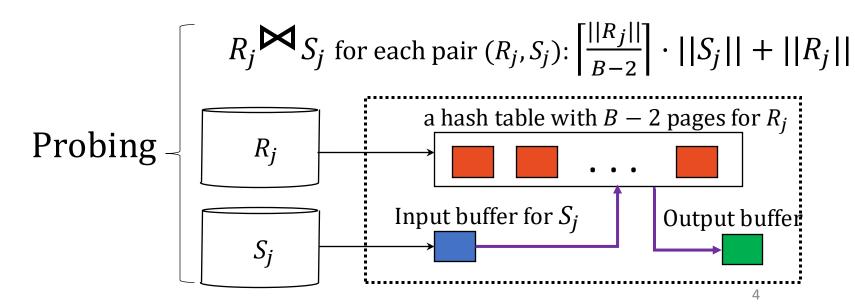


Assuming
$$||R_j|| \le B - 2$$

$$\sum_{j=1}^{B-1} (||S_j|| + ||R_j||) = ||S|| + ||R||$$

Totally, the #I/Os for Grace Hash Join is

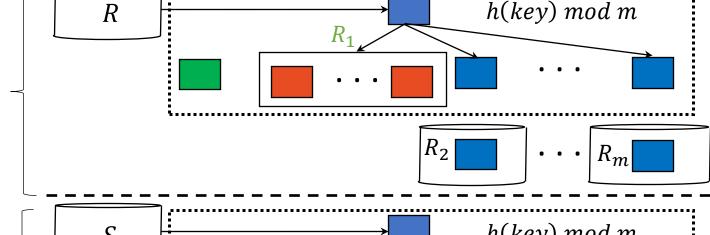
$$3 \cdot (||S|| + ||R||)$$



State-of-the-art: Hybrid Hash Join

Total Available Memory (*B* pages)

$$2 \cdot ||R|| - ||R_1||$$



Partitioning S

$$2\times ||S|| - ||S_1||$$

$$S$$
Output buffer S_1
 S_2
 S_m

$$\sum_{j=2}^{m} \left(\left\lceil \frac{||R_j||}{B-2} \right\rceil \cdot ||S_j|| + ||R_j|| \right) = \sum_{j=2}^{m} \left(||S_j|| + ||R_j|| \right)$$

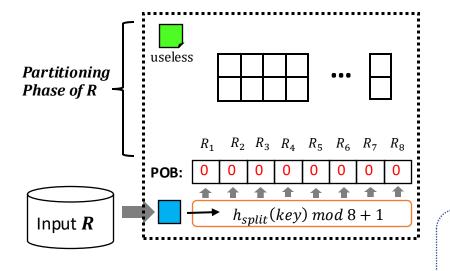
Assuming $||R_i|| \le B - 2$

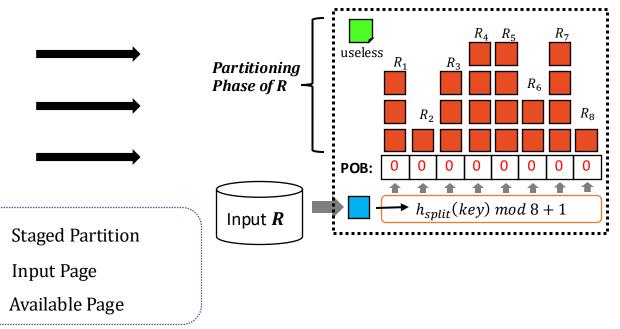
Dynamic Hybrid Hash Join (DHH)

State of the art DBs (e.g., PostgreSQL and AsterixDB) use DHH to decide which partitions are staged.

