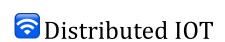


Tuning Log-Structured Merge Trees

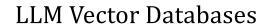
Andy Huynh February 25th 2025

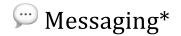
Serving Diverse Data Domains

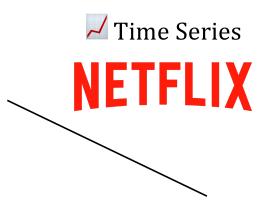


HIPAA Compliant

NoSQL Distributed Database







Flexibility Due To Configuration

NoSQL Distributed Database

cassandra.yaml

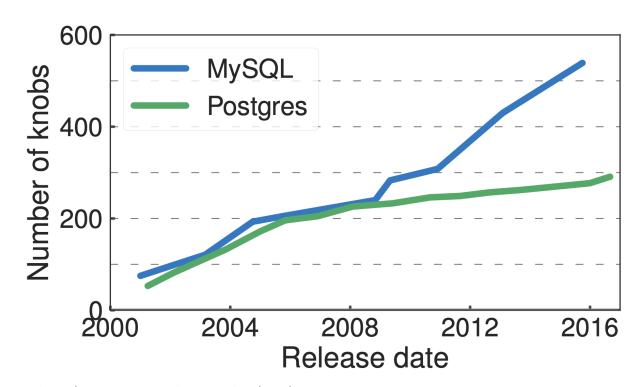
- num_tokens
- max_hints_delivery_threads
- **b** batchlog_endpoint_strategy
- credentials_validity
- row_cache_size
- column_index_size
- column_index_cache_size

...

memtable_flush_writers

3

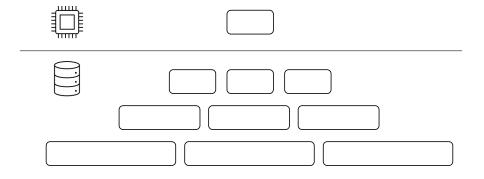
Database Complexity



Van Aken D. et. al., "Automatic Database Management System Tuning Through Large-scale Machine Learning". SIGMOD 2017

LSM Trees Are Everywhere!

NoSQL Distributed Database



Outline

A Primer on LSM Trees

Flexibility in Compaction Design [VLDB-J 24]

Modeling LSM Trees

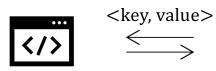
Tuning LSM Trees

ENDURE: Finding Robust Tunings for LSM Trees [VLDB 22]

AXE: Learning to Tune LSM Trees By Task Decomposition [UR*]

Primer: Log-Structured Merge-Trees

Application



GET 25 PUT 87, DATA SCAN 10 – 275

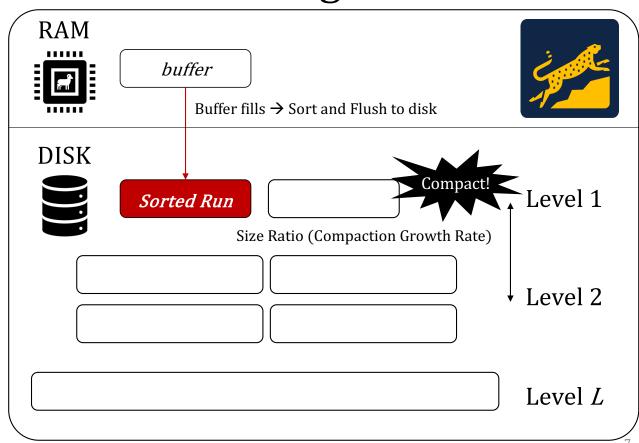
PUT 86, **≜**

GET 99

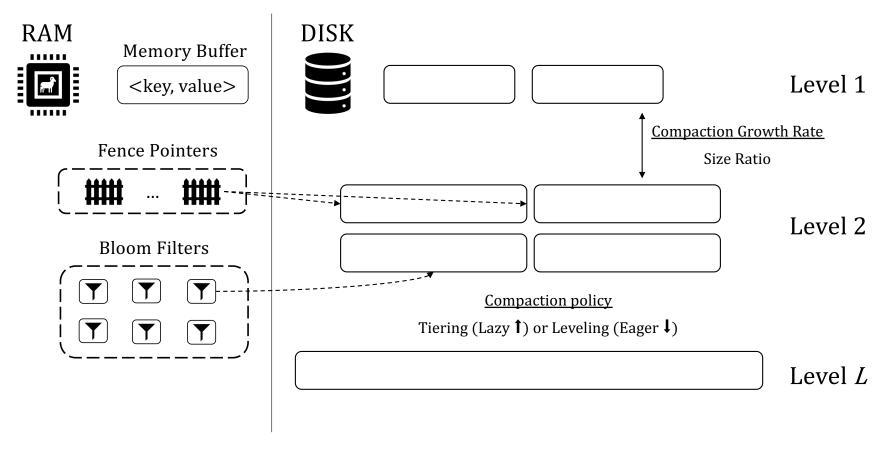
GET 47

. . .

PUT 25

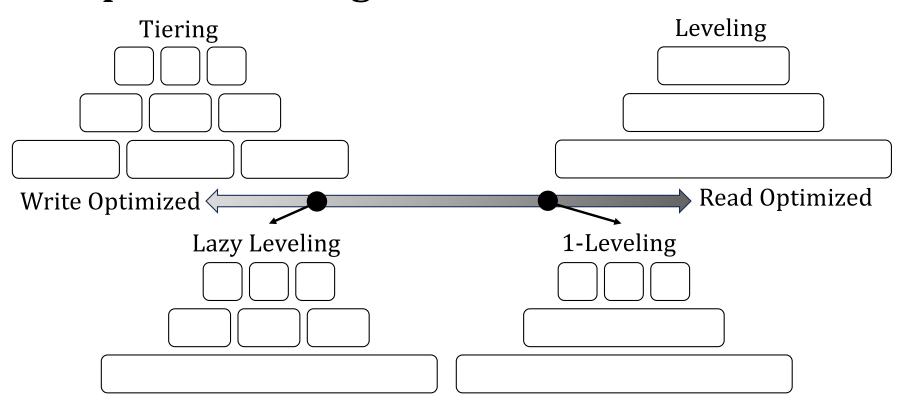


Primer: Log-Structured Merge-Trees



8

Compaction Design

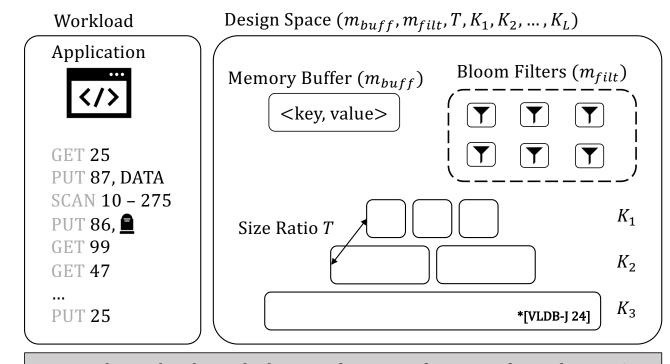


9

Unifying Compaction Design Language

Tiering		Leveling
	$K_1 = 3 K_1 = 1$	
	$K_2 = 3 K_2 = 1$	
	$K_3 = 3 K_3 = 1$	
Write Optimized		Read Optimized
	"Kapacity ["] - KapLSM	
		$K_1 = 3$
		$K_2 = 2$
	*[VLDB-J 24]	$K_3 = 1$

Navigating Flexibility



How do we decide on the best configuration for a specific application?

