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Background



Storage

Cloud Data Lakes
● Decoupled storage and query execution

● Storage systems manage files

○ Table Managers can read, write, and cache data

● Query engines execute queries statelessly 

● Connectors provides metadata from storage to query engines 

along with some optimizations

○ Operation pushdown: moves data processing closer to the 

source (Connector) to reduce retrievals 

○ Compressed data direct computing also gives speedups
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Background | Cloud Data Lakes



Query Services of a Data Lake
● Previously, cloud users use virtual machines (VMs) to run queries 

○ Maintenance cost for these VMs took a large portion of the total cost

● Solution: cloud providers developed serverless query services 

○ Users only pay for executed queries instead of a whole VM

○ Cloud providers maintain the processing cluster for the user



Query Services of a Data Lake

Background | Cloud Data Lakes



Cloud Functions (CF)
● A category of serverless computing service

● Individual functions are uploaded to a shared cloud server and executed 

independently 

○ Invoked, executed, and billed individually

○ No direct communication between functions

Background | Cloud Functions



Cloud Functions 
vs. 

Virtual Machines 



Query Latency on TPC-H
CF-based query engines

Pure-VM has the best query latency compared to CF-based query engines because 
of higher I/O bandwidth and an efficient massively parallel processing (MPP) cluster.

CFs vs. VMs | Query Latency



Monetary Cost on TPC-H

Pure-VM is 1-2 orders of magnitude more cost-efficient compared to CF solutions. CFs 
accumulate an additional cost on S3 requests, but optimizations can lower this cost.

CF-based query engines

CFs vs. VMs | Cost



Scalability: Speedup vs. Memory capacities

Systems designed for clusters with inter-node communication (Pure-VM and 
Redshift-SL) have better scalability when not affected by the sub-optimal query plan. 

CFs vs. VMs | Scalability



Cloud Function vs. Virtual Machine

Cloud Function Virtual Machine

Resources Limited size Scalable

Storage No persistent storage High persistent storage

Startup Time Very fast Slow

Elasticity High Low

Execution Time Short-lived, limited long-lived

Billing Charged per invocation Charged per unit time

CFs vs. VMs | Summary



Motivation



The Problem
● Modern workloads require 

○ Continuous service 
○ The ability to adjust to spikes 

in demand during peak hours
● We want a system that is

○ Cost-efficient for continuous 
workloads

○ Elastic enough to effectively 
handle sudden spikes in 
workloads

○ Highly scalable

Motivation | The Problem



● Pure CF-based system still costs more than a pure VM-based system for a sustained, dynamic 

workload

● Hybrid achieves a lower cumulative cost

Cost Comparisons on a Dynamic Workload

Workload spikesPure VM-based

Motivation | Envisioned Goal



Architecture
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● The only long-running component 
○ It can run in a small VM

● Responsibilities
1. Metadata management

■ Stored in Key-value (KV) stores 
or relational databases (RDB)

2. Coordinate the auto-scaling 
framework

a. Parsing and scheduling queries, 
metrics collection

3. Return query results to users

The Coordinator
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Query

Add sub-plan to 
CF queue

Add top-level plan or 
whole plan to VM queueResponse

Return query 
result

CF Workers
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Architecture | Coordinator



Cloud Storage
● Cloud storage contains the tables to 

be queried
○ Accessible to all VMs and CFs

● Cloud storage is also used as the 
communication medium for CFs

○ CFs cannot directly 
communicate with each other

○ Execution dependencies are 
handled by CFs writing/reading 
intermediates from storage
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VM Workers

Auto-scaling VM cluster 
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Architecture | Cloud Storage



Auto-scaling VM Cluster 
● Auto-framework to add (scale-out) or remove (scale-in) VMs consists of three parts

● Metrics Collector: collects information on incoming workload and VM statuses

○ Runs in the coordinator 

● Scaling Manager: makes scaling decisions

○ Primary metric: concurrent queries (user-defined)

○ Active scale-out: eagerly increase VM clusters to reduce CF usage 

○ Lazy scale-in: delay scale-in actions 

● Scaling Utils: tools to perform scaling actions

○ Composed of the OS image and VM template, the launch script, and 

termination script

Architecture | Auto-scaling VM Cluster
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Active Scale-out

Scale-out actions can occur every five seconds, but 
scale-in actions only occur every five minutes. These 
periods are configurable.

Scale-out 
threshold

Architecture | Auto-scaling VM Cluster
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Lazy Scale-in

Scale-in threshold Scale-i
n!