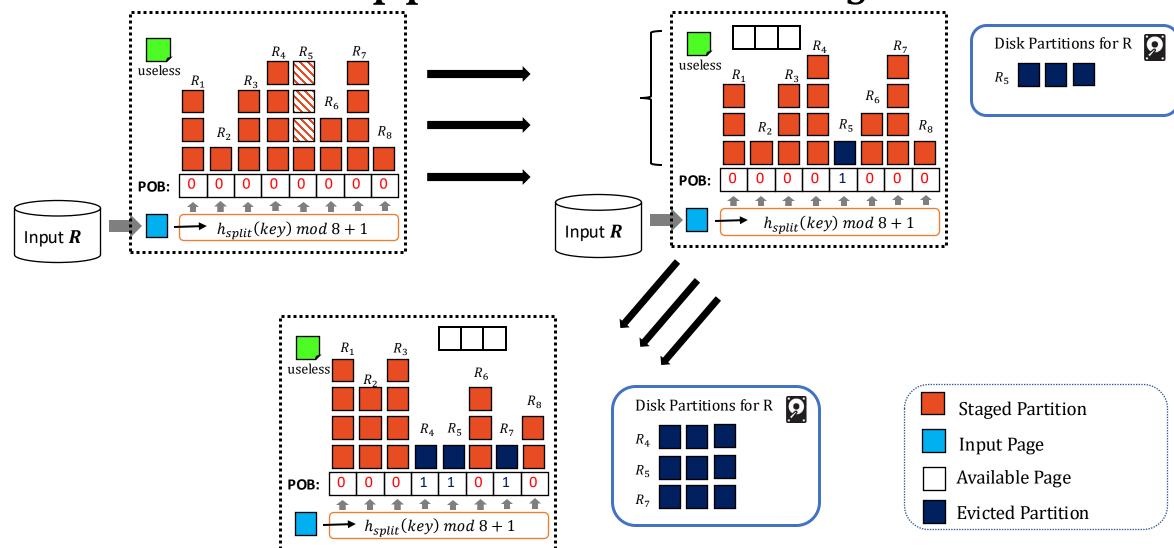
No available pages to use!

Example: Partitioning R (m = 8)

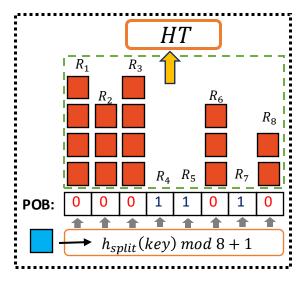


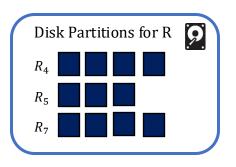


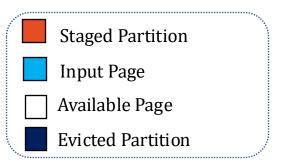
Partition R: Suppose we choose R_5 to evict



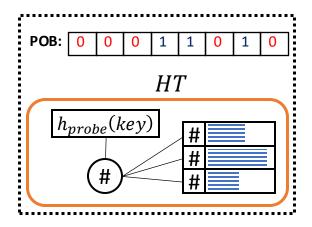
Partition R: Building a Hash Table (HT)





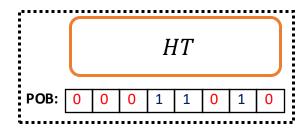


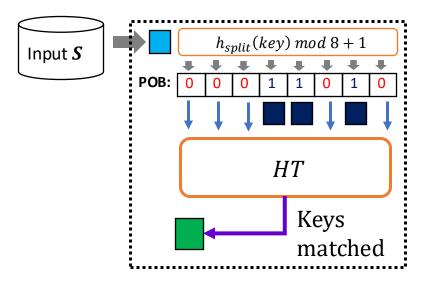
The final memory state after partitioning R:

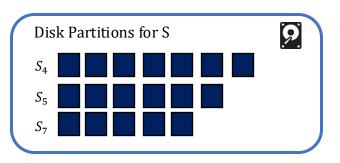


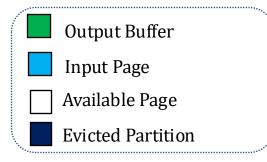
$$I/O \ cost$$
: $||R|| + ||R_4|| + ||R_5|| + ||R_7||$

Partition S and Probe









I/O cost (partitioning S):

$$||S|| + ||S_4|| + ||S_5|| + ||S_7||$$

I/O cost (partitioning R):

$$||R|| + ||R_4|| + ||R_5|| + ||R_7||$$

I/O cost (probing):

$$\sum_{j \in \{4,5,7\}}^{m} \left(\left\lceil \frac{||R_j||}{B-2} \right\rceil \cdot ||S_j|| + ||R_j|| \right)$$

In total (assuming $||R_i|| \le B - 2$):