The Tuning Problem

w: Workload

 φ : Design $(m_{buff}, m_{filter}, T, K_1, ..., K_L)$

C : Cost

$$\varphi^* = argmin_{\varphi} C(w, \varphi)$$

Automatic Database Management System Tuning Through Large-scale Machine Learning

R R	AMAI · Ontimi Rover: An Online Sp	izing I SM-trade vi park SQL Tuning Service Transfer Learning	a Activa I parning e via Generalized	Monkey: Optimal N	avigat	ole Key-Value Store	Carnegie Mellon University Carn	Andrew Pavlo Geoffrey J. carnegie Mellon University vlo@cs.cmu.edu ggordon@cs	n University Peking University
5	Yu Shen*	Efficient Deep Learn	ning Pipelines for Accu	rate Cost Estimatior	IS Ingeen	ulie Stratos Idreos	QTune: A Query-Awa	are Database Tuning S	System with Deep
. s	School of CS, Peking University ByteDance Inc. Beijing, China	Over	Large Scale Query Wo	orkload	Uı	An Efficient, Cost-Drive			
, c	shenyu@pku.edu.cn Huaijun Jiang Center for Data Science, Peking University ByteDance Inc. Beijing, China jianghuaijun@pku.edu.cn	Johan Kok Zhi Kang johan.kok@u.nus.edu National University of Singapore Singapore Feng Cheng	Singapore Shixuan Sun	Sien Yi Tan sienyi.tan@grab.com GrabTaxi Holdings Singapore Bingsheng He	os) d- -V		n, One Microsoft Way, Redmo		អ Company wei.com
l F s	Yang Li School of CS, Peking University	feng.cheng@grab.com GrabTaxi Holdings Singapore	sunsx@comp.nus.edu.sg National University of Singapore Singapore	hebs@comp.nus.edu.sg National University of Singapore Singapore		Harvard University mjagadeesan@seas.harvard.edu	Konstantinos Kanellis University of Wisconsin-Madison kkanellis@cs.wisc.edu	Cong Ding University of Wisconsin-Madison congding@cs.wisc.edu	Brian Kroth Microsoft Gray Systems Lab bpkroth@microsoft.com
F S	Beijing, China liyang.cs@pku.edu.cn	wentao.zhang@mila.quebec Scie	astrute of Computational Social ence, Peking University (Qingdao) Beijing, China bin.cui@pku.edu.cn	Wilson Qin Harvard University wilson@seas.harvard.edu		Stratos Idreos Harvard University stratos@seas.harvard.edu	Andreas Müller Microsoft Gray Systems Lab amueller@microsoft.com	Carlo Curino Microsoft Gray Systems Lab ccurino@microsoft.com	Shivaram Venkataraman University of Wisconsin-Madison shivaram@cs.wisc.edu
CAI	IHUA SHAN, Microsoft R	lesearch Asia, China							

The LSM Tuning Problem

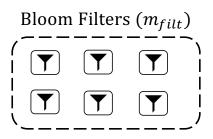
```
w: Workload
```

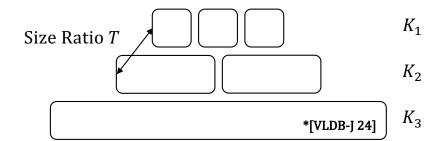
 φ : Design $(m_{buff}, m_{filter}, T, K_1, ..., K_L)$

C : Cost

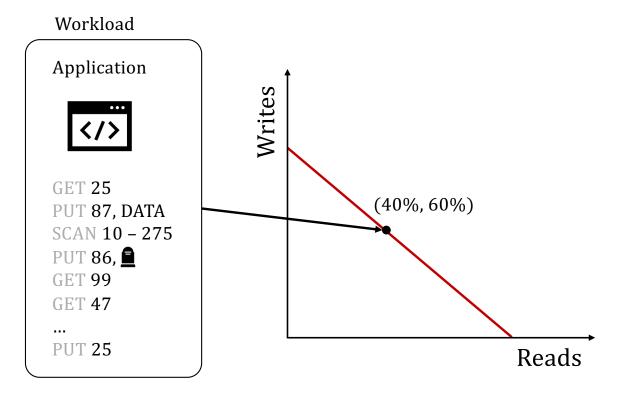
$$\varphi^* = argmin_{\varphi} C(w, \varphi)$$

Memory Buffer (m_{buff}) < key, value >

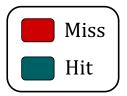




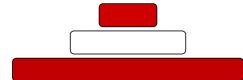
Workloads



Query Types



Empty Reads: z₀

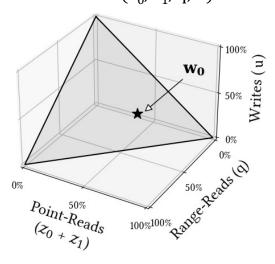


Non-Empty Reads : z₁

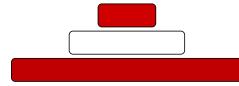
Range Reads: q

Writes: u

Workload: (z_0, z_1, q, u)



Point Reads



Sum of false positives

$$Z_0(\varphi) = \sum_{i=1}^{L(T)} K_i \cdot f_i(T)$$

Additional Notation

Num entries in 1 page

Total levels L(T)

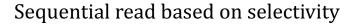
 $f_i(T)$ BF false positive rate at level i

 $N_f(T)$ Total keys if tree was full

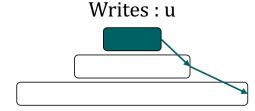
Non-Empty Reads :
$$z_1$$
 Probability query is satisfied at Level i False positives from levels above
$$Z_1(\varphi) = \sum_{i=1}^{L(T)} \frac{(T-1) \cdot T^{i-1}}{N_f(T)} \cdot \frac{m_{buf}}{E} \left(1 + \sum_{j=1}^{i-1} K_j \cdot f_j(T) + \frac{K_i-1}{2} \cdot f_i(T)\right)$$

Range-Reads and Writes

Additional Notation				
В	Num. entries in buffer			
L(T)	Total levels			
S_{RQ}	Range query selectivity			
f_{seq}	Sequential access cost			



$$Q(\varphi) = f_{seq} \cdot S_{RQ} \cdot \frac{N}{B} + \sum_{i=1}^{L(T)} K_i$$
 1 I/O per Seek per level



Average number of merges a write will participate in

$$U(\varphi) = f_{seq} \cdot \underbrace{\frac{1+f_a}{B}} \cdot \sum_{i=1}^{L(T)} \frac{T-1+K_i}{2K_i}$$

Writes only flush once buffer is full

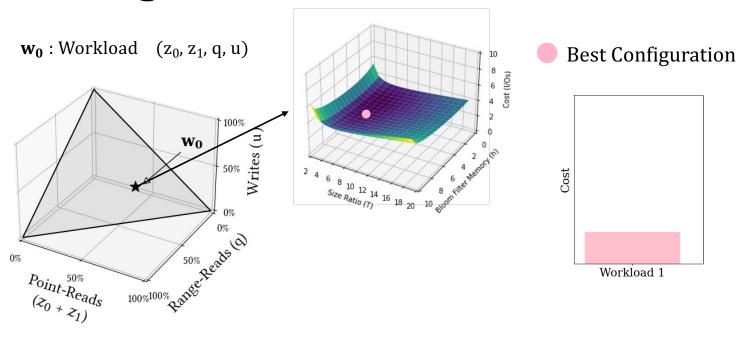
The LSM Tuning Problem

```
w: Workload (\mathbf{z}_0, \mathbf{z}_1, \mathbf{q}, \mathbf{w}) \varphi: Design (m_{buff}, m_{filter}, T, K_1, K_2, ..., K_L) C: Cost (I/O) \varphi^* = argmin_{\varphi} C(w, \varphi)
```

