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Auto-scaling VM cluster

Pixels: An Efficient Column Store for
Cloud Data Lakes
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Cloud Data Lakes

e Decoupled storage and query execution

Background | Cloud Data Lakes
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Query Services of a Data Lake

® Previously, cloud users use virtual machines (VMs) to run queries

e Solution: cloud providers developed serverless query services

o Maintenance cost for these VMs took a large portion of the total cost

o Users only pay for executed queries instead of a whole VM

o  Cloud providers maintain the processing cluster for the user
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Query Services of a Data Lake

Background | Cloud Data Lakes




Cloud Functions (CF)

e A category of serverless computing service
e Individual functions are uploaded to a shared cloud server and executed
independently
o Invoked, executed, and billed individually

o No direct communication between functions

Background | Cloud Functions







Query Latency on TPC-H

CF-based query engines
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Pure-VM has the best query latency compared to CF-based query engines because
of higher I/O bandwidth and an efficient massively parallel processing (MPP) cluster.

CFs vs. VMs | Query Latency




Monetary Cost on TPC-H

CF-based query engines
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Pure-VM is 1-2 orders of magnitude more cost-efficient compared to CF solutions. CFs
accumulate an additional cost on S3 requests, but optimizations can lower this cost.

CFs vs. VMs | Cost




Speedup
(compared to 1TB

CFs vs. VMs | Scalability
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(a) Scan queries.

Scalability: Speedup vs. Memory capacities
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(b) Join queries.
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Systems designed for clusters with inter-node communication (Pure-VM and
Redshift-SL) have better scalability when not affected by the sub-optimal query plan.




Cloud Function

Cloud Function vs. Virtual Machine

Virtual Machine
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The Problem
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*All time frames are recorded globally, meaning you should be able to publish with the times provided in any timezone and see positive engagement results.

Motivation | The Problem




Cost Comparisons on a Dynamic Workload
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® Pure CF-based system still costs more than a pure VM-based system for a sustained, dynamic
workload

e Hybrid achieves a lower cumulative cost

Motivation | Envisioned Goal







Auto-scaling VM cluster
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The Coordinator

e The only long-running component
o Itcanruninasmall VM

Architecture | Coordinator

Add top-level plan or
Response  \yhole plan to VM queue

Return query
result

Coordinator

~

KV /RDB Add sub-plan to
(metadata) CF queue

Auto-scaling VM cluster

VM Workers

CF Workers

=
=

CF service

<+




Auto-scaling VM cluster

Cloud Storage

Read base tables
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VM Workers
e Cloud storage contains the tables to
be queried

Cloud Object Storage
(S3)

Read base tables
& intermediates -~

v

CF Workers Write
intermediates

=
=

CF Service

Architecture | Cloud Storage




Auto-scaling VM Cluster

e Auto-framework to add (scale-out) or remove (scale-in) VMs consists of three parts

Architecture | Auto-scaling VM Cluster




Active Scale-out

Scale-
out!
Scale-out
1 threshold

Query Concurrency
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Scale-out actions can occur every five seconds, but
scale-in actions only occur every five minutes. These
periods are configurable.

Architecture | Auto-scaling VM Cluster




Lazy Scale-in

Scale-in threshold

Query Concurrency
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Scale-out actions can occur every five seconds, but VM Cluster
scale-in actions only occur every five minutes. These
periods are configurable.

Architecture | Auto-scaling VM Cluster







Add the whole query ~ Auto-scaling VM cluster

Response plan to VM queue
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Auto-scaling VM cluster

Response Add top-level plan to

Query Execution when the
VM queue

VM queue is full.
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Coordinator

Table Scans

Coordinator creates splits containing

metadata and row partitions

e If VMs are used, splits are sent to VMs,
which each process the query on given
splits over multiple threads

o  VMs can use a file format library

—— - — -

to directly scan the partitions in
the splits

Sub-plan Operations | Table Scans
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Sub-plan Operations | Joins
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Broadcast Joins

Tables to join:
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Shuffling

Standard Shuffle

m producers

each producer
output
m partitions

n consumers

Problem: S3 Throttling

Sub-plan Operations | Joins

Introducing Combiners
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Trades higher 1/O for better load balancing and lower
per-consumer stress on S3




Hash Partitioned Joins
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Chain Join: Bypass S3

B: Broadcast join

P: Hash partitioned join Join (B)
/\ Takes the result of
a large join
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Direct Aggregation

e The coordinator pushes aggregations
after table scans and joins

Stage 1

1 Partial
aggregates

S3 Storage

Stage 2

Final Aggregate Result
Sub-plan Operations | Aggregation




* different colors signify different group by keys

Shuffled Aggregation: Starling

S3 Storage

e Used for larger aggregates

Shuffle
Stage

S3 Storage

Stage 1

S3 Storage

Stage 2

Final Aggregate Result
Sub-plan Operations | Aggregation




* different colors signify different group by keys

Shuffled Aggregation:
Pixels-Turbo

e Late Shuffling: postpone the shuffling Stage 1
stage

Partial
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Shuffle

Stage
Stage 2

Final Aggregate Result
Sub-plan Operations | Aggregation




Implementation Optimizations

Sub-plan Operations | Implementation Optimizations




Implementation Optimizations

Sub-plan Operations | Implementation Optimizations







Size of CF Instances

e Use the largest permitted size for the CF instance
o Larger CF instances result in fewer CFs
o Executor runtime has a constant memory overhead, so larger instances tend to be
more memory efficient
o  Testing suggests that the largest instances perform the best and result in the
lowest cost

