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Flexibility Due To Configuration
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A Primer on LSM Trees
Flexibility in Compaction Design [VLDB-] 24]
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Tuning LSM Trees
ENDURE: Finding Robust Tunings for LSM Trees [VLDB 22]
AXE: Learning to Tune LSM Trees By Task Decomposition [UR*]



Primer: Log-Structured Merge-Trees
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Memory Buffer

[ <key, value> ]

Fence Pointers
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Compaction Design
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Unifying Compaction Design Language

Tiering Leveling

Ul Ki=3 Ki=1 [ J
L)L) k=3 k=1 | J

e =3 k=1 J
Write Optimized <= ) Read Optimized
“Kapacity"’ - KapLSM

UL Ky =3
L] k=2

[ *[VLDB-] 24]] Kg - 1
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Navigating Flexibility

Workload Design Space (Mpyfr, Msie, T, K1, K3, v, K1)
( Application h f \
</ Memory Buffer (mpy ) Elgor_n_Fll_te_rs_(Tffilt)

( )

[ <key, value> ] L (Y] (YY) (Y]

I I

25 Y

87, DATA A _ /

gé,og_ 7 Size Ratio T /{ ][ } [ } f
47 E/ }[ } =
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How do we decide on the best configuration for a specific application?
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The Tuning Problem

w : Workload
Design (mMpyrs Myitrer, T, Kq, o, K1)
Cost

a8

@* =argmin, C(w, @)
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The LSM Tuning Problem

w : Workload
@ : Design  (Mpyrr, Mriter, T, Ky, oo, K1)
C : Cost
@* =argmin, C(w, @)
Memory Buffer (mpyfy) El()_or_nfil_te_rs_(rlz@g Size Ratio T ][ ][ ] K
[<key, Value>] :( [Y] [Y] [Y] \: [’/ J[ } K,
I\_[%]_ _q]_ _q]__,}l [ *[VLDB-] 24-]] K3
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Workloads

Workload
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Application

Writes
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10 - 275

86,
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25 Reads
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Query Types

Empty Reads : z, Non-Empty Reads : z; Workload : (z, 21, q, u)

— —
| ) E—

]
Writes (u)

Range Reads: q Writes : u

[ \ﬂ\ Po;, )LSO%
N S

Q.

<
100%100%‘13?%

N
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Additional Notation

POint Reads E  Numentries in 1 page

L(T) Totallevels

fi(T) BF false positive rate at level i
N¢(T) Total keys if tree was full

Empty Reads : z,
] Sum of false positives

— Zo((P)_ SHD K - fi(T‘)

Non-Empty Reads : z; Probability query is N
- satisfied at Level i False positives from levels above
1 \

L(T -1). 71 u —
I 7 () = X U e (14 DK - (D) + B (1)

Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis. 2024.

16
Towards flexibility and robustness of LSM trees. The VLDB Journal (2024), 1-24.
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Range-Reads and Writes T~

L(T) Totallevels
Sro  Range query selectivity
I Sequential access cost
Range Reads: q e

L Sequential read based on selectivity
] — N L)
SRS 0(0) = foq Sko - 3+ 3L Ki } 11/0 per Seck per level

Writes : u
-\ Average number of merges a write will participate in
|
[ e ! ‘
_ 1+fq L(T) T-1+4K;
[ ~ Ulp) = fseq "B Zizl 2K;

H_!
Writes only flush once buffer is full

Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis. 2024. 17
Towards flexibility and robustness of LSM trees. The VLDB Journal (2024), 1-24.
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The LSM Tuning Problem

w : Workload (z, z,, q, w)

@ : Design  (Mpyrr, Mejter, T, Ky, Ky, o, Kp)
C : Cost (I/0)
Q"= argming, C(w, @)

Cost function is a weighted sum over each operation type

Cs(w, @) =20 - Zo(@) + 21 - Z1(¢) +q- Q(@) +u - U(p)

18
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Tuning Problems

wo : Workload (2o, 23, q, u) Best Configuration

Cost (1/0s)

Cost

Workload 1

Rf‘ads 100%100%Q3§‘

19



Outline

ENDURE: Finding Robust Tunings for LSM Trees [VLDB 22]
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We Are Not oracLES

w : Workload (z,, z4, q, u)

|

Workload

—

@* =argming, C(w, @)

@ : LSM Tree Design  (Mpyrs, Mriter, T, K1, Ky, -0, K1)
C : Cost (I/0)

DB Config
%

~

J

~

-

Production

A~

w

~

J
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Tuning Problems

wy : Workload (zg, z1, q, u)

Cost (1/0s)

Cost (1/0s)