Cost function is a weighted sum over each operation type

$$C_S(w,\varphi) = z_0 \cdot Z_0(\varphi) + z_1 \cdot Z_1(\varphi) + q \cdot Q(\varphi) + u \cdot U(\varphi)$$

Tuning Problems



Outline

A Primer on LSM Trees

Flexibility in Compaction Design [VLDB-J 24]

Modeling LSM Trees

Tuning LSM Trees

ENDURE: Finding Robust Tunings for LSM Trees [VLDB 22]

AXE: Learning to Tune LSM Trees By Task Decomposition

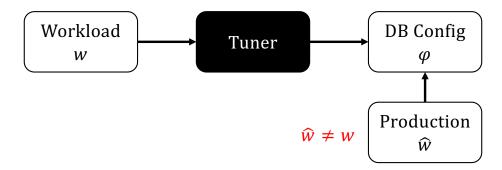
We Are Not ORACLES

w: Workload (z_0, z_1, q, u)

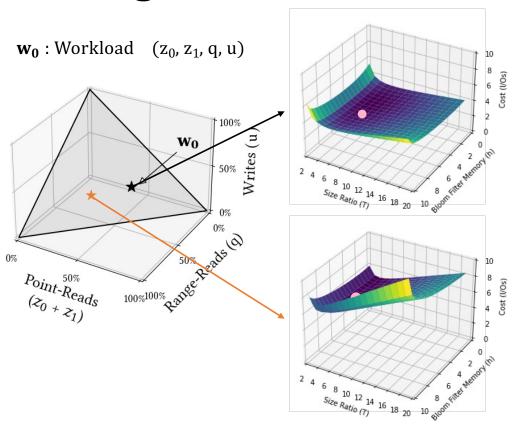
 φ : LSM Tree Design $(m_{buff}, m_{filter}, T, K_1, K_2, ..., K_L)$

C: Cost(I/O)

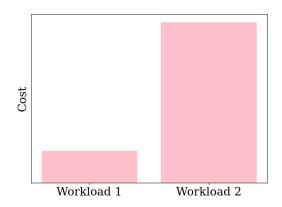
$$\varphi^* = argmin_{\varphi} C(w, \varphi)$$



Tuning Problems



'Best' Configuration



Optimal tuning depends on workload Workload uncertainty leads to sub-optimal tuning

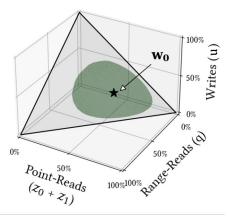
The LSM-Tuning Problem

w: Workload (z_0, z_1, q, u)

 φ : Design $(m_{buff}, m_{filter}, T, K_1, K_2, \dots, K_L)$

C: Cost(I/O)

 $\varphi^* = argmin_{\varphi} C(w, \varphi)$



Nominal

 $U_{\rm w}^{\rho}$: Uncertainty Neighborhood of Workloads

: Size of this neighborhood

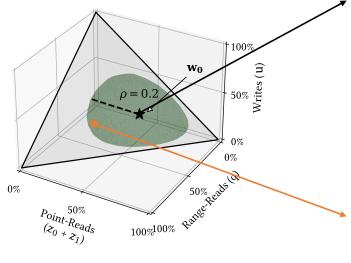
$$\varphi^* = \operatorname{argmin}_{\varphi} C(\widehat{w}, \varphi)$$
s. t., $\widehat{w} \in U_w^{\rho}$

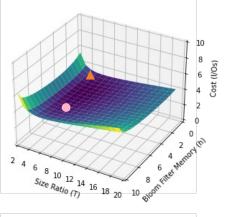
$$s.t., \quad \widehat{w} \in U_w^{\rho}$$

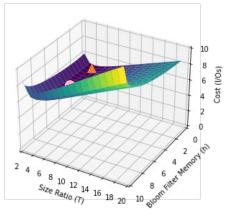
Robust

Robust Tuning

w: Workload (z_0, z_1, q, u)



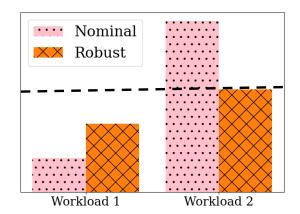




$$\varphi^* = \operatorname{argmin}_{\varphi} C(\widehat{w}, \varphi)$$

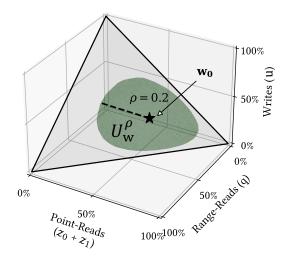
$$s.t., \quad \widehat{w} \in U_w^{\rho}$$

- Optimal configuration for expected workload
- Robust configuration for the workload neighborhood



Uncertainty Neighborhood

Workload Characteristic



Neighborhood of workloads (ρ) via the KL-divergence

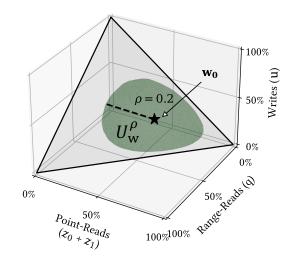
$$I_{KL}(\widehat{w}, w) = \sum_{i=1}^{m} \widehat{w}_i \cdot \log(\frac{\widehat{w}_i}{w_i})$$

 $U_{\mathbf{w}}^{\rho}$: Uncertainty Neighborhood of Workloads

ho : Size of this neighborhood

Calculating Neighborhood Size

Workload Characteristic



Historical workloads

maximum/average uncertainty among workload pairings

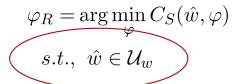
User provided workload uncertainty

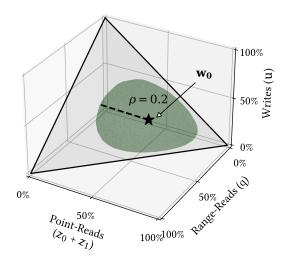
 $U_{\mathbf{w}}^{\rho}$: Uncertainty Neighborhood of Workloads

ho: Size of this neighborhood

Solving Robust Problem

Iterating over every possible workload is expensive





Solving Robust Problem

Iterating over every possible workload is expensive

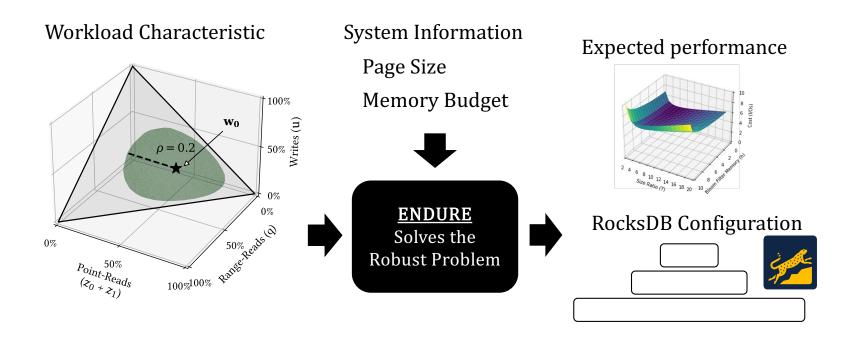
Formulation of the dual problem to reduce to a feasible problem[‡]

$$\varphi_R = \arg\min_{\varphi} C_S(\hat{w}, \varphi)$$

$$s.t., \ \hat{w} \in \mathcal{U}_w$$

$$\min_{\varphi,\lambda\geq 0,\eta} \left\{ \eta + \rho\lambda + \lambda \sum_{i=1}^{m} w_i \phi_{KL}^* \left(\frac{c_i(\varphi) - \eta}{\lambda} \right) \right\}$$

