Pixels-Turbo

A Cloud-Based Query Engine for Elastic Data Analytics

Jingzhi Yan, Noah Picarelli-Kombert, Jinpeng Huang,
Kathlyn Sinaga, Zhiyuan Chen, David Lee

Auto-scaling VM cluster

Pixels: An Efficient Column Store for
Cloud Data Lakes

Cloud Object
Storage

Coordinator

/" Amazon S3

N 1
S 1 ’

N 1

KV /RDB
(metadata)

Starling

Amazon S3

CF Service

Cloud Data Lakes

e Decoupled storage and query execution

Background | Cloud Data Lakes

o EEEE

Engine

Metadata

Connector

Iy

eyepeRISN

Table Manager

Storage

Query Services of a Data Lake

® Previously, cloud users use virtual machines (VMs) to run queries

e Solution: cloud providers developed serverless query services

o Maintenance cost for these VMs took a large portion of the total cost

o Users only pay for executed queries instead of a whole VM

o Cloud providers maintain the processing cluster for the user

&
Amazon Redshift
Serverless

Amazon Athena AWS Lambda

Query Services of a Data Lake

Background | Cloud Data Lakes

Cloud Functions (CF)

e A category of serverless computing service
e Individual functions are uploaded to a shared cloud server and executed
independently
o Invoked, executed, and billed individually

o No direct communication between functions

Background | Cloud Functions

Query Latency on TPC-H

CF-based query engines
[Athena m Redshift-SL Starling-S = Pure-CF|m Pure-VM

3240:

>~] 415

S 160

] s

8 801

a :

g 5

4 gl 93 95 g6 g7 q8 ql0 qll ql2 ql4

Pure-VM has the best query latency compared to CF-based query engines because
of higher I/O bandwidth and an efficient massively parallel processing (MPP) cluster.

CFs vs. VMs | Query Latency

Monetary Cost on TPC-H

CF-based query engines
[Athena m Redshift-SL Starling-S Pure-CF|m Pure-VM

12
mot I
1 2
; 35 5 |18|35I5 3.8 11|22|18

ql2 ql4d

=
Ul
o

(O}
o

Monetary Cost (¢)

Pure-VM is 1-2 orders of magnitude more cost-efficient compared to CF solutions. CFs
accumulate an additional cost on S3 requests, but optimizations can lower this cost.

CFs vs. VMs | Cost

Speedup
(compared to 1TB

CFs vs. VMs | Scalability

e Redshift-SL

| == Pure-VM

e
=N
1

Starling-S
Pure-CF

1 2 3 4
Total Memory (TB)

(a) Scan queries.

Scalability: Speedup vs. Memory capacities

1 2 3 4
Total Memory (TB)
(b) Join queries.

1 2 3 4
Total Memory (TB)
(c) Aggr. queries.

Systems designed for clusters with inter-node communication (Pure-VM and
Redshift-SL) have better scalability when not affected by the sub-optimal query plan.

Cloud Function

Cloud Function vs. Virtual Machine

Virtual Machine

Resources

Storage

Startup Time

Elasticity

Execution Time

Billing

CFs vs. VMs | Summary

The Problem

Instagram Global Engagement sproutsocial
“HNERNNNNNNEERS

5 e ~ NNNNNNNNEENEEERC

rs Wed

Thur

Fri

Sat

Sun

12 1 2 3 4 5 6

Lowest Engagement Highest Engagement

*All time frames are recorded globally, meaning you should be able to publish with the times provided in any timezone and see positive engagement results.

Motivation | The Problem

Cost Comparisons on a Dynamic Workload

>

Ideal ® Hybrid 4 Pure CF-based ® Pure VM-based (O Workload spikes

Monetary Cost / sec

@ @t:a tz:l té‘: t:7 Time

® Pure CF-based system still costs more than a pure VM-based system for a sustained, dynamic
workload

e Hybrid achieves a lower cumulative cost

Motivation | Envisioned Goal

Auto-scaling VM cluster

Response

A

VM Workers

Coordinator

CF Workers

CF Service

The Coordinator

e The only long-running component
o Itcanruninasmall VM

Architecture | Coordinator

Add top-level plan or
Response \yhole plan to VM queue

Return query
result

Coordinator

~

KV /RDB Add sub-plan to
(metadata) CF queue

Auto-scaling VM cluster

VM Workers

CF Workers

=
=

CF service

<+

Auto-scaling VM cluster

Cloud Storage

Read base tables

A

VM Workers
e Cloud storage contains the tables to
be queried

Cloud Object Storage
(S3)

