
Pixels-Turbo
A Cloud-Based Query Engine for Elastic Data Analytics

Jingzhi Yan, Noah Picarelli-Kombert, Jinpeng Huang,
Kathlyn Sinaga, Zhiyuan Chen, David Lee

Coordinator Cloud Object
Storage

KV / RDB
(metadata)

Starling

CF Workers

CF Service

Pixels-Turbo

VM Workers

Auto-scaling VM cluster

Background

Storage

Cloud Data Lakes
● Decoupled storage and query execution

● Storage systems manage files

○ Table Managers can read, write, and cache data

● Query engines execute queries statelessly

● Connectors provides metadata from storage to query engines

along with some optimizations

○ Operation pushdown: moves data processing closer to the

source (Connector) to reduce retrievals

○ Compressed data direct computing also gives speedups

Query
Engine

Connector

Scan

Metadata

Table Manager

Scan

M
etadata

Background | Cloud Data Lakes

Query Services of a Data Lake
● Previously, cloud users use virtual machines (VMs) to run queries

○ Maintenance cost for these VMs took a large portion of the total cost

● Solution: cloud providers developed serverless query services

○ Users only pay for executed queries instead of a whole VM

○ Cloud providers maintain the processing cluster for the user

Query Services of a Data Lake

Background | Cloud Data Lakes

Cloud Functions (CF)
● A category of serverless computing service

● Individual functions are uploaded to a shared cloud server and executed

independently

○ Invoked, executed, and billed individually

○ No direct communication between functions

Background | Cloud Functions

Cloud Functions
vs.

Virtual Machines

Query Latency on TPC-H
CF-based query engines

Pure-VM has the best query latency compared to CF-based query engines because
of higher I/O bandwidth and an efficient massively parallel processing (MPP) cluster.

CFs vs. VMs | Query Latency

Monetary Cost on TPC-H

Pure-VM is 1-2 orders of magnitude more cost-efficient compared to CF solutions. CFs
accumulate an additional cost on S3 requests, but optimizations can lower this cost.

CF-based query engines

CFs vs. VMs | Cost

Scalability: Speedup vs. Memory capacities

Systems designed for clusters with inter-node communication (Pure-VM and
Redshift-SL) have better scalability when not affected by the sub-optimal query plan.

CFs vs. VMs | Scalability

Cloud Function vs. Virtual Machine

Cloud Function Virtual Machine

Resources Limited size Scalable

Storage No persistent storage High persistent storage

Startup Time Very fast Slow

Elasticity High Low

Execution Time Short-lived, limited long-lived

Billing Charged per invocation Charged per unit time

CFs vs. VMs | Summary

Motivation

The Problem
● Modern workloads require

○ Continuous service
○ The ability to adjust to spikes

in demand during peak hours
● We want a system that is

○ Cost-efficient for continuous
workloads

○ Elastic enough to effectively
handle sudden spikes in
workloads

○ Highly scalable

Motivation | The Problem

● Pure CF-based system still costs more than a pure VM-based system for a sustained, dynamic

workload

● Hybrid achieves a lower cumulative cost

Cost Comparisons on a Dynamic Workload

Workload spikesPure VM-based

Motivation | Envisioned Goal

Architecture

CF Workers

VM Workers

Cloud Object
Storage (S3)

Coordinator

KV / RDB
(metadata)

Query

Response
Auto-scaling VM cluster

CF Service

● The only long-running component
○ It can run in a small VM

● Responsibilities
1. Metadata management

■ Stored in Key-value (KV) stores
or relational databases (RDB)

2. Coordinate the auto-scaling
framework

a. Parsing and scheduling queries,
metrics collection

3. Return query results to users

The Coordinator

Coordinator

KV / RDB
(metadata)

Query

Add sub-plan to
CF queue

Add top-level plan or
whole plan to VM queueResponse

Return query
result

CF Workers

VM Workers

Auto-scaling VM cluster

CF service

Architecture | Coordinator

Cloud Storage
● Cloud storage contains the tables to

be queried
○ Accessible to all VMs and CFs

● Cloud storage is also used as the
communication medium for CFs

○ CFs cannot directly
communicate with each other

○ Execution dependencies are
handled by CFs writing/reading
intermediates from storage

Cloud Object Storage
(S3)