ENDURE Pipeline

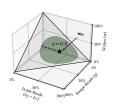


Testing Suite

ENDURE in Python, implemented in tandem with RocksDB

Uncertainty benchmark

- 15 expected workloads
- 10K randomly sampled workloads as a test-set



Normalized delta throughput

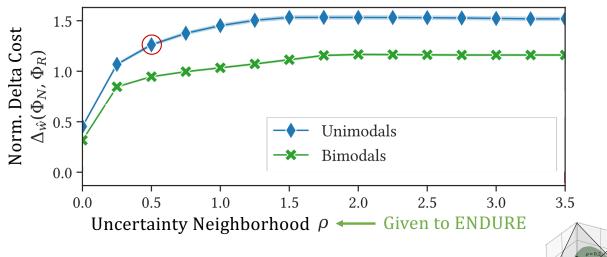
$$\Delta_{\mathbf{w}}(\Phi_1, \Phi_2) = \frac{1/C(\mathbf{w}, \Phi_2) - 1/C(\mathbf{w}, \Phi_1)}{1/C(\mathbf{w}, \Phi_1)}$$

Nominal vs Robust: > 0 is better

1 means 2x speedup

Index		(z_0, z_1)	,q,u)	Type
0	25%	25%	25%	25% Uniform
1	97%	1%	1%	1% Unimodal
2	1%	97%	1%	1%
3	1%	1%	97%	1%
4	1%	1%	1%	97%
5	49%	49%	1%	1% Bimodal
6	49%	1%	49%	1%
7	49%	1%	1%	49%
8	1%	49%	49%	1%
9	1%	49%	1%	49%
10	1%	1%	49%	49%
11	33%	33%	33%	1% Trimodal
12	33%	33%	1%	33%
13	33%	1%	33%	33%
14	1%	33%	33%	33%

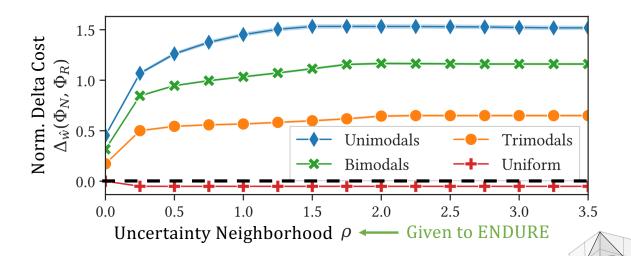
Impact of Workload Type



<u>Unbalanced</u> workloads result in overfitted nominal tuning	gs
--	----

Index		(z_0, z_1)		Type	
0	25%	25%	25%	25%	Uniform
1	97%	1%	1%	1%	Unimodal
2	1%	97%	1%	1%	
3	1%	1%	97%	1%	
4	1%	1%	1%	97%	
5	49%	49%	1%	1%	Bimodal
6	49%	1%	49%	1%	
7	49%	1%	1%	49%	
8	1%	49%	49%	1%	
9	1%	49%	1%	49%	
10	1%	1%	49%	49%	
11	33%	33%	33%	1%	Trimodal
12	33%	33%	1%	33%	
13	33%	1%	33%	33%	
14	1%	33%	33%	33%	

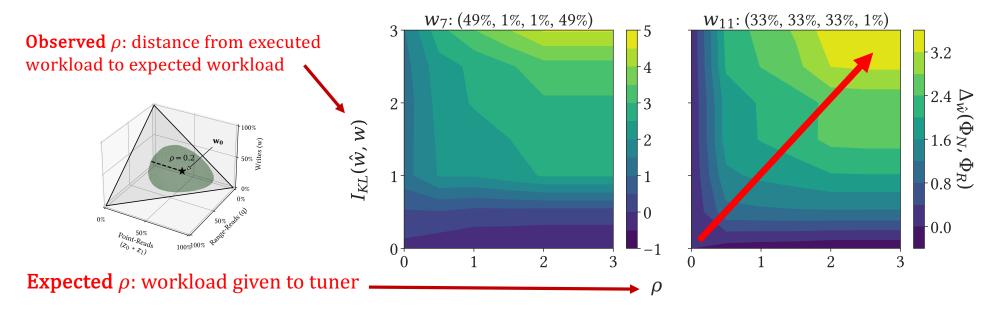
Impact of Workload Type



 $\frac{\mbox{Unbalanced}}{\mbox{Tuning with uncertainty }(\rho>0.5)\mbox{ provides benefits}}$

Index		(z_0, z_1)	,q,u)		Type
0	25%	25%	25%	25%	Uniform
1	97%	1%	1%	1%	Unimodal
2	1%	97%	1%	1%	
3	1%	1%	97%	1%	
4	1%	1%	1%	97%	
5	49%	49%	1%	1%	Bimodal
6	49%	1%	49%	1%	
7	49%	1%	1%	49%	
8	1%	49%	49%	1%	
9	1%	49%	1%	49%	
10	1%	1%	49%	49%	
11	33%	33%	33%	1%	Trimodal
12	33%	33%	1%	33%	
13	33%	1%	33%	33%	
14	1%	33%	33%	33%	

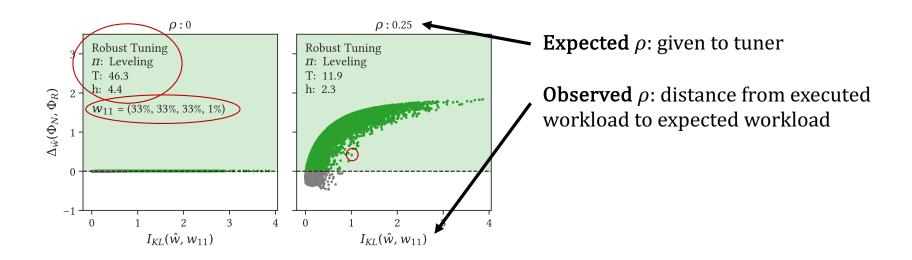
Relationship of Expected and Observed ρ



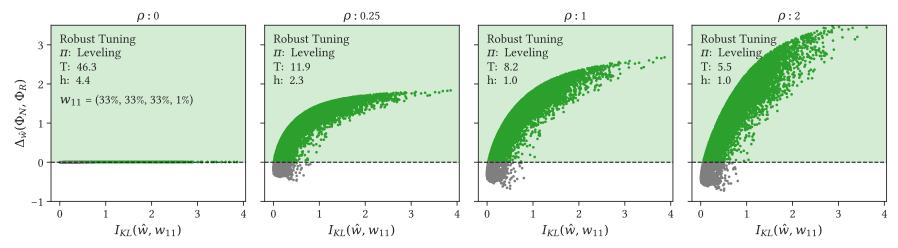
Highest throughput when observed and expected ρ match