$$||R|| + ||S|| + \sum_{j \in \{4,5,7\}}^{m} 2 \cdot (||S_j|| + ||R_j||)$$

DHH Bridges between BNLJ and GHJ

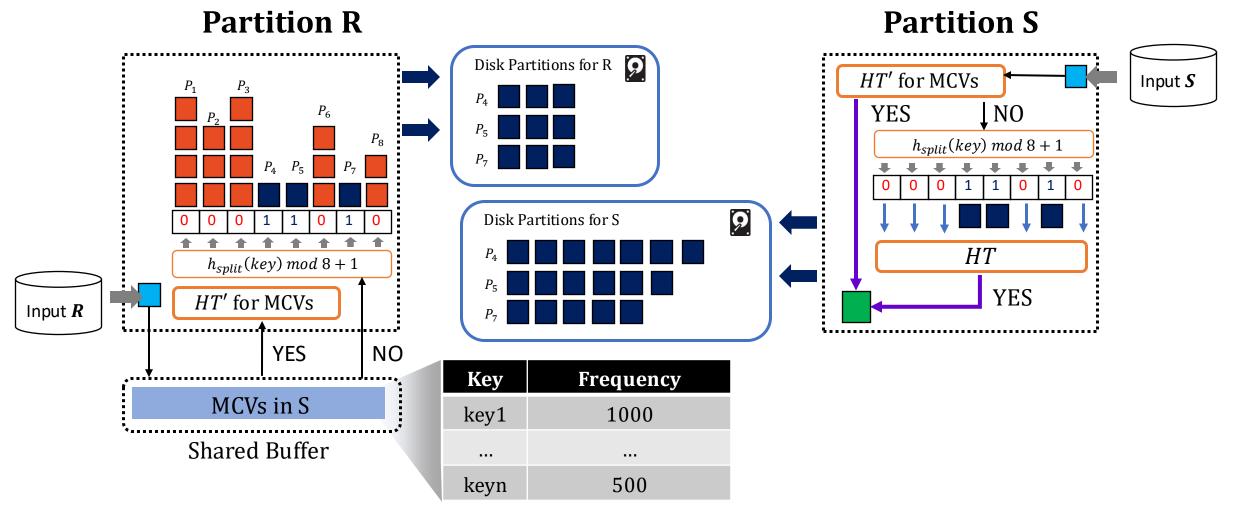
Method	I/O cost
BNLJ	$ R + S $ when $ R \le B - 2$
GHJ	$3 \cdot (R + S)$ when $ R_j \le B - 2$
DHH	$ R + S + 2 \cdot \sum_{j \in J} (R_j + S_j)$ when $ R_j \le B - 2$

J represents the ids of partitions that are spilled to the disk

Can we do better?

Skew Optimization: Stage Most-Common-Values (MCVs) to reduce $||S_i||$

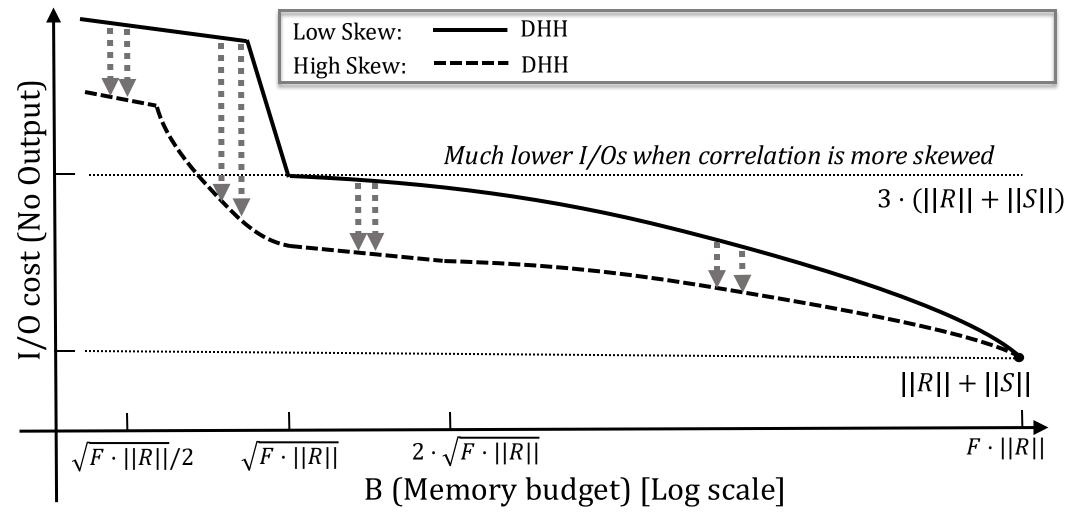
Skew Optimization in DHH



Correlation Table (CT)