Scale-out actions can occur every five seconds, but 
scale-in actions only occur every five minutes. These 
periods are configurable.

Architecture | Auto-scaling VM Cluster



Query Execution
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Sub-plan Operations in 
Cloud Functions



Table Scans
● Coordinator creates splits containing 

metadata and row partitions

● If VMs are used, splits are sent to VMs, 

which each process the query on given 

splits over multiple threads

○ VMs can use a file format library 

to directly scan the partitions in 

the splits

● If CFs are used, they must process the 

selections and projections on the 

partitions before scanning
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MetadataSplits

VM
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VM ClusterSub-plan Operations | Table Scans



Table Scans
● Coordinator creates splits containing 

metadata and row partitions

● If VMs are used, splits are sent to VMs, 

which each process the query on given 

splits over multiple threads

○ VMs can use a file format library 

to directly scan the partitions in 

the splits

● If CFs are used, they must process the 

selections and projections on the 

partitions before scanning
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Direct write-back: bypass S3

Sub-plan Operations | Table Scans



Joins

Coordinator
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Sub-plan Operations | Joins



Broadcast Joins
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Sub-plan Operations | Joins



Shuffling

m producers

n consumers

each producer 
output 
m partitions

Standard Shuffle Introducing Combiners

Problem: S3 Throttling Trades higher I/O for better load balancing and lower 
per-consumer stress on S3

Sub-plan Operations | Joins



Hash Partitioned Joins

Hash 
on Join 

Key

customer_id

Table A (Orders)

customer_id

Table B (Customers)

Hash 
on Join 

Key

Consumer 0

Consumer N - 1

Final 
Joined 
Table

Hash 
Table

probes

Sub-plan Operations | Joins
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Chain Join: Bypass S3

Region Nation

Join (B) Supplier

Join (B)
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Sub-plan Operations | Joins



Direct Aggregation
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● The coordinator pushes aggregations 
after table scans and joins

● Two stages
○ Stage One: use a set of CFs to 

create partial aggregates  
○ Stage Two: use another CF to 

combine the partial aggregates into 
one final aggregate

● Stage one could be merged with a 
previous operator (similar to chaining)

● Direct aggregation is possible only with 
sufficiently small aggregates

Stage 1

CF Worker

Final Aggregate Result 

Stage 2

Partial 
aggregates

Sub-plan Operations | Aggregation



Shuffled Aggregation: Starling
● Used for larger aggregates
● Three stages

○ Shuffle stage: Partition based on 
the .group by. key

○ Stage 1: Generate partial 
aggregates 

○ Stage 2: Combine partial 
aggregates

● Weakness: generates a large amount of 
intermediate data, which increase 
intermediate I/O

Sub-plan Operations | Aggregation
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Shuffled Aggregation: 
Pixels-Turbo

● Late Shuffling: postpone the shuffling 
stage 

● Three stages
○ Stage 1: Generate partial 

aggregates 
○ Shuffle stage: Partition based on 

the .group by. key
○ Stage 2: Combine partial 

aggregates
● Since partial aggregates are much 

smaller, we reduce intermediate I/Os

Sub-plan Operations | Aggregation
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Implementation Optimizations

● Zero Materialization: row batches are read from files and are directly used to 
create aggregates by storing them with intra-row offset values
○ No temporary tuples need to be materialized; lower memory footprint and 

reduced garbage collection

● Vectorized Filtering and Hashing: selection predicates are vectorized to form 
bitmaps for faster column filtering
○ Vectorization is also used to generate row batch key hashes

● Early projection: unnecessary columns such as join keys are cut from joins early on 
to save on I/O and encoding/decoding

Sub-plan Operations | Implementation Optimizations



Implementation Optimizations

● Asynchronous Invocation: AWS Lambda allows asynchronous invocations; many 

CFs can be created simultaneously

○ In contrast to organizing multiple levels of invocation

● Direct write-back: CFs can return scan results directly to a VM instead of writing to 

shared storage

○ VM addresses are attached to CF tasks

○ CFs can access server endpoints in the same way as storage locations

Sub-plan Operations | Implementation Optimizations



Finding Optimal Settings for 
Tuning Knobs in CFs



Size of CF Instances

● Use the largest permitted size for the CF instance

○ Larger CF instances result in fewer CFs

○ Executor runtime has a constant memory overhead, so larger instances tend to be 

more memory efficient

○ Testing suggests that the largest instances perform the best and result in the 

lowest cost

Optimal Settings | CF Size



Split Size on Base Tables

S
s
 = split size

cap
sb

 = cap on number of bytes to read from a split

cap
sr

 = cap on number of filtered rows per split

g = number of row groups in the table

C = set of columns to read

chunk_size = average size of column chunks

S
r
 = filtered rows on the tables

● The split size determines 
parallelism for operators that read 
base tables 

● capsb and capsr ensures CF workers will 
not block on I/O or CPU or fail on 
out-of-memory (OOM) errors

