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Do we have a quiz today … ?

Yes!

At the end! 



Student Discussion Reminder

Presenters will be giving a full presentation of the main paper (with 
background information from other papers as needed)

Critics and Proponents will participate in a live Q&A during presentation 
(criticizing and supporting the paper) + everyone should chime in!

Critics will also present a few slides with the core critique/feedback

Proponents will address this feedback

Everyone is expected to participate in the discussion!



Indexing is key to database performance

B+ Trees and LSM-Trees dominate disk-based indexes

Hash indexes and optimized search trees are common for in-memory

BUT

Hash indexes are unordered (no range queries) 

Search trees are slower than Hash indexes for point queries

can we build a better compromise?



Increasing data size

Search trees size (tree height and width) grows with data size!

So, it quickly does not fit in cache or in memory 

Why is that problem?



Reminder: Memory Wall
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In-Memory Search Trees: T-Trees

Fat nodes (cacheline size) with two children

Developed in the 80s (still used in some systems!)

Unpredictable pointer chasing

Memory access latency is not uniform



Are B+ Trees good for in-memory execution?
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Designed for disks!

Node size is equal to page size, the goal is to minimize #random accesses of pages (wide fanout)

How to make it memory-friendly?



Cache-sensitive B+ Trees

Every level is physically stored contiguously

Good cache utilization!

Poor updates – needs logic to balance

Tree height depends on #items inserted

why?

similar to …?



Can we do better for an in-memory search tree?

Maintain order

Maintain few random access

Maintain good cache utilization

Maintain low space complexity

Cheap updates

tree

low height

access cachelines

less logic, avoid rebalancing or splitting



Enter Tries
Also known as Radix Trees, Prefix Trees, Digital Trees 



Trie, Radix Tree, Prefix Tree, Digital Tree Trie, Radix Tree, Prefix Tree, Digital Tree

I Tree height depends on key length k, but not on tree size n

I No rebalancing required

I Lexicographic order
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Tree height depends on key length k

Not on tree (data) size

No rebalancing needed!

Automatically get lexicographical order



Tries on integers (in binary format)Radix Tree

Implicit keys Space complexity

Every node stores a part of the binary representation (“radix”) of the key

Implicit Keys

Significant space savings

Should all nodes use the same number of radix bits?



Adaptive Radix Tree Span

For binary representations of keys, the fanout can be configured!

Each node uses s bits (“span”) of the radix of the key

Hence, an inner node is an array of 2s pointers (with equal number of children)



Tree Size vs. Span

k bit keys & span=s → k/s inner levels & 2s pointers in each node

let’s assume 32 bit keys

span=1 → 32 inner levels & 2 pointers in each node



Tree Size vs. Span

k bit keys & span=s → k/s inner levels & 2s pointers in each node

let’s assume 32 bit keys

span=2 → 16 inner levels & 4 pointers in each node



Tree Size vs. Span

k bit keys & span=s → k/s inner levels & 2s pointers in each node

let’s assume 32 bit keys

span=4 → 8 inner levels & 16 pointers in each node



Tree Size vs. Span

k bit keys & span=s → k/s inner levels & 2s pointers in each node

let’s assume 32 bit keys

span=8 → 4 inner levels & 256 pointers in each node



Tree Size vs. Span

k bit keys & span=s → k/s inner levels & 2s pointers in each node

let’s assume 32 bit keys

span=1 → 32 inner levels & 2 pointers in each node

span=2 → 16 inner levels & 4 pointers in each node

span=4 → 8 inner levels & 16 pointers in each node

span=8 → 4 inner levels & 256 pointers in each node

tall and thin tree

short and fat tree



Height vs. Size Tradeoff

Large s: 
small height (fast)

BUT
high space consumption

Small s: 
large height (slow)

BUT
low space consumption

ART manages to avoid this tradeoff

How?



Adaptively Sized Nodes

s = 8: each inner node corresponds 1 byte of the key

however: different node sizes depending on the actual number of children

a classical radix tree with fixed-side array nodes

design innovation: variable fanout

a radix tree with adaptively-sized nodes



Remember: what is the goal?Radix Tree

Implicit keys Space complexity

to break a 32-bit key in 4 bytes across 4 levels and reduce the size of the nodes!



More on adaptive nodes
4 node sizes, dynamic decision

Adaptive nodes

N256 implicit keys 

N4 & N16 explicit keys 

N48 indirection index 

Why 16?

Adaptive nodes

N256 implicit keys 

N4 & N16 explicit keys 

N48 indirection index 

Why 16?

Adaptive nodes

N256 implicit keys 

N4 & N16 explicit keys 

N48 indirection index 

Why 16?

explicit keys
both Node4 and Node16 
use arrays of size 16

indirection index
with implicit keys

implicit keys



ART Traversal



Optimizations: Remove one-way nodes
Height Optimizations for Long Keys

I Remove all one-way nodes
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Height Optimizations for Long Keys
I Remove all one-way nodes

BA
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F

12 / 16



Supporting various data types

Native support for:

 String

 Integers (binary representation)

Require transformations for: 

floats, Unicode, signed, null, composite

when?



Evaluation

Lookup performance (4B keys)

Insert performance (4B keys)



Cache Efficiency



Skewed Search & Impact of Cache Size

ART: adjacent items are in the same node/subtree

HT: adjacent items are in different buckets

ART: no evictions, fewer misses overall

HT: data is randomly distributed more misses



Tree Height in TPCC

Without the height optimization the height can be the length of the keys → can be prohibitively high

why? what is the height of a B+ Tree?



Space Efficiency for TPCC



Conclusions

Radix Trees can be used as a generalized index

 for multiple data types

 space efficient

 with excellent performance

thus, combining:

 range query support of search trees

 point lookup efficiency of hash indexes
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