'Best’ Configuration

Cost

Workload 1 Workload 2

Optimal tuning depends on workload

Workload uncertainty leads to
sub-optimal tuning

22
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The LSM-Tuning Problem

w : Workload (z,, 21, q, u)
@ : Design  (Mpyrr, Mritter, T Ky, Kz, oo, K1)
C : Cost (I/0)

@* =argming, C(w, @)

Nominal
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Robust Tuning
@* = argmin, C(W, @)

s.t., w €E U‘f,

Cost (1/0s)

w : Workload (z, z1, q, u)
Optimal configuration for
expected workload

Robust configuration for the
A workload neighborhood

Writes (u)

--------
-------

* Nominal  -ccccc

BXX Robust  coccccs

Cost (1/0s)

0%

Workload 1 Workload 2

24
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Uncertainty Neighborhood

Neighborhood of workloads (p) via the KL-divergence

Workload Characteristic
m AN

~ ~ Wi
L@, w) = ) @+ log (=)
i=1 Wi

—_
(=3
S
N

Writes (u)

- UP: Uncertainty Neighborhood of Workloads
: Size of this neighborhood

p

25
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Calculating Neighborhood Size

Workload Characteristic Historical workloads
maximum/average uncertainty among

workload pairings

—_
(=3
S
N

Writes (u)

User provided workload uncertainty

UL : Uncertainty Neighborhood of Workloads
p :Size of this neighborhood
26




BOSTON
UNIVERSITY

838
DiSC

Solving Robust Problem
pr = argmin Cs (b, @)

[terating over every possible

workload is expensive

100%

(53}
(=3
N

Writes (u)

27
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Solving Robust Problem

[terating over every possible
workload is expensive

Formulation of the dual problem to
reduce to a feasible problem?*

*Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen.

2013. Robust Solutions of Optimization Problems Affected by Uncertain Probabilities.
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¢r =argmin Cs(w, ¢)
@

S.t., W E Uy,

min {r; + pA +/1i w,gbI*(L(%)}

@,A>0,n =1
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ENDURE Pipeline

Workload Characteristic System Information
Expected performance

Page Size
Memory Budget

Cost (1/0s)

—
(=3
S
X

\ 4

Writes (u)

ENDURE
Solves the
Robust Problem

0%
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Testing Suite

ENDURE in Python, implemented in tandem with RocksDB Index (z0. 20, 1) Type

0 25% 25% 25% 25% Uniform O
97% 1% 1% 1% Unimodal >

1% 97% 1% 1%
1% 1% 97% 1%
1% 1% 1% 97%

49% 49% 1% 1% _Bimodal >

49% 1% 49% 1%
49% 1% 1% 49%
1% 49% 49% 1%
9 1%  49% 1% 49%

Normalized delta throughput 10 1% 1% 49% 49%

11 33% 33% 33% 17%C_Trimodal >

12 33% 33% 1% 33%
1/C(w,®;) — 1/C(w,®1) 13 33% 1% 33% 33%
1/C(w.01) 14 1% 33% 33% 33%

Nominal vs Robust: > 0 is better

Uncertainty benchmark

* 15 expected workloads

* 10K randomly sampled workloads as a test-set

(oI e NS | = W N =

1 means 2x speedup

30
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Impact of Workload Type

Index (20,21, 9, 1) Type

o 1.5 1 /‘/Q——“ ‘ ‘ ‘ ‘ ‘ ‘ ’—{ 0  25% 25% 25% 25% Uniform

8 /Q)/ 1 97% 1% 1% 1% Unimodal
— N ——H——H——X—) 2 1% 9% 1% 1%
Lr)ts 'é'.: 1.0 A 4 x/x/x/" 30 1% 1% 9% 1%
it : P 4 1% 1% 1% 9%

[ ~ x

L Z 5 49% 49% 1% 1% Bimodal
A @ 6 49% 1% 49% 1%
= 0.5 ) 7 49% 1% 1% 49%
é <? t —4&— Unimodals 8 1% 49% 49% 1%
o . 9 1% 49% 1% 49%
Z —*— Bimodals 10 1% 1% 49% 49%

0.0 7 11 33% 33% 33% 1% Trimodal

o
[\V

33% 33% 1% 33%
33% 1% 33% 33%
1% 33% 33% 33%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Uncertainty Neighborhood p «<—— Given to ENDURE