Lowest throughput when ρ is **mismatched**

Impact of Observed vs Expected ρ

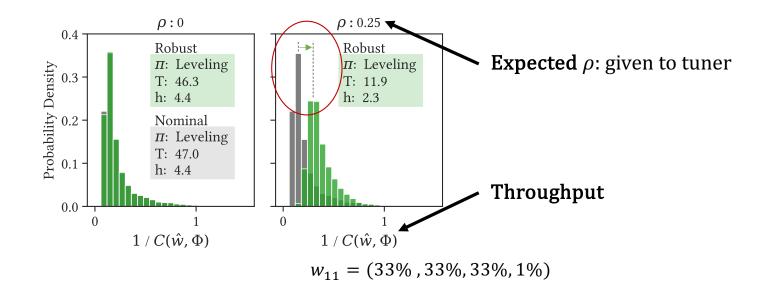


Impact of Observed vs Expected ρ

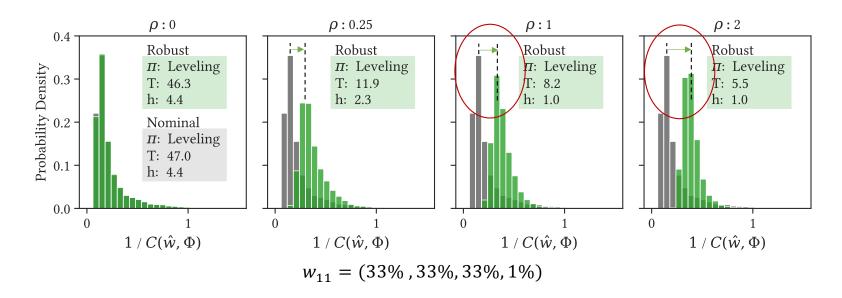


- Higher expected ρ accounts for more uncertainty,
- Potential speed up of 4x
- Higher expected $\rho \rightarrow$ anticipates writes \rightarrow shallow tree

ρ and Performance Gain Distribution

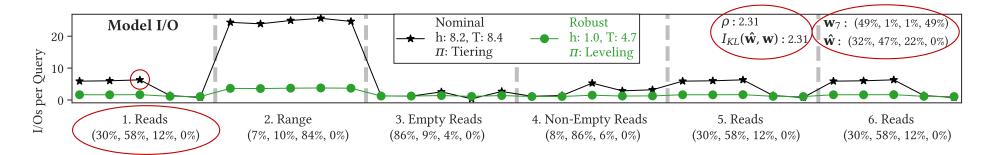


ρ and Performance Gain Distribution



Peak of the distribution moves towards higher throughput as we consider higher uncertainty

Workload Sequence on RocksDB

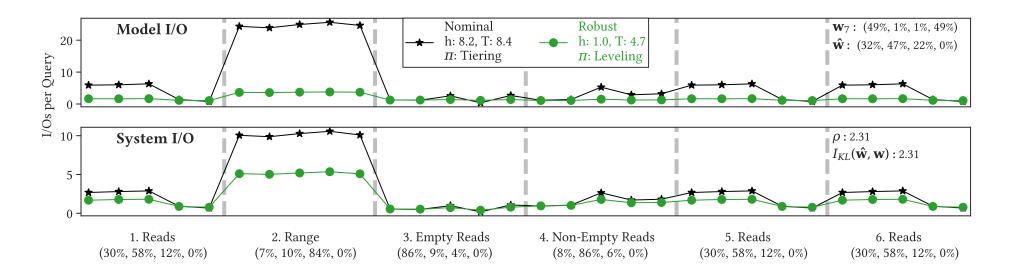


RocksDB instance setup with 10 million unique key-value pairs of size 1KB

Each observation period is 200K queries, with 5 observations per session 6 million queries to the DB

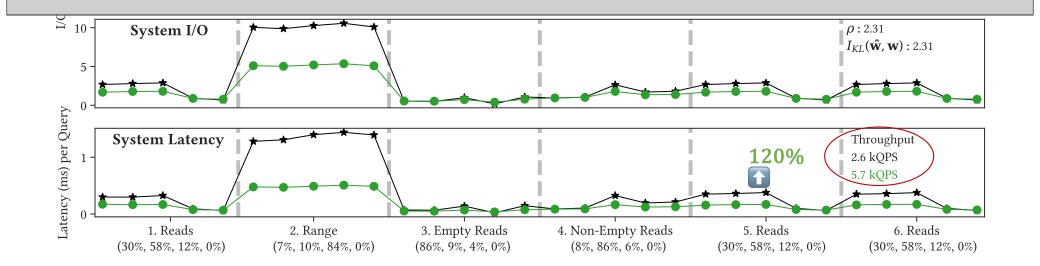
Writes are unique, range queries average 1-2 pages per level

Workload Sequence



Workload Sequence

Small subset of results! Take a look at the paper for a more detailed analysis



Outline

A Primer on LSM Trees

Flexibility in Compaction Design [VLDB-J 24]

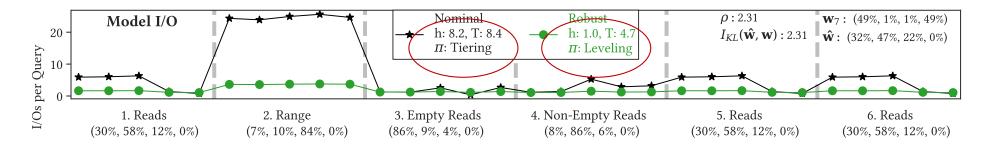
Modeling LSM Trees

Tuning LSM Trees

ENDURE: Finding Robust Tunings for LSM Trees [VLDB 22]

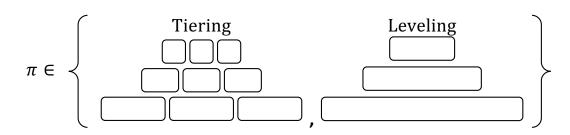
AXE: Learning to Tune LSM Trees By Task Decomposition

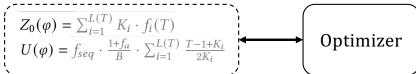
Limitations in ENDURE



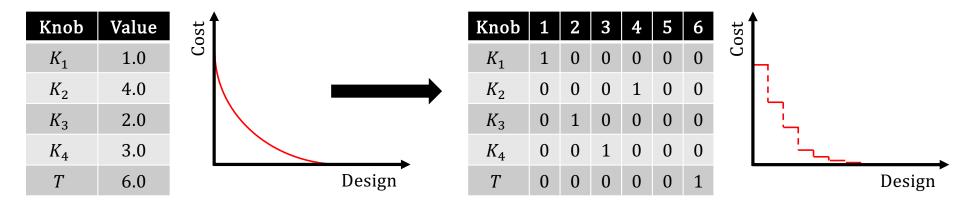
Optimizers tends to scale poorly as the decision space grows, hence, we limited the decision to Tiering or Leveling

Cost model took a lot of man hours





Complex Decision Space



We like to think of knobs as continuous values

Reality is they take on a set number of values

Solution: Pretend we're in a continuous space then round off

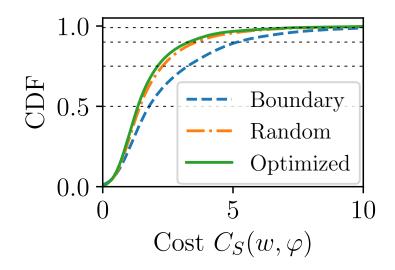
Problem: Errors propagate fast

43

Sensitive Optimizers

- 1. Build optimizer with different initial starting conditions
- 2. For each optimizer, test recommended designs for various workloads