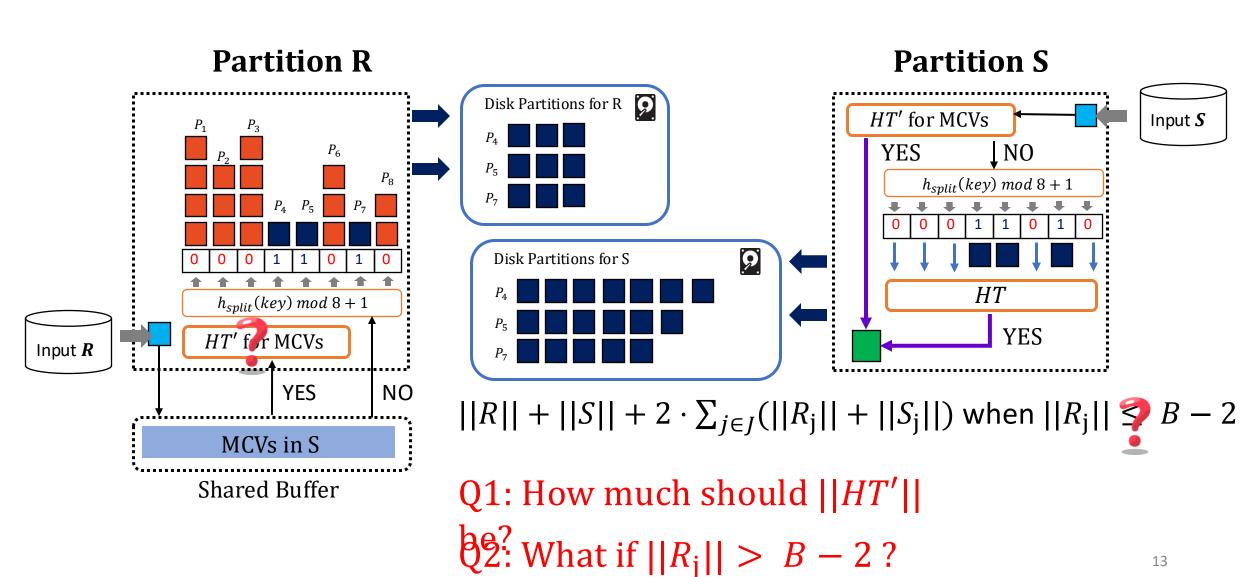
12

Skew Optimization in DHH

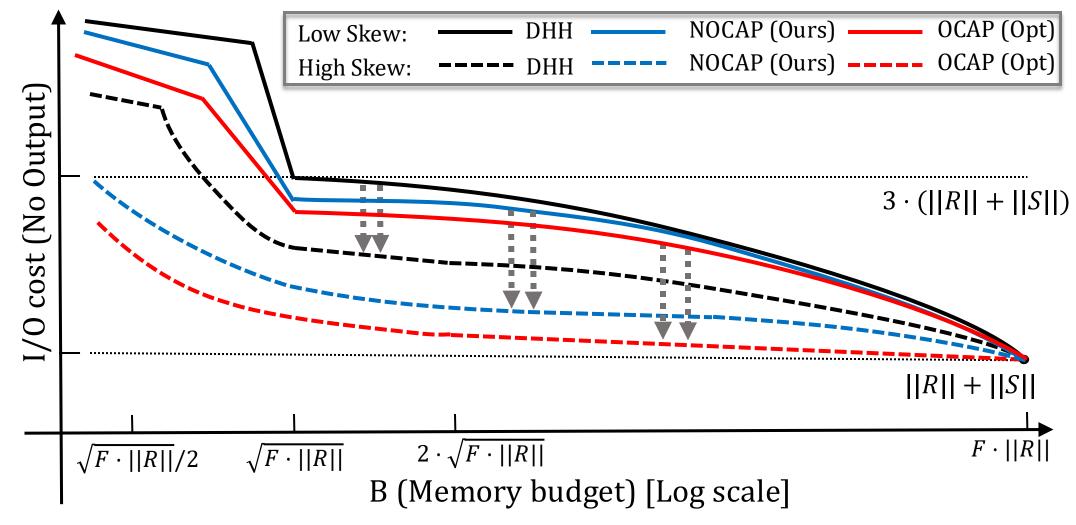


Skew optimization reduces the number of I/Os when the matching exhibits skew

Can we do better?



DHH v.s. Instance-Optimal Join (OCAP)



A good partitioning algorithm should be skew-aware and adaptive to the given

Modeling the Join Cost of DHH

Recall DHH Join Cost:
$$||R|| + ||S|| + \sum_{j \in J} \left(\left(\left\lceil \frac{||R_j||}{B-2} \right\rceil + 1 \right) \cdot ||S_j|| + 2 \cdot ||R_j|| \right)$$

Define a $n \times (m + 1)$ Boolean matrix P to represent the partitioning

Notation	Meaning	
$n(n_R)$	The number of tuples in relation R	
m	The number of partitions on disk	
$P = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}_{n \times (m+1)}$	A Boolean matrix P where $P_{i,j}=1$ represents the i^{th} record belongs to the j^{th} partition	
R_1	A partition cached in memory	

partitions that are spilled to the disk
$$\arg\min_{P,m} \sum_{j=2}^{m+1} \left(\left(\left\lceil \frac{||R_j||}{B-2} \right\rceil + 1 \right) \cdot ||S_j|| + 2 \cdot ||R_j|| \right)$$