Read base tables
& intermediates -~

v

CF Workers Write
intermediates

=
=

CF Service

Architecture | Cloud Storage

Auto-scaling VM Cluster

e Auto-framework to add (scale-out) or remove (scale-in) VMs consists of three parts

Architecture | Auto-scaling VM Cluster

Active Scale-out

Scale-
out!
Scale-out
1 threshold

Query Concurrency

-

o o mm mm mm mm mm mm mm Em E ——

Seconds

VM Cluster

Scale-out actions can occur every five seconds, but
scale-in actions only occur every five minutes. These
periods are configurable.

Architecture | Auto-scaling VM Cluster

Lazy Scale-in

Scale-in threshold

Query Concurrency

o

o mm o o o o o e o ——

Scale-out actions can occur every five seconds, but VM Cluster
scale-in actions only occur every five minutes. These
periods are configurable.

Architecture | Auto-scaling VM Cluster

Add the whole query ~ Auto-scaling VM cluster

Response plan to VM queue

A

VM Workers

Return Read base tables

query result

{ ______ ~

VM cluster is not |

Cloud Object

Coordinator

|
\ - - _ful - Storage (S3)
¢ .
LY U N
: (| 1
KV /RDB i + | CFWorkers
(metadata) SH- ! (Not Called) !

Query Execution when
N e - ’ the VM queue is not full.
CF Service

Auto-scaling VM cluster

Response Add top-level plan to

Query Execution when the
VM queue

VM queue is full.

A

VM Workers

Return Read base tables

query result

/
| VM cluster is full!
|
|

| Consume
Invoke CF workers and I
|

) sub-plan results
possibly scale-out.

A
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
1

Read base tables /
& intermediates .’ e
Add sub-plan

27 Write
to CF queue CF Workers

---" intermediates

CF Service

Coordinator

Table Scans

Coordinator creates splits containing

metadata and row partitions

e If VMs are used, splits are sent to VMs,
which each process the query on given
splits over multiple threads

o VMs can use a file format library

—— - — -

to directly scan the partitions in
the splits

Sub-plan Operations | Table Scans

Query
top-plan

ll VM Workers
A

Direct write-back
joined table

Joined table

Reorder joins Query

Coordinator optimization] sub-plan

Scan tables to
the connector

Joins

Sub-plan Operations | Joins

CF Workers Joins in opt. order _
............. > Connector

Storage (data)

—

Cloud Object

prm—

Broadcast Joins

Tables to join:

T T
Big
Table

Join I B

i —

Ll

Sub-plan Operations | Joins

R
= CF Worker pumns N I (F7STOVR I
[| Table | |

I
Matching Probe
row hash
table
Hash Hash
_—
Function Table

Shuffling

Standard Shuffle

m producers

each producer
output
m partitions

n consumers

Problem: S3 Throttling

Sub-plan Operations | Joins

Introducing Combiners

Producers

Partitioned
Objects

Combiners

Combined
Objects

Consumers

Trades higher 1/O for better load balancing and lower
per-consumer stress on S3

Hash Partitioned Joins

|
I Partition O I

| (e \
|
Table A (Orders) Hash ! !
—_— on Join — :
Ke
: (Orders) Final
: Hash Joined
I Table Table
| Partition O
: (Customers)
Table B (Customers) Hash I
—_— on Join —
. Keyl : Consumer N - 1
I Partition N - 1
: (Customers)
| e e e e e e = = J
S3 Storage
Sub-plan Operations | Joins

Chain Join: Bypass S3

B: Broadcast join

P: Hash partitioned join Join (B)
/\ Takes the result of
a large join
Same . Join (P)
Chain Join (B)
/\ Different ALM
L Join
Join (B) Supplier Join (P) Lineitem
Region Nation Customer Order
Larger Tables
Sub-plan Operations | Joins