CF Workers

VM Workers

Auto-scaling VM cluster

CF Service

Read base tables

Read base tables
& intermediates

Write
intermediates

Architecture | Cloud Storage

Auto-scaling VM Cluster
● Auto-framework to add (scale-out) or remove (scale-in) VMs consists of three parts

● Metrics Collector: collects information on incoming workload and VM statuses

○ Runs in the coordinator

● Scaling Manager: makes scaling decisions

○ Primary metric: concurrent queries (user-defined)

○ Active scale-out: eagerly increase VM clusters to reduce CF usage

○ Lazy scale-in: delay scale-in actions

● Scaling Utils: tools to perform scaling actions

○ Composed of the OS image and VM template, the launch script, and

termination script

Architecture | Auto-scaling VM Cluster

VM
#1

VM Cluster

VM
#2

VM
#3

VM
#4

Scale-
out!

Active Scale-out

Scale-out actions can occur every five seconds, but
scale-in actions only occur every five minutes. These
periods are configurable.

Scale-out
threshold

Architecture | Auto-scaling VM Cluster

VM
#1

VM Cluster

VM
#2

VM
#3

VM
#4

Lazy Scale-in

Scale-in threshold Scale-i
n!

Scale-out actions can occur every five seconds, but
scale-in actions only occur every five minutes. These
periods are configurable.

Architecture | Auto-scaling VM Cluster

Query Execution

VM Workers

Cloud Object
Storage (S3)

Coordinator

KV / RDB
(metadata)

Query

Response
Auto-scaling VM cluster

Read base tables

Add the whole query
plan to VM queue

Return
query result

VM cluster is not
full.

Query Execution when
the VM queue is not full.

CF Workers
(Not Called)

CF Service

VM Workers

Cloud Object
Storage (S3)

Coordinator

KV / RDB
(metadata)

Query

Response
Auto-scaling VM cluster

CF Workers

CF Service

Consume
sub-plan results

Read base tables
& intermediates

Write
intermediates

Add sub-plan
to CF queue

Add top-level plan to
VM queue

Return
query result

Query Execution when the
VM queue is full.

Read base tables

VM cluster is full!
Invoke CF workers and

possibly scale-out.

Sub-plan Operations in
Cloud Functions

Table Scans
● Coordinator creates splits containing

metadata and row partitions

● If VMs are used, splits are sent to VMs,

which each process the query on given

splits over multiple threads

○ VMs can use a file format library

to directly scan the partitions in

the splits

● If CFs are used, they must process the

selections and projections on the

partitions before scanning

Coordinator

Table

MetadataSplits

VM
#1

VM
#2

VM
#3

VM
#4

VM
#5

VM ClusterSub-plan Operations | Table Scans

Table Scans
● Coordinator creates splits containing

metadata and row partitions

● If VMs are used, splits are sent to VMs,

which each process the query on given

splits over multiple threads

○ VMs can use a file format library

to directly scan the partitions in

the splits

● If CFs are used, they must process the

selections and projections on the

partitions before scanning

Coordinator

MetadataSplits

CF
#1

CF
#2

CF
#3

CF
#4

CF
#5

VM
#1

VM
#2

VM
#3

VM
#4

VM
#5

Direct write-back: bypass S3

Sub-plan Operations | Table Scans

Joins

Coordinator

Query

Query
top-plan

Query
sub-plan

Reorder joins
for optimization

Table scansJoins in opt. order
Connector

Cloud Object
Storage (data)

VM Workers

CF Workers

Joined table

Direct write-back
joined table

Scan tables to
the connector

Sub-plan Operations | Joins

Broadcast Joins

Big
Table

Small
Table

Tables to join:

CF Worker

Hash
Function

Hash
Table

Joined
Table

Probe
hash
table

Matching
row

Row Join

Sub-plan Operations | Joins

Shuffling

m producers

n consumers

each producer
output
m partitions

Standard Shuffle Introducing Combiners

Problem: S3 Throttling Trades higher I/O for better load balancing and lower
per-consumer stress on S3

Sub-plan Operations | Joins

Hash Partitioned Joins

Hash
on Join

Key

customer_id

Table A (Orders)

customer_id

Table B (Customers)

Hash
on Join

Key

Consumer 0

Consumer N - 1

Final
Joined
Table

Hash
Table

probes

Sub-plan Operations | Joins

Partition 0
(Orders)

Partition N - 1
(Customers)

Partition N - 1
(Orders)

Partition 0
(Customers)

S3 Storage

Chain Join: Bypass S3

Region Nation

Join (B) Supplier

Join (B)

Join (B)

Customer Order

Join (P)

Shuffle

Join (P)

Lineitem

Shuffle

Same
Chain

Different
Join

Takes the result of
a large join

Larger Tables

B: Broadcast join
P: Hash partitioned join

Sub-plan Operations | Joins

Direct Aggregation

CF
#1

CF
#2

CF
#N

CF
...