J represents the ids of

s.t.
$$\forall i \in [n], \ \sum_{j=1}^{m+1} P_{i,j} = 1$$

 $||R_1|| + m + 2 \le B$
 $P_{i,j} \in \{0,1\}, \forall i \in [n], \forall j \in [m+1]$

Integer Programming

$$\arg\min_{P,m} \sum_{j=2}^{m+1} \left(\left(\left| \frac{||R_j||}{B-2} \right| + 1 \right) \cdot ||S_j|| + 2 \cdot ||R_j|| \right)$$

Index i	Frequency in S
1	1
n-1	77
n	100

s.t.
$$\forall i \in [n], \ \sum_{j=1}^{m+1} P_{i,j} = 1$$

$$||R_1|| + m + 2 \le B$$

$$P_{i,j} \in \{0,1\}, \forall i \in [n], \forall j \in [m+1]$$

Correlation Table (CT)

$$||R_j|| = \sum_{i=1}^{N} P_{i,j} / b_R$$

$$||S_j|| = \sum_{i=1}^{N} P_{i,j} \cdot CT[i] / b_S$$

Instance-Optimal Join (Optimal Correlation-Aware Partitioning)

Input: n, B, b_R, b_S, CT

Exponential searching space to enumerate all possible partitions!

Three Properties of P_{opt} to Reduce Complexity

Consecutiveness

$$O(B^{n+1}) \Rightarrow O(B^2 \cdot n^2)$$

Monotonicity

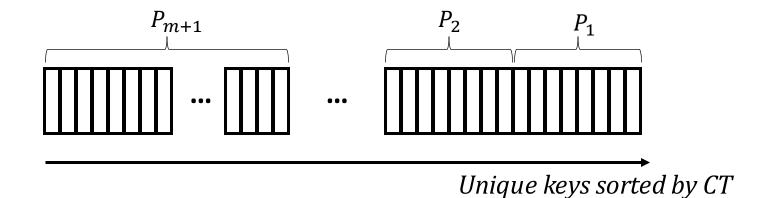
$$O(B^2 \cdot n^2) \Rightarrow O(n^2 \cdot B \cdot \log B)$$

Divisibility

$$O(n^2 \cdot B \cdot \log B) \Rightarrow O(n^2 \cdot \log B / B)$$

Consecutiveness

Theorem 1 Given an arbitrary sorted CT array, there is an optimal partitioning $P_{opt} = \langle P_1, P_2, ..., P_{m+1} \rangle$ where for any $i_1 \leq i_2$, if $i_1 \in P_j$ and $i_2 \in P_j$, we have $i \in P_j$ for any $i \in [i_1, i_2]$.



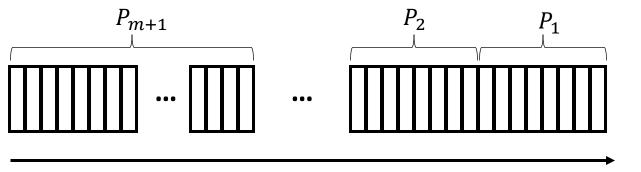
Index i	Frequency in S
1	1
n-1	77
n	100

Correlation Table (CT)

Monotonicity

Theorem 2 Given an arbitrary sorted CT array, there is an optimal partitioning $P_{opt} = \langle P_1, P_2, ..., P_{m+1} \rangle$ from Theorem 1 where $\left[\frac{||R_{m+1}||}{B-2}\right] \geq \left[\frac{||R_m||}{B-2}\right] \geq \cdots \geq \left[\frac{||R_2||}{B-2}\right] \geq \left[\frac{||R_1||}{B-2}\right]$.

 R_j is a group of records from relation R while P_j is a group of keys



Unique keys sorted by CT

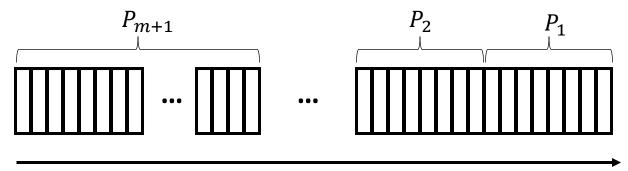
Index i	Frequency in S
1	1
•••	
n-1	77
n	100

Correlation Table (CT)

Divisibility

Theorem 3 Given an arbitrary sorted CT array, there is an optimal partitioning $P_{opt} = \langle P_1, P_2, ..., P_{m+1} \rangle$ from Theorem 2 where $||R_j||$ is divisible by B-2 for $j \in [2, m]$.

$$\left\lceil \frac{||R_{m+1}||}{B-2} \right\rceil \ge \left\lceil \frac{||R_m||}{B-2} \right\rceil \ge \dots \ge \left\lceil \frac{||R_2||}{B-2} \right\rceil \ge \left\lceil \frac{||R_1||}{B-2} \right\rceil$$
from Theorem 2