Optimal Settings | Split Size



Join Algorithm Selection
● Broadcast tables are limited by bytes 

(capbb) and number of rows (capbr)
○ capbb controls reading and decoding cost 

of the broadcast table
○ capbr controls building cost and collision 

rate

● Joint selectivity is estimated since we 
don’t have histograms 

○ Selectivity may be overestimated, but it 
avoids broadcasting oversized tables

S
b
 = hash table size (bytes)

S
r
 = hash table size (rows)

C = columns to read

n = table row count

C
p
 = predicate columns

Optimal Settings | Join Algorithm Selection



Number of partitions for shuffle-based operators
● Any shuffle-based operation requires calculating the number of partitions 

● Hash partitioned join 
○ Partition size is limited by bytes (cappb) and number of rows (cappr)

Pj = number of partitions for joins
Sb1, Sb2 = size of two tables (bytes)
Sr1, Sr2 = size of two tables (rows)
𝛂 = speed ratio of hashing building and hash probing
cappb = partition size cap (bytes)
cappr = partition size cap (rows)

Optimal Settings | Number of Partitions



Number of partitions for shuffle-based operators
● Aggregation

○ Number of aggregation partitions relies on the size of the aggregates, 
which rely on the group-by key cardinality 

Dg = joint cardinality of group-by keys
Cg = set of group-by key columns
Pa = number of partitions for aggregation
capar = max rows per partition in aggregation

Optimal Settings | Number of Partitions



Evaluation



Experiment Workload Patterns

1. One spike + immediate drop to zero

2. Consecutive spikes where the interval is shorter than the delayed period for scaled-in 

3. Consecutive spikes where the interval is slightly longer than delayed period

4. Two overlapping spikes

Pattern 2 Pattern 3 Pattern 4
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Experimental Results | Workload Patterns



Experimental Results: Pattern 1
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Experimental Results: Pattern 3
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Experimental 
Results: 
Monetary Cost

Experimental Results | Monetary Cost



Monetary Cost
● The hybrid system is capable of 

scaling to zero

● When consecutive spikes are 

close enough in time, the CFs of 

the first spike are reused for the 

second

● When the workload repeatedly 

experiences building spikes, the 

hybrid cost repeatedly spikes as 

well



Query Latency

● Hybrid provides lower query latency than auto-scalable baselines (Athena, Pure-CF) in all cases 

because most queries are processed in the VM cluster. 

● Pure-VM is faster than Hybrid in all cases.
○ Redshift and Pure-VM were provisioned for spikes at an increased monetary and operational cost

Experimental Results | Query Latency



Discussion



Is monetary cost the only benefit to 
Pixels-Turbo?



Pure-VM was 
overprovisioned.



Why are operations pushed down to sub-plans 
more expensive if VMs have higher query latency?

CF-based query engines



CFs should support VMs

Coordinator Cloud Object 
Storage

CF Workers

Pixels-Turbo

VM Workers

KV / RDB
(metadata)



CFs are charged per invocation. 

Expensive Query

CF Invocation

Sub-plan Query Execution



How does the system handle cases where network instability 
or limited I/O performance could affect sub‐plan execution?



Solution proposed by Starling: Read Straggler Mitigation 
(RSM) and Write Straggler Mitigation (WSM)

r: expected response time
b: number of bytes requested 
c: number of concurrent readers 
l: latency of CF service 
t: throughput of CF service



What is the benefit 
of adding 
combiners?



It reduces the cost, even with extra writes.

m: number of producers 
n: number of consumers 
p: fraction of partitions each combiner reads 
f: fraction of files each combiner reads



● Shuffling: add combiners to mitigate S3 throttling
● Direct write-back: avoid an extra read/write to S3 by sending results directly to VMs 
● Chain Join: avoid S3 by sequentially processing joins in the same CF group 
● Direct Aggregation: combine the first stage with a previous operation if possible to avoid S3

If accessing S3 (cloud storage) costs so much, 
what about adding network connections to 
CFs?



Pixels-Turbo seems to be very complicated. 
What are the benefits of all the optimizations it 
is adding? 



Pixels-Turbo seems to be stuck to specific 
services, is it worth adopting? 



Treat Pixels-Turbo as a framework.
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