Direct Aggregation

e The coordinator pushes aggregations
after table scans and joins

Stage 1

1 Partial
aggregates

S3 Storage

Stage 2

Final Aggregate Result
Sub-plan Operations | Aggregation

* different colors signify different group by keys

Shuffled Aggregation: Starling

S3 Storage

e Used for larger aggregates

Shuffle
Stage

S3 Storage

Stage 1

S3 Storage

Stage 2

Final Aggregate Result
Sub-plan Operations | Aggregation

* different colors signify different group by keys

Shuffled Aggregation:
Pixels-Turbo

e Late Shuffling: postpone the shuffling Stage 1
stage

Partial
aggregates
Shuffle

Stage
Stage 2

Final Aggregate Result
Sub-plan Operations | Aggregation

Implementation Optimizations

Sub-plan Operations | Implementation Optimizations

Implementation Optimizations

Sub-plan Operations | Implementation Optimizations

Size of CF Instances

e Use the largest permitted size for the CF instance
o Larger CF instances result in fewer CFs
o Executor runtime has a constant memory overhead, so larger instances tend to be
more memory efficient
o Testing suggests that the largest instances perform the best and result in the
lowest cost

Optimal Settings | CF Size

Capsp g - Capsy

S, = min - ,
> “eC chunk_size(c;) Sy

S, = split size

cap,, = cap on number of bytes to read from a split
cap,, = cap on number of filtered rows per split

g = number of row groups in the table

C = set of columns to read

chunk_size = average size of column chunks

S, = filtered rows on the tables

Optimal Settings | Split Size

Split Size on Base Tables

The split size determines

parallelism for operators that read
base tables

cap,, and cap_ ensures CF workers will
not block on 1/0 or CPU or fail on
out-of-memory (OOM) errors

Join Algorithm Selection

Sy = Z size(c;) e Broadcast tables are limited by bytes
GeC (cap,,) and number of rows (cap,)
S, =n- min selectim;ty(ci) o cap,, controls reading and decoding cost
a€Cyp of the broadcast table
o cap,, controls building cost and collision
S, = hash table size (bytes) rate

S =hash table si . C . .
= hash table size (rows) e Joint selectivity is estimated since we

don’t have histograms
o Selectivity may be overestimated, but it
avoids broadcasting oversized tables

C = columns to read
n = table row count

Cp = predicate columns

Optimal Settings | Join Algorithm Selection

Number of partitions for shuffle-based operators

® Any shuffle-based operation requires calculating the number of partitions
e Hash partitioned join
o Partition size is limited by bytes (cap) and number of rows (cap)

Sb1+Sb2 S,l+a-Sr2)
cappy, cappr

Pj=ma.x(

P. = number of partitions for joins

S, 1+ Sy, = size of two tables (bytes)

S,., S, = size of two tables (rows)

o = speed ratio of hashing building and hash probing
cap,, = partition size cap (bytes)

cap,, = partition size cap (rows)

Optimal Settings | Number of Partitions

Number of partitions for shuffle-based operators

e Aggregation
o Number of aggregation partitions relies on the size of the aggregates,
which rely on the group-by key cardinality

Dg = m%xcardinality(ci) D, = joint cardinality of group-by keys

e C, = set of group-by key columns
P Dg P_ = number of partitions for aggregation
‘ CaPqy cap,, = max rows per partition in aggregation

Optimal Settings | Number of Partitions

Pattern 1

Query Throughput

Pattern 2

Pattern 3

neriment Workload Patterns

Pattern 4

e o o -

e e] o o -

e] o o -

Experimental Results | Workload Patterns

Time

Query Throughput

Experimental Results | Monetary Cost

Time

Experimental Results: Pattern 1

(o)

o

o
J

[N
g o

Monetary Cost (¢ /min, log)
[N

Time Since Start (min)

Athena
f‘*“"“‘ ¢ Redshift-SL
] 1 I ® Hybrid
Ry ;drop to0 4 Pure-CF
i ! Ideal
0 20 40 60

Experimental Results: Pattern 2

§ 500 1 Athena
A - . ¢ Redshift-SL
I E MM ® Hybrid
[N ISR P £ R ‘ s PureCE
2 : © 1R 7 WM"M“\"“""M“‘{, AL Ideal
) o]
i R I s SRRt PRSI = 50 -)
= I o) J
= S O
: g ‘
< 5 10 | |
1 J ©
| 8 ‘
Time g 5 4 2 : .
0 20 40 60

Time Since Start (min)