CF
…

S3 Storage

● The coordinator pushes aggregations
after table scans and joins

● Two stages
○ Stage One: use a set of CFs to

create partial aggregates
○ Stage Two: use another CF to

combine the partial aggregates into
one final aggregate

● Stage one could be merged with a
previous operator (similar to chaining)

● Direct aggregation is possible only with
sufficiently small aggregates

Stage 1

CF Worker

Final Aggregate Result

Stage 2

Partial
aggregates

Sub-plan Operations | Aggregation

Shuffled Aggregation: Starling
● Used for larger aggregates
● Three stages

○ Shuffle stage: Partition based on
the .group by. key

○ Stage 1: Generate partial
aggregates

○ Stage 2: Combine partial
aggregates

● Weakness: generates a large amount of
intermediate data, which increase
intermediate I/O

Sub-plan Operations | Aggregation

CF
#1

CF
#2

CF
#3

S3 Storage

Shuffle
Stage

S3 Storage

CF

Final Aggregate Result

Stage 2

CF
#1

CF
#2

CF
#3 Stage 1

S3 Storage

* different colors signify different group by keys

Shuffled Aggregation:
Pixels-Turbo

● Late Shuffling: postpone the shuffling
stage

● Three stages
○ Stage 1: Generate partial

aggregates
○ Shuffle stage: Partition based on

the .group by. key
○ Stage 2: Combine partial

aggregates
● Since partial aggregates are much

smaller, we reduce intermediate I/Os

Sub-plan Operations | Aggregation

CF
#1

CF
#2

CF
#3 Stage 1

CF
#1

CF
#2

CF
#3

Shuffle
Stage

CF

Final Aggregate Result

Stage 2

Partial
aggregates

* different colors signify different group by keys

Implementation Optimizations

● Zero Materialization: row batches are read from files and are directly used to
create aggregates by storing them with intra-row offset values
○ No temporary tuples need to be materialized; lower memory footprint and

reduced garbage collection

● Vectorized Filtering and Hashing: selection predicates are vectorized to form
bitmaps for faster column filtering
○ Vectorization is also used to generate row batch key hashes

● Early projection: unnecessary columns such as join keys are cut from joins early on
to save on I/O and encoding/decoding

Sub-plan Operations | Implementation Optimizations

Implementation Optimizations

● Asynchronous Invocation: AWS Lambda allows asynchronous invocations; many

CFs can be created simultaneously

○ In contrast to organizing multiple levels of invocation

● Direct write-back: CFs can return scan results directly to a VM instead of writing to

shared storage

○ VM addresses are attached to CF tasks

○ CFs can access server endpoints in the same way as storage locations

Sub-plan Operations | Implementation Optimizations

Finding Optimal Settings for
Tuning Knobs in CFs

Size of CF Instances

● Use the largest permitted size for the CF instance

○ Larger CF instances result in fewer CFs

○ Executor runtime has a constant memory overhead, so larger instances tend to be

more memory efficient

○ Testing suggests that the largest instances perform the best and result in the

lowest cost

Optimal Settings | CF Size

Split Size on Base Tables

S
s
 = split size

cap
sb

 = cap on number of bytes to read from a split

cap
sr

 = cap on number of filtered rows per split

g = number of row groups in the table

C = set of columns to read

chunk_size = average size of column chunks

S
r
 = filtered rows on the tables

● The split size determines
parallelism for operators that read
base tables

● capsb and capsr ensures CF workers will
not block on I/O or CPU or fail on
out-of-memory (OOM) errors

Optimal Settings | Split Size

Join Algorithm Selection
● Broadcast tables are limited by bytes

(capbb) and number of rows (capbr)
○ capbb controls reading and decoding cost

of the broadcast table
○ capbr controls building cost and collision

rate

● Joint selectivity is estimated since we
don’t have histograms

○ Selectivity may be overestimated, but it
avoids broadcasting oversized tables

S
b
 = hash table size (bytes)

S
r
 = hash table size (rows)