=
W

Unbalanced workloads result in overfitted nominal tunings

31



Impact of Workload Type

Index (20,21,9, u) Type

1.5 7 E— ——“ ‘ ‘ ‘ ‘ ‘ ‘ ’—{ 0  25% 25% 25% 25% Uniform

8 ‘/ ‘ 1 97% 1% 1% 1% Unimodal
—~~ x x x x x x x , 2 1% 97% 1% 1%

b ‘/ o—X—X 3. 1% 1% 9% 1%
< & 1.0 ,— R
o . % 4 1% 1% 1% 9%
[ ~ x
v Z 5 49% 49% 1% 1% Bimodal
Q. S __.__.__.——.——.f—‘ *—0—0—0—0—( 6 49% 1% 49% 1%
£ =05 3 o—© . . 7 49% 1% 1%  49%
o g ‘/ _‘_ Unimodals —®— Trimodals 8 1% 49% 49% 1%
o . . 9 1% 49% 1% 49%
= —3%— Bimodals —=— Uniform 10 1% 1% d9% 4%

== = == g = g = g = g =fF = 0 % s % 1% Temodal

I I I

o
[\V

33% 33% 1% 33%
33% 1% 33% 33%
1% 33% 33% 33%

010 015 1.0 115 210 2.5 3.0 3.5
Uncertainty Neighborhood p «<—— Given to ENDURE

=
W

Unbalanced workloads result in overfitted nominal tunings

Tuning with uncertainty (p > 0.5) provides benefits

32
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Relationship of Expected and Observed p

W7: (49%, 1%, 1%, 49%) W11: (33%, 33%, 33%, 1%)

. 3 5
Observed p: distance from executed
3.2
workload to expected workload 4
\ 9 3 2.4 SD
% 2 1.6 ;e'
=
Nas) S
g ! ! 0.8
'3' .
0
p 0.0
) *ﬁjjds 1009400% S 0 -1
0 1 2 3 0 1 2 3
Expected p: workload given to tuner — P

Highest throughput when observed and expected p match

Lowest throughput when p is mismatched

33
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Impact of Observed vs Expected p

p:0 P:025 o

A Robust Tuning | Robust Tuning —— Expected p: given to tuner

II: Leveling 1II: Leveling

T: 46.3 T: 11.9
2 44{333331) 1023 P Observed p: distance from executed

. Wi = Y0, 33%, 33%, 1% e
& workload to expected workload
S
<
0__
_l T T T T T
0 1 2 3 4

I (W, wi1) Ixr (W, wi1)

34
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Impact of Observed vs Expected p

p:0 p:0.25 p:1 p:2
3 Robust Tuning | Robust Tuning _| Robust Tuning
II: Leveling II: Leveling II: Leveling
T: 46.3 T: 11.9 T: 8.2 A
~ 9] h: 44 1 h: 23 h: 1.0
=
S Wi1 = (33%, 33%, 33%, 1%)
Z
€ 11
2
<
0__ __________________________
_l T T T T T T T T T T T T T T T T T T T
0 1 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Ixp (W, wi1)

* Higher expected p accounts for more uncertainty,
* Potential speed up of 4x

Ixr (W, wi1)

Ik (W, wi1)

* Higher expected p — anticipates writes = shallow tree

Ix (W, wi1)

35
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p and Performance Gain Distribution

04 p:0 N P 0.25 Ay
Robust > \Robust N
= II: Leveling 11: Leveling \ Expected p: given to tuner
'3 0.37 T: 46.3 . JT: 119
é" ) h: 44 ‘ h: 2.3
202 Nominal .
% 11: Leveling
< | T: 47.0 ]
£ 01 h: 4.4
- Throughput
0.0 - = |
0 1 0 1
1/C(w, @) 1/C(w, ®)

wy, = (33%, 33%, 33%, 1%)

36
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p and Performance Gain Distribution

Probability Density

Peak of the distribution moves towards higher throughput as we consider higher uncertainty

04 p:0 P :0.25 p:1 p:2
' Robust > Robust ) obust —*  \Robust
II: Leveling i II: Leveling | : Leveling : : Leveling
0.3 T: 46.3 LT 119 : 8.2 : 5.5
h: 44 ! h: 2.3 h: 1.0 h: 1.0
0.2 Nominal
11: Leveling
| T: 47.0 I
0.1 h: 4.4
0.0 - = |
1 1 1 1
1/C(w, @) 1/C(w, @) 1/C(w, ) 1/C(w, @)

wy, = (33%, 33%, 33%, 1%)

37
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Workload Sequence on RocksDB

Model I/O Nominal Robust W7 (49%, 1%, 1%, 49%)
20 1 —%x— h: 82, T 8.4 —— h: 1.0, T: 4.7 W : (32%’ 47%, 22%, 0%
> 11: Tiering II: Leveling
)
s 10
@}
g
g, 0-
§ 1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
= (30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)

RocksDB instance setup with 10 million unique key-value pairs of size 1KB

Each observation period is 200K queries, with 5 observations per session 6
million queries to the DB