<u>No</u> workload drift. $(w_0 = \widehat{w})$



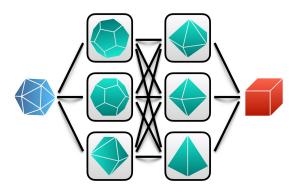
Median Slowdown from Optimal

Percentile	Boundary	Random
P50%	1.0x	1.0x
P75%	1.7x	1.1x
P90%	2.4x	1.2x
P99%	4.1x	1.7x
P99.9%	6.2x	3.3x

Tackling Discrete Optimization

Machine learning strategies proven to work well in discrete optimization tasks

Adapt techniques for systems tuning

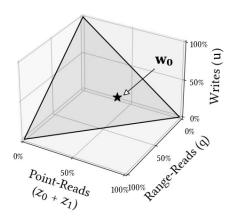


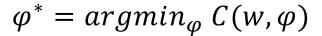
The LSM Tuning Problem

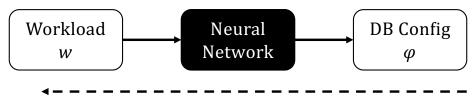
 $w : Workload (z_0, z_1, q, w)$

 φ : Design $(m_{buff}, m_{filter}, T, K_1, K_2, \dots, K_L)$

C: Cost(I/O)



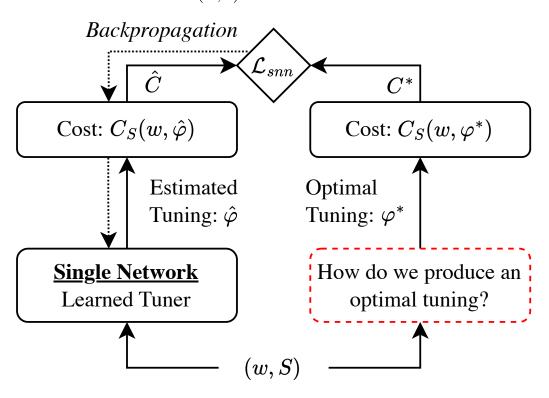




Backpropagation Requires Differentiability

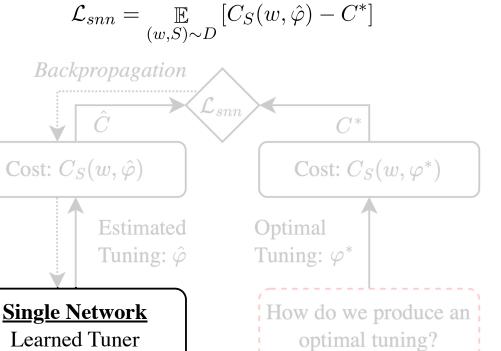
How would we train a tuner?

$$\mathcal{L}_{snn} = \mathbb{E}_{(w,S)\sim D} \left[C_S(w,\hat{\varphi}) - C^* \right]$$



How would we train a tuner?

Single neural network for our task is infeasible



(w, S)

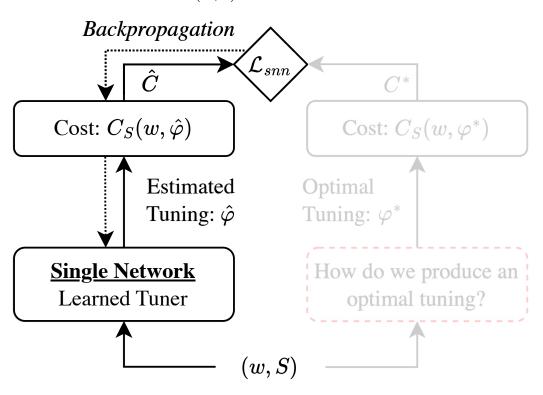
How would we train a tuner?

$$\mathcal{L}_{snn} = \mathbb{E}_{(w,S)\sim D} \left[C_S(w,\hat{\varphi}) - C^* \right]$$
uckpropagation



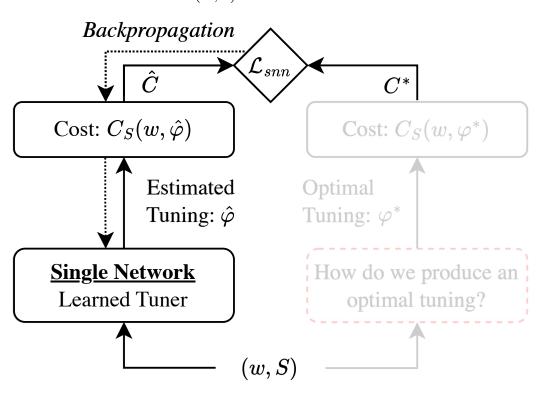
How would we train a tuner?

$$\mathcal{L}_{snn} = \mathbb{E}_{(w,S)\sim D} \left[C_S(w,\hat{\varphi}) - C^* \right]$$



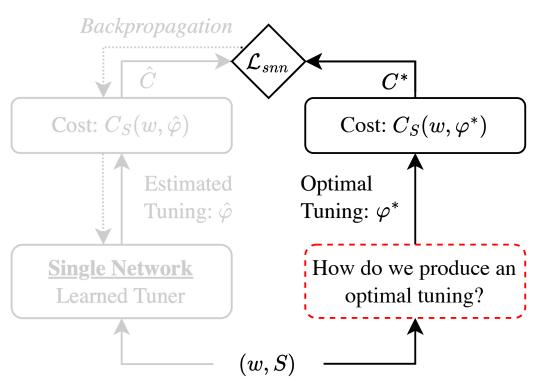
How would we train a tuner?

$$\mathcal{L}_{snn} = \mathbb{E}_{(w,S)\sim D} \left[C_S(w,\hat{\varphi}) - C^* \right]$$



How would we train a tuner?

$$\mathcal{L}_{snn} = \mathbb{E}_{(w,S)\sim D} \left[C_S(w,\hat{\varphi}) - C^* \right]$$

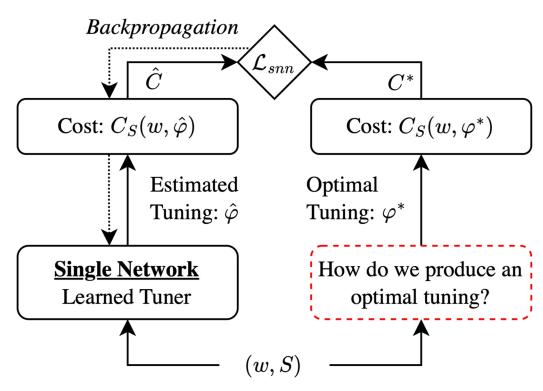


How would we train a tuner?

Single neural network for our task is infeasible

We would need to have already solved the problem to obtain the correct data

$$\mathcal{L}_{snn} = \mathbb{E}_{(w,S)\sim D} \left[C_S(w,\hat{\varphi}) - C^* \right]$$

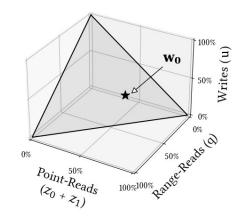


The LSM Tuning Problem

 $w : Workload (z_0, z_1, q, w)$

 φ : Design $(m_{buff}, m_{filter}, T, K_1, K_2, ..., K_L)$

C: Cost(I/O)



$$\varphi^* = [argmin_{\varphi_{\mathbf{l}}} C(w, \varphi)]$$

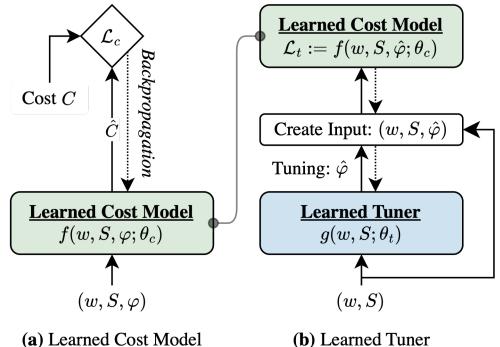
What is the **optimal tuning** for a specific **workload?**

What is the **cost** of a **workload** executed on a **tuning**?