C = columns to read

n = table row count

C
p
 = predicate columns

Optimal Settings | Join Algorithm Selection

Number of partitions for shuffle-based operators
● Any shuffle-based operation requires calculating the number of partitions

● Hash partitioned join
○ Partition size is limited by bytes (cappb) and number of rows (cappr)

Pj = number of partitions for joins
Sb1, Sb2 = size of two tables (bytes)
Sr1, Sr2 = size of two tables (rows)
𝛂 = speed ratio of hashing building and hash probing
cappb = partition size cap (bytes)
cappr = partition size cap (rows)

Optimal Settings | Number of Partitions

Number of partitions for shuffle-based operators
● Aggregation

○ Number of aggregation partitions relies on the size of the aggregates,
which rely on the group-by key cardinality

Dg = joint cardinality of group-by keys
Cg = set of group-by key columns
Pa = number of partitions for aggregation
capar = max rows per partition in aggregation

Optimal Settings | Number of Partitions

Evaluation

Experiment Workload Patterns

1. One spike + immediate drop to zero

2. Consecutive spikes where the interval is shorter than the delayed period for scaled-in

3. Consecutive spikes where the interval is slightly longer than delayed period

4. Two overlapping spikes

Pattern 2 Pattern 3 Pattern 4

Q
ue

ry
 T

hr
ou

gh
pu

t

Time

W1

W2

W3

Pattern 1

Experimental Results | Workload Patterns

Experimental Results: Pattern 1
Q

ue
ry

 T
hr

ou
gh

pu
t

Time

Experimental Results | Monetary Cost

Q
ue

ry
 T

hr
ou

gh
pu

t

Time

Experimental Results: Pattern 2

Experimental Results | Monetary Cost

Experimental Results: Pattern 3
Q

ue
ry

 T
hr

ou
gh

pu
t

Time

Experimental Results | Monetary Cost

Experimental Results: Pattern 4
Q

ue
ry

 T
hr

ou
gh

pu
t

Time

Experimental Results | Monetary Cost

Experimental
Results:
Monetary Cost

Experimental Results | Monetary Cost

Monetary Cost
● The hybrid system is capable of

scaling to zero

● When consecutive spikes are

close enough in time, the CFs of

the first spike are reused for the

second

● When the workload repeatedly

experiences building spikes, the

hybrid cost repeatedly spikes as

well

Query Latency

● Hybrid provides lower query latency than auto-scalable baselines (Athena, Pure-CF) in all cases

because most queries are processed in the VM cluster.

● Pure-VM is faster than Hybrid in all cases.
○ Redshift and Pure-VM were provisioned for spikes at an increased monetary and operational cost

Experimental Results | Query Latency

Discussion

Is monetary cost the only benefit to
Pixels-Turbo?

Pure-VM was
overprovisioned.

Why are operations pushed down to sub-plans
more expensive if VMs have higher query latency?

CF-based query engines

CFs should support VMs

Coordinator Cloud Object
Storage

CF Workers

Pixels-Turbo

VM Workers

KV / RDB
(metadata)

CFs are charged per invocation.

Expensive Query

CF Invocation

Sub-plan Query Execution

How does the system handle cases where network instability
or limited I/O performance could affect sub‐plan execution?

Solution proposed by Starling: Read Straggler Mitigation
(RSM) and Write Straggler Mitigation (WSM)

r: expected response time
b: number of bytes requested
c: number of concurrent readers
l: latency of CF service
t: throughput of CF service

What is the benefit
of adding
combiners?

It reduces the cost, even with extra writes.

m: number of producers
n: number of consumers
p: fraction of partitions each combiner reads
f: fraction of files each combiner reads

● Shuffling: add combiners to mitigate S3 throttling
● Direct write-back: avoid an extra read/write to S3 by sending results directly to VMs
● Chain Join: avoid S3 by sequentially processing joins in the same CF group
● Direct Aggregation: combine the first stage with a previous operation if possible to avoid S3

If accessing S3 (cloud storage) costs so much,
what about adding network connections to
CFs?

Pixels-Turbo seems to be very complicated.
What are the benefits of all the optimizations it
is adding?

Pixels-Turbo seems to be stuck to specific
services, is it worth adopting?

Treat Pixels-Turbo as a framework.

Coordinator Cloud Object
Storage

CF Workers

VM Workers

KV / RDB
(metadata)

Query

Response