Unique keys sorted by CT

Index i	Frequency in S
1	1
n-1	77
n	100

Correlation Table (CT)

Practical Challenges for OCAP

1. We cannot have the whole CT in practice

Index i	Frequency in S
1	1
10M	1000

2. Partitioning assignment also occupies memory_P = $\begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}_{n \times (m+1)}$

Inspirations from OCAP

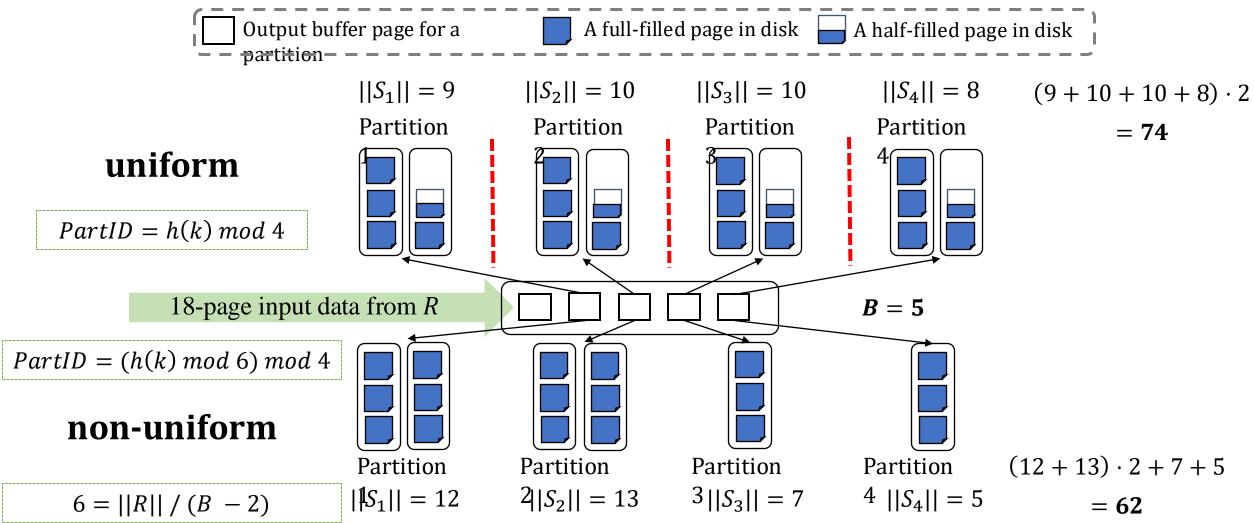
Consecutiveness and Monotonicity: $\left\lceil \frac{||R_{m+1}||}{B-2} \right\rceil \ge \cdots \ge \left\lceil \frac{||R_1||}{B-2} \right\rceil$ for sorted CT

⇒ We can prioritize MCVs in *two* ways: build an in-memory hash table (if B is large) or assign them into a small partition on disk (if B is small)

Divisibility: On-disk partitions should be mostly divisible by B-2

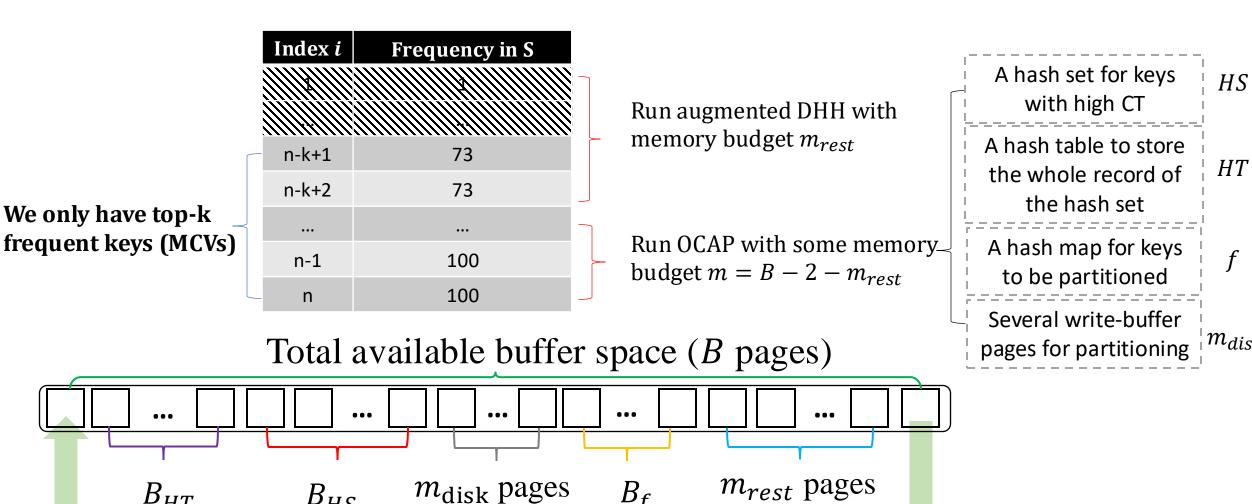
 \Rightarrow We should ensure on-disk partitions fulfill $z \cdot (B-2)$ pages $(z \in Z^+)$