Task Decomposition of the Tuning Problem

We approach each subtask with a neural network

$$\mathcal{L}_c = \mathbb{E}_{(w,S,\varphi,C)\sim D} \left[||\hat{C} - C|| \right]$$

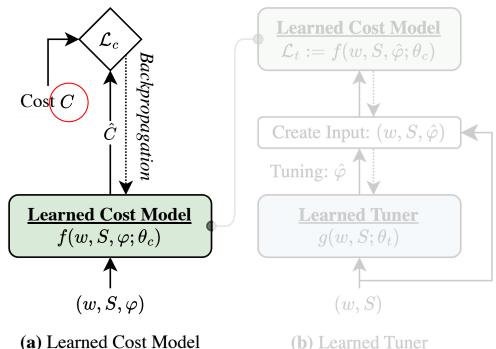


Task Decomposition of the Tuning Problem

We approach each subtask with a neural network

$$\mathcal{L}_{c} = \mathbb{E}_{(w,S,\varphi,C)\sim D} \left[||\hat{C} + C|| \right]$$

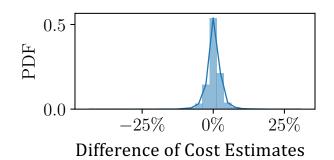
What is the cost of a workload executed on a tuning?

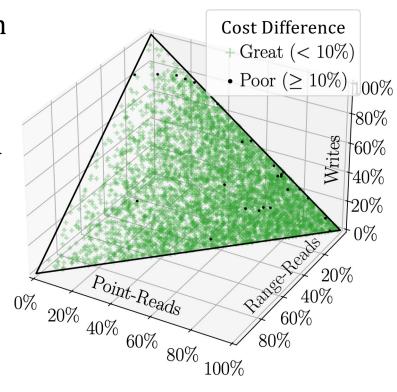


Learned Cost Model Performance

Randomly sampled workloads with a fixed environment and tuning

99% of points evaluated are within 10% of the true cost





Task Decomposition of the Tuning Problem

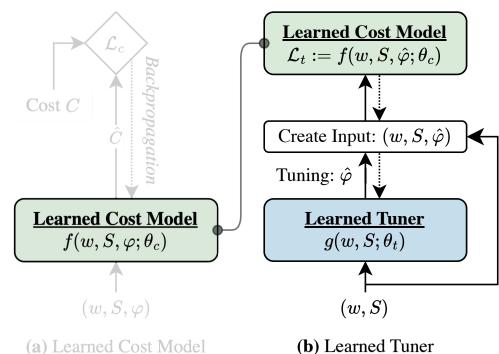
What is the **optimal tuning** for a specific workload?

$$\varphi^* = \operatorname*{arg\,min}_{\varphi} C_S(w, \varphi)$$

$$\mathcal{L}_t = \mathbb{E}_{(w,S)\sim\mathcal{D}} \left[C_S(w,\hat{\varphi}) \right]$$

$$\mathcal{L}_t = \mathbb{E}_{(w,S)\sim\mathcal{D}} \left[f(w,S,\hat{\varphi}) \right]$$

Learned cost model is used as the loss for the tuner



Task Decomposition of the Tuning Problem

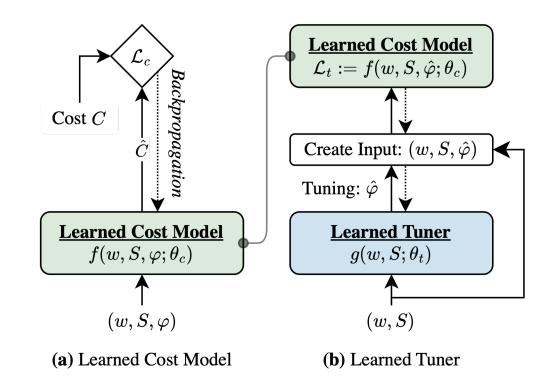
What is the **optimal tuning** for a specific **workload?**

$$\varphi^* = \operatorname*{arg\,min}_{\varphi} C_S(w, \varphi)$$

$$\mathcal{L}_t = \mathbb{E}_{(w,S)\sim\mathcal{D}} \left[C_S(w,\hat{\varphi}) \right]$$

$$\mathcal{L}_t = \mathop{\mathbb{E}}_{(w,S)\sim\mathcal{D}} \left[f(w,S,\hat{\varphi}) \right]$$

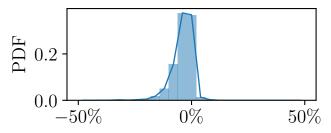
Learned cost model is used as the loss for the tuner



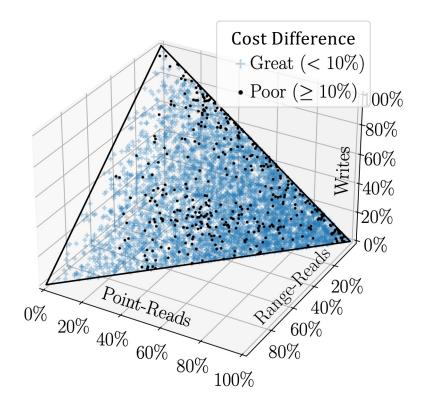
Learned Tuner Performance

Comparison to an expert configured analytical optimizer

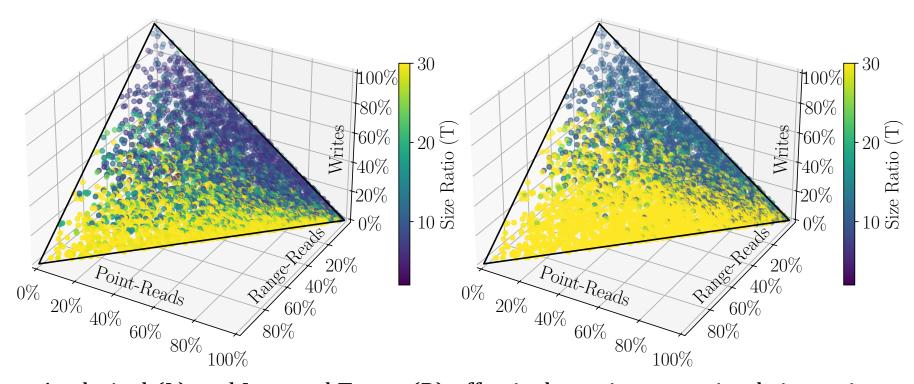
88% of tunings are within 10% from the optimal