Optimal Settings | CF Size




Capsp g - Capsy

S, = min - ,
> “eC chunk_size(c;) Sy

S, = split size

cap,, = cap on number of bytes to read from a split
cap,, = cap on number of filtered rows per split

g = number of row groups in the table

C = set of columns to read

chunk_size = average size of column chunks

S, = filtered rows on the tables

Optimal Settings | Split Size

Split Size on Base Tables

The split size determines

parallelism for operators that read
base tables

cap,, and cap_ ensures CF workers will
not block on 1/0 or CPU or fail on
out-of-memory (OOM) errors




Join Algorithm Selection

Sy = Z size(c;) e Broadcast tables are limited by bytes
GeC (cap,,) and number of rows (cap, )
S, =n- min selectim;ty(ci) o cap,, controls reading and decoding cost
a€Cyp of the broadcast table
o cap,, controls building cost and collision
S, = hash table size (bytes) rate

S =hash table si . C . .
= hash table size (rows) e Joint selectivity is estimated since we

don’t have histograms
o Selectivity may be overestimated, but it
avoids broadcasting oversized tables

C = columns to read
n = table row count

Cp = predicate columns

Optimal Settings | Join Algorithm Selection




Number of partitions for shuffle-based operators

® Any shuffle-based operation requires calculating the number of partitions
e Hash partitioned join
o Partition size is limited by bytes (cap ) and number of rows (cap )

Sb1+Sb2 S,l+a-Sr2)
cappy, cappr

Pj=ma.x(

P. = number of partitions for joins

S, 1+ Sy, = size of two tables (bytes)

S,., S, = size of two tables (rows)

o = speed ratio of hashing building and hash probing
cap,, = partition size cap (bytes)

cap,, = partition size cap (rows)

Optimal Settings | Number of Partitions




Number of partitions for shuffle-based operators

e Aggregation
o Number of aggregation partitions relies on the size of the aggregates,
which rely on the group-by key cardinality

Dg = m%xcardinality(ci) D, = joint cardinality of group-by keys

e C, = set of group-by key columns
P Dg P_ = number of partitions for aggregation
‘ CaPqy cap,, = max rows per partition in aggregation

Optimal Settings | Number of Partitions
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Query Throughput

Experimental Results | Monetary Cost
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Experimental Results: Pattern 2
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Experimental Results: Pattern 3
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Experimental Results: Pattern 4
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Monetary Cost

® The hybrid system is capable of
scaling to zero

e When consecutive spikes are
close enough in time, the CFs of
the first spike are reused for the
second

e When the workload repeatedly
experiences building spikes, the
hybrid cost repeatedly spikes as

well
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Fig. 9. Monetary cost per minute of the workload patterns.




Query Latency
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Fig. 10. Average query latency of the workload patterns.

e Hybrid provides lower query latency than auto-scalable baselines (Athena, Pure-CF) in all cases
because most queries are processed in the VM cluster.

® Pure-VM is faster than Hybrid in all cases.
o Redshift and Pure-VM were provisioned for spikes at an increased monetary and operational cost

Experimental Results | Query Latency
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s monetary cost the only benefit to
Pixels-Turbo?
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Fig. 10. Average query latency of the workload patterns.




Pure-VM was
overprovisioned.

Athena ¢ Redshift-SL @ Hybrid
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Why are operations pushed down to sub-plans

more expensive if VMs have higher query latency?
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CFs should support VMs

K'l VM Workers [

coordinater Pixels-Turbo

Cloud Object
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CFs are charged per invocation.

CF Invocation

Expensive Query

Sub-plan Query Execution
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How does the system handle cases where network instability

or limited I/O performance could affect sub-plan execution?
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(RSM) and Write Straggler Mitigation (WSM)

"= t-c

r: expected response time

b: number of bytes requested

c: number of concurrent readers
L: latency of CF service

t: throughput of CF service
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Solution proposed by Starling: Read Straggler Mitigation
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What is the benefit
of adding
combiners?

Producers

Partitioned
Objects

Combiners

Combined
Objects
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It reduces the cost, even with extra writes.

S3 Reads without Combiners = 2mn

S3 Reads with Combiners = 2 (ﬂ + %)
p

m: number of producers
n: number of consumers
p: fraction of partitions each combiner reads
f: fraction of files each combiner reads




If accessing S3 (cloud storage) costs so much,

what about adding network connections to
CFs?

Shuffling: add combiners to mitigate S3 throttling

Direct write-back: avoid an extra read/write to S3 by sending results directly to VMs

Chain Join: avoid S3 by sequentially processing joins in the same CF group

Direct Aggregation: combine the first stage with a previous operation if possible to avoid S3




Pixels-Turbo seems to be very complicated.
What are the benefits of all the optimizations it
Is adding?

M Early Projection = Chain Join ® Direct Write-back
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Fig. 11. Speedup of the optimizations on TPC-H 1TB.




Pixels-Turbo seems to be stuck to specific
services, is it worth adopting?
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Pixels: An Efficient Column Store for
Cloud Data Lakes




Treat Pixels-Turbo as a framework.
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