Divisibility when Partitioning Data on Disk



One for input

Prioritizing MCVs with Constrained Memory



(the rest of keys)

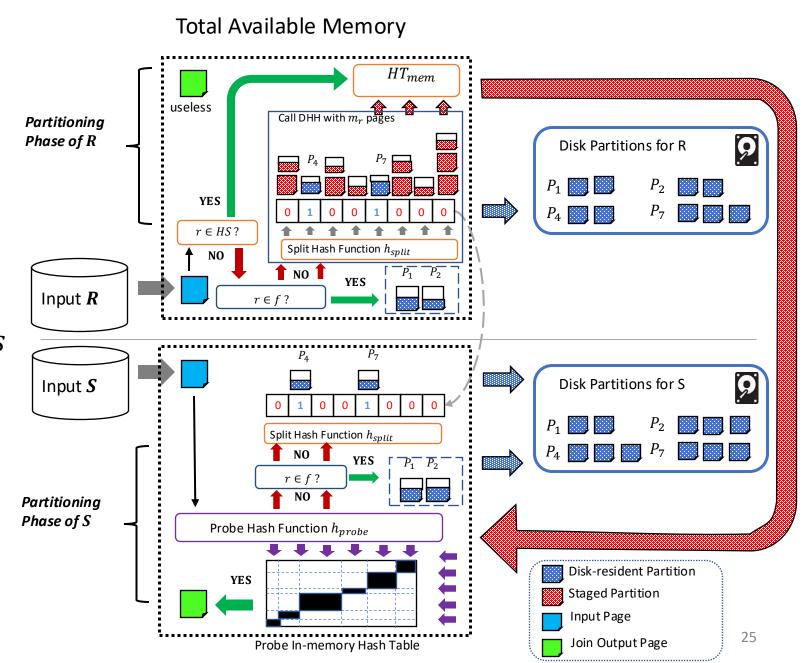
One for output

NOCAP

Partitioning Workflow:

OCAP for top-k' frequent keys

DHH to partition the rest



Experiment Setup

Storage: PCIe P4510 SSD

Measured read/write symmetry:

random_write_latency/sequential_read_latency = 3.3

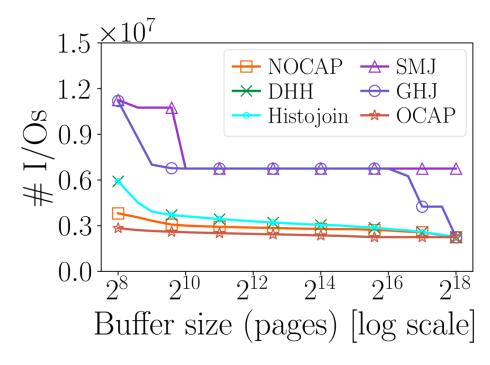
sequential_write_latency/sequential_read_latency = 3.2

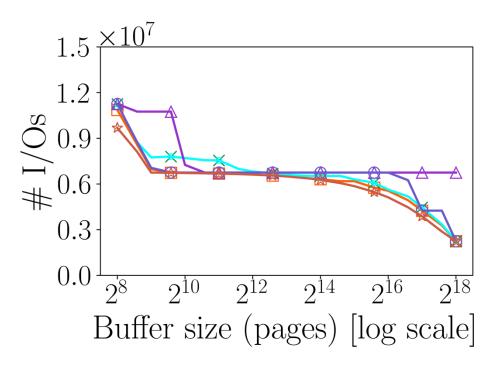
PK-FK join input size: 1M #records join with 8M #records