Experimental Results | Monetary Cost

Experimental Results: Pattern 3

= 500 - Athen:fl
A o ¢ Redshift-SL
o b ro £ PP ® Hybrid
2 : = 1 B™a A Pure-CF
e I _.‘7; 50 N
= ! S
>
5 e g ‘
o 1 5 10 - \
Time = : ; : :
0 20 40 60

Time Since Start (min)

Experimental Results | Monetary Cost

Experimental Results: Pattern 4

o 900 . Athen:fl
A o i ¢ Redshift-SL
o b b £ - @ Hybrid
2 : E 100 s pmicsindia] .. oo 4 Pure-CF
=0 R I . S s0- I Ideal
E : 3
% _l g 10 i
(04 | — Jsssssses
1 > QC) 5 T T T
—_— 2 0 20 40 60

Time Since Start (min)

Experimental Results | Monetary Cost

Athena ¢ Redshift-SL @ Hybrid

4 Pure-CF m Pure-VM Ideal

500 - 500 -
L2
Experimental £uuo (= a0
o 1 ¢ (il A o
Results: % . 50 -]
O eossssssssssssssssssssssssssnd
> 97 b
Monetary Cost 5 10] :
g 1 T T T - T 5 T T T T
= 0 20 40 60 0 20 40 60
Time Since Start (min) Time Since Start (min)
(a) Workload pattern 1. (b) Workload pattern 2.
= 500 - 500 -
o
E M T e
£ 100: en ot] L B O e] [——
© - 1 e 2
=~ 50 - N 4 50 - /
3
O \
g 10 \ 10 BT
(] ooy sacsssses
g 5 T T T T 5 T T T T
= 0 20 40 60 0 20 40 60

Experimental Results | Monetary Cost

Time Since Start (min)
(c) Workload pattern 3.

Time Since Start (min)
(d) Workload pattern 4.

Monetary Cost

® The hybrid system is capable of
scaling to zero

e When consecutive spikes are
close enough in time, the CFs of
the first spike are reused for the
second

e When the workload repeatedly
experiences building spikes, the
hybrid cost repeatedly spikes as

well

Athena ¢ Redshift-SL @ Hybrid

4 Pure-CF = Pure-VM

« = |deal

500 500 1
] FaItepaRy
C- | f“ 4
= 100 (oAt Wi
\hhPey e ' t §)
£ 50 A ¢ *drop = 100 apprvnmpmpnn] A4 laapnn
S ‘ Yy vl
g [50 - 4|
3 10 - r |
(@) 5 JRRSS———— L ‘
> | I ‘
& \ 10 - | \
Q ¢ . R
5§ 14 . : . 5 z . .
= 0 20 40 60 0 20 40 60
Time Since Start (min) Time Since Start (min)
(a) Workload pattern 1. (b) Workload pattern 2.
’66 500 ~ 500 - n
< il abe
£ 100 o s ial L. Bshae 0D e R a] . | m—
o s 'n
—~ 50 - (I 50 - MM
(7] [l s [l]1
Q |\ neses -
(@) 1A (e X
g 10 R 10 | S
(] | escoores R A A A semmecn
S 5 T T T T 5 T T T Ll
= 0 20 40 60 0 20 40 60

Time Since Start (min)
(c) Workload pattern 3.

Time Since Start (min)
(d) Workload pattern 4.

Fig. 9. Monetary cost per minute of the workload patterns.

Query Latency

Athena ®m Redshift-SL = Hybrid = Pure-CF ® Pure-VM

= 100 4

e |1 Patternl | Pattern2 | Pattern3 | Pattern 4

o . | | |

g 507

9] |

Z\ g i

S 0

o wl w2 wl w2 wl w2 wl w2 w3

Fig. 10. Average query latency of the workload patterns.

e Hybrid provides lower query latency than auto-scalable baselines (Athena, Pure-CF) in all cases
because most queries are processed in the VM cluster.

® Pure-VM is faster than Hybrid in all cases.
o Redshift and Pure-VM were provisioned for spikes at an increased monetary and operational cost

Experimental Results | Query Latency

oy

Discussion

s monetary cost the only benefit to
Pixels-Turbo?

Athena ® Redshift-SL = Hybrid © Pure-CF M Pure-VM
Pattern1 | Pattern2 | Pattern3 | Pattern 4

fary

o

o
J

wu
o
I |

o
I Y

Query Latency (s)

wl w2 wl w2 wl w2 wl w2 w3

Fig. 10. Average query latency of the workload patterns.