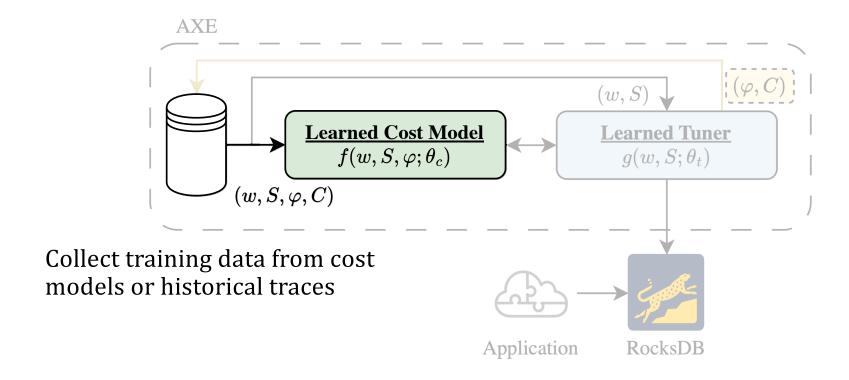
Normalized Cost: Tuner vs Optimizer

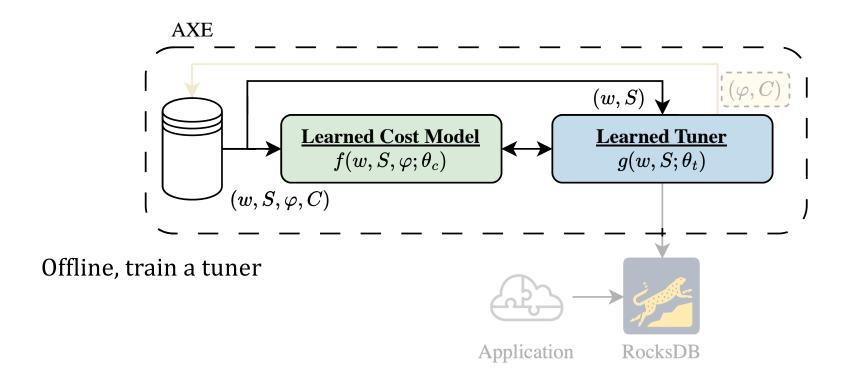


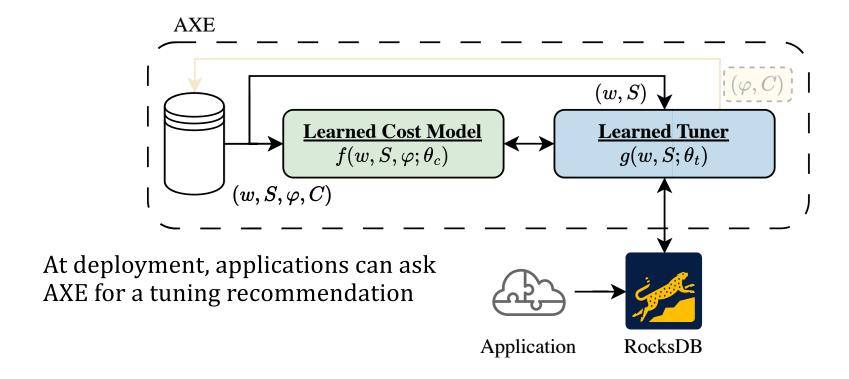
Size Ratio Recommendations

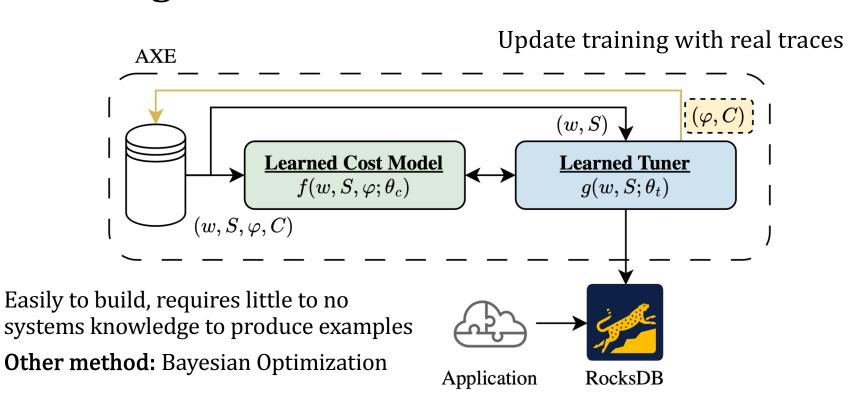


Analytical (L) and Learned Tuner (R) effectively navigates optimal size ratios

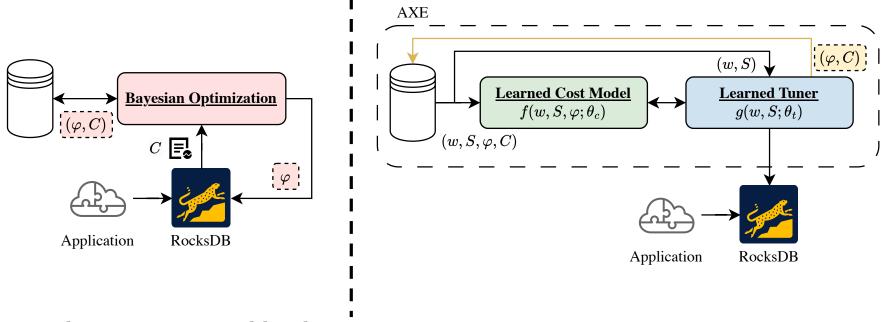








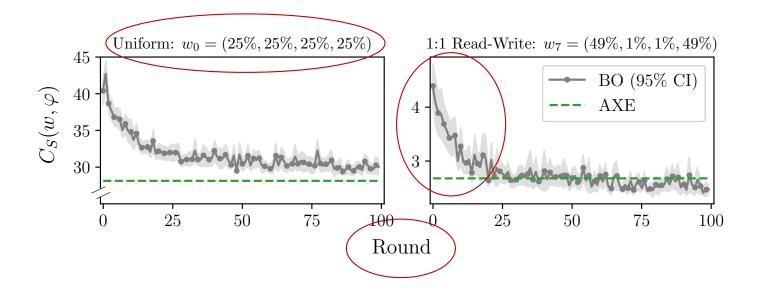
AXE Compared To BO



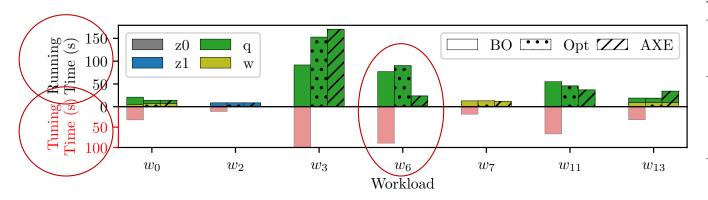
BO adapts to new workloads Mechanism for feedback is expensive

The Cost of AXE is Marginal

Pays a **hefty** upfront cost compared to AXE.



Tunings Deployed on RocksDB



Index	(z_0,z_1,q,u)			Type	
0	25%	25%	25%	25%	Uniform
1	97%	1%	1%	1%	Unimodal
2	1%	97%	1%	1%	
3	1%	1%	97%	1%	
4	1%	1%	1%	97%	
5	49%	49%	1%	1%	Bimodal
6	49%	1%	49%	1%	
7	49%	1%	1%	49%	
8	1%	49%	49%	1%	
9	1%	49%	1%	49%	
10	1%	1%	49%	49%	
11	33%	33%	33%	1%	Trimodal
12	33%	33%	1%	33%	
13	33%	1%	33%	33%	
14	1%	33%	33%	33%	

AXE on RocksDB creates competitive tunings

Less domain expertise needed compared to an optimizer *Less* upfront cost compared to iterative tuning

Thanks!

Learn more at

disc.bu.edu/ Disc www.ndhuynh.com/