Record size: 1KB per record

Page size: 4KB

Selected Experimental Results



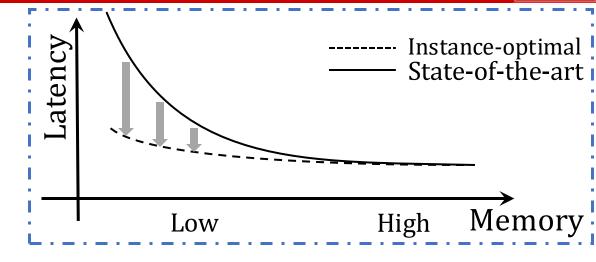


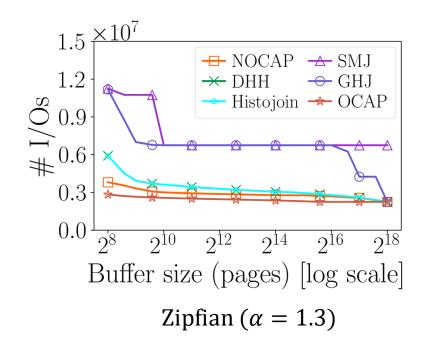
Zipfian ($\alpha =$

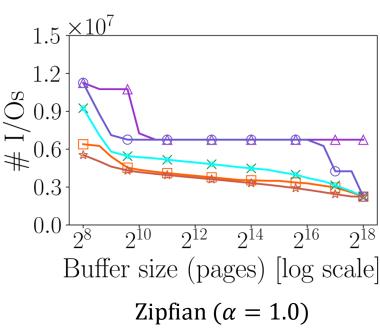
Uniform

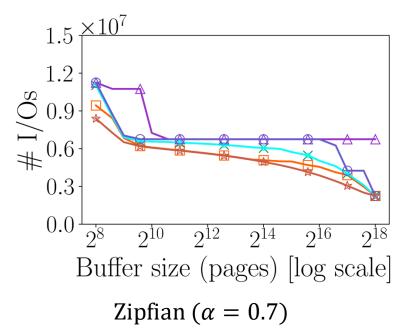
Correlation-aware joins (**DHH**, **Histojoin**, **and NOCAP**) can **adaptively** reduce I/O cost when it comes to a **skew** distribution.

Varying skew









28

While DHH helps reduce #I/Os, **NOCAP** can better exploit the correlation skew to **achieve even lower I/O cost**.

Other datasets (JCC-H and JOB)

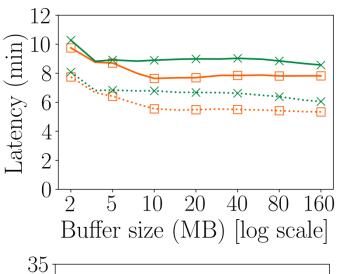
JCC-H SF=10 (Tuned Skew) with Revised Q12

JOB (cast_info ⋈ title) (min)

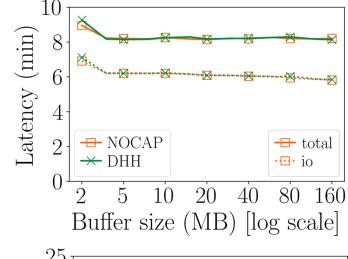
Latency

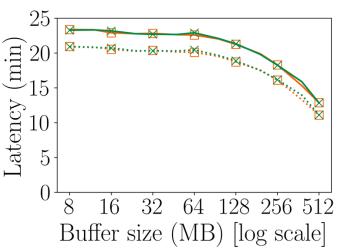
25

15



Buffer size (MB) [log scale]





JCC-H SF=10 (Original Skew) with Revised Q12

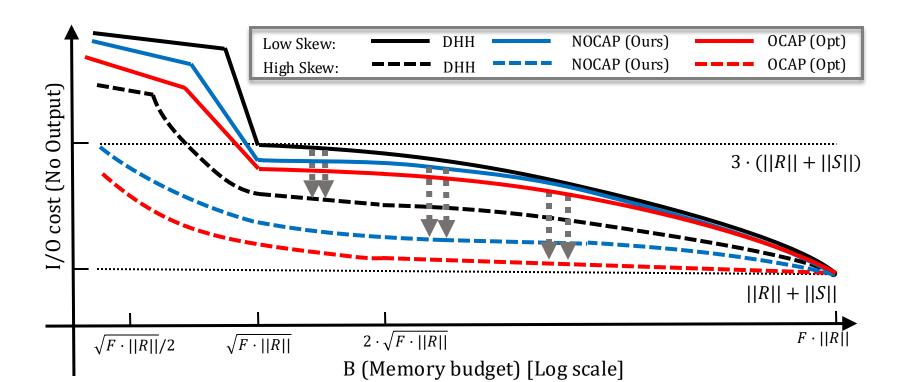
JOB (cast_info ⊠name)

While DHH occasionally performs as close as NOCAP, **NOCAP** is more adaptive when the

128 256 512

Summary of NOCAP

NOCAP join outperforms DHH by up to 30%, and the textbook GHJ by up to 4X. Even for uniform distribution, NOCAP outperforms DHH by up to 10%!



CS 561: Data Systems Architectures

Class 18

Correlation-Aware Partitioning for Joins

Manos Athanassoulis

https://bu-disc.github.io/CS561/