Pure-VM was
overprovisioned.

Athena ¢ Redshift-SL @ Hybrid

4 Pure-CF = Pure-VM

- = |deal

500 - 500 -
o
= Sl My f»x
‘= 100 g RV N W : dl’O to0 ;‘
€ 50 I A 101 8 bgrosmggrwy Iy v
4
‘.J.'; 50 - ‘
S 104 . \ I
> 91 ey
8 10 - f A ¥
Q \ S S
s 14 : . . 5 4 . ; .
= 0 20 40 60 0 20 40 60
Time Since Start (min) Time Since Start (min)
(a) Workload pattern 1. (b) Workload pattern 2.
= 500 - 500 - "
8 |
- A e A‘-‘ Lﬂ
£ M [\
< 100 AAAMASA prA A ‘«."4‘ MAAAA A 100 4. ,nA4 A antni L AAd A M s
5 N A - At
=~ 50 1) 50 - /
2] | &
o |
(@] | J '
 S— - vonese
g 10 1 ! | ' % 10 1 ' *
(] A A [mssacessssmsscasetocasaastnans sesassses
g 5 T T T T 5 T T T T
= 0 20 40 60 0 20 40 60

Time Since Start (min)
(c) Workload pattern 3.

Time Since Start (min)
(d) Workload pattern 4.

Why are operations pushed down to sub-plans

more expensive if VMs have higher query latency?

N

B

o
1

=

Query Latency (s)

(0] ()]
o o
ELEEEe

o
|

CF-based query engines
[Athena m Redshift-SL Starling-S = Pure-CF|m Pure-VM

415

ql q3 g5 g6 q7 g8 gl0 qll ql2 ql4

CFs should support VMs

K'l VM Workers [

coordinater Pixels-Turbo

Cloud Object
Storage

KV /RDB
(metadata)

CFs are charged per invocation.

CF Invocation

Expensive Query

Sub-plan Query Execution

Time(s)

1.0 A

0.5 1

0.0

How does the system handle cases where network instability

or limited I/O performance could affect sub-plan execution?

50

Time(s)

20
10
95 99

90

99.9 99.99 0

Read Latency Percentiles

e m W I I
50 90 95 99 99.9

Write Latency Percentiles

(RSM) and Write Straggler Mitigation (WSM)

"= t-c

r: expected response time

b: number of bytes requested

c: number of concurrent readers
L: latency of CF service

t: throughput of CF service

1.0 A1

Time(s)
o
(6]

0.0

20

Solution proposed by Starling: Read Straggler Mitigation

I RSM off
s RSMon
50 90 95 99 99.9 99.99
Read Latency Percentiles
EEN WSM off

B WSM Single Timer

) I WSM on

50

90 95
Write Latency Percentiles

99 99.9

What is the benefit
of adding
combiners?

Producers

Partitioned
Objects

Combiners

Combined
Objects

Consumers

It reduces the cost, even with extra writes.

S3 Reads without Combiners = 2mn

S3 Reads with Combiners = 2 (ﬂ + %)
p

m: number of producers
n: number of consumers
p: fraction of partitions each combiner reads
f: fraction of files each combiner reads

If accessing S3 (cloud storage) costs so much,

what about adding network connections to
CFs?

Shuffling: add combiners to mitigate S3 throttling

Direct write-back: avoid an extra read/write to S3 by sending results directly to VMs

Chain Join: avoid S3 by sequentially processing joins in the same CF group

Direct Aggregation: combine the first stage with a previous operation if possible to avoid S3

Pixels-Turbo seems to be very complicated.
What are the benefits of all the optimizations it
Is adding?

M Early Projection = Chain Join ® Direct Write-back

I

ql q3 Q5 q6 q7 q8 q10 ql2 ql4

e =
= (@)}
P T T |

B
N
1 1

—

Speedup (compared
to Starling-S)

Fig. 11. Speedup of the optimizations on TPC-H 1TB.

Pixels-Turbo seems to be stuck to specific
services, is it worth adopting?

WA
© trino

A Pp

AWS Lambda Amazon Amazon S3
EC2

Pixels: An Efficient Column Store for
Cloud Data Lakes

Treat Pixels-Turbo as a framework.

Response

K" VM Workers

Cloud Object
Storage

Coordinator

dl»; - r_
<
KV /RDB
CF Workers