Writes are unique, range queries average 1-2 pages per level

38
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Workload Sequence

Model I/O Nominal Robust W7 (49%, 1%, 1%, 49%)
20 4 —%— h:82 T:84 -—@— h:10,T:47 W: (32%, 47%, 22%, 0%)
> 11: Tiering II: Leveling
9]
S 10
o
g
a, 0-
S
I Uy System I/O0 p:231
Ixr (W, w) : 2.31
5 -
0 -
3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
(30%, 58%, 12%, 0%)

1. Reads 2. Range
(30%, 58%, 12%, 0%)

(30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%)

39
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Workload Sequence

Small subset of results! Take a look at the paper for a more detailed analysis

1/

p:231

10 1 System I/O0 e w)
kL(W, W) : 2.31

Throughput

120% 2.6 kQPS

5.7 kQPS

System Latency

T T T T T T
1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
(30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)

Latency (ms) per Query

40



Outline

AXE: Learning to Tune LSM Trees By Task Decomposition

41



Limitations in ENDURE

Model I/0 i p:231 W7 (49%, 1%, 1%, 49%)
20 h: 8.2, T: 8.4 h: 1.0, T: 4.7 IKL(WAI W) :2.31 V,\\"Z (32%’ 47%, 22%, 0%)
> 11: Tiering II: Leveling
(5]
5 107
S
—
g 0-
§ 1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
= (30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)
Optimizers tends to scale poorly as the 4 Tiering Leveling A
decision space grows, hence, we limited DDD :]
the decision to Tiering or Leveling mE < [ ][ ][ ] [ ] >
Cost model took a lot of man hours 9 [ J( J( ] , [ ] y
Model

______________________________

Zy(o) = Z,-Lz(lT) Ki - fi(T)
U(q)) = f;‘eq ’ lg“ ’ Zle(lT) T;?’,Ri

______________________________

Optimizer

42
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Complex Decision Space

z] Knob 1213 4[5 6 Y
K, 1.0 < KK 1.0 0 0 0 0 <L
K, 4.0 m—) K 000 1 00 L.
K, 2.0 K, 0 1. 0 0 0 O -
K, 3.0 N K, 0 0 1 0 0 0 — R
T 6.0 Design T 0 0 0 0 0 1 Design
We like to think of knobs as continuous values Reality is they take on a set number of values

Solution: Pretend we're in a continuous space then round off

K, 1.27 Round Off K; 1
K, 4.46 K, 4

Linear Program

Solver

Problem: Errors propagate fast
43
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Sensitive Optimizers

1. Build optimizer with different initial starting conditions
2. For each optimizer, test recommended designs for various workloads
No workload drift. (wg = W)

Median Slowdown from Optimal

LO-- s
---------------------------------- P50% 1.0x 1.0x
—
A 0.5 === Boundary | P75% 1.7x 1.1x
© Random P90% 2.4x 1.2x
—— Optimized P99% 4.1x 1.7x
0.0 ' P99.9% 6.2x 3.3x

0 5 10
Cost Cg(w, p)

44
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Tackling Discrete Optimization

S,

> Y70 .

2* " NEURAL INFORMATION
'f . PROCESSING SYSTEMS
[J

Machine learning strategies proven to work
well in discrete optimization tasks

Machine Learning for

Adapt techniques for systems tuning C°mgg‘&t;giT7|T%ﬁi£i22ftion
f’ﬁ )
PN
- YAF\LPNAY
‘ﬂf\ft’é%ﬁt/l’
‘1% $ f, ) )
-
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The LSM Tuning Problem

w : Workload (z,,z,, q, W)

50%

Writes (u)

@ : Design  (Mpyrsr, Mritrer, T, K1, Ky, oo, K1)

0%

(4
C : Cost (I/0) - s
o 4 2? jds 100%1007&39

@* =argming, C(w, @)

Workload Neural DB Config
w Network Q

Backpropagation Requires Differentiability

46
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Training a Tuner

How would we train a tuner? BaCkp” OPagatw”
v| C C*

s ismicase o [cmeoswd) ] [_comostme) ]
Estimated Optimal
: | Tuning: ¢ Tuning: ¢*
v B DO
Single Network  How do we produce an \:
Learned Tuner E optimal tuning? E

47
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Training a Tuner

How would we train a tuner?

Single neural network for our
task is infeasible

Single Network
Learned Tuner

L (w, 5)

48
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Training a Tuner

How would we train a tuner?

Single neural network for our
task is infeasible

[ Cost: Cs(w, @) ]

Estimated
i | Tuning: ¢

Y
[ Single Network

Learned Tuner

L (w, 5)

49
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Training a Tuner
»Csnn — ( I [CS(w7 @) o C*]

How would we train a tuner? Bac@mpagano:@
\ 4

Single neural network for our [ Cost: Cy(w, ) ]

o)

task is infeasible

Estimated
i | Tuning: ¢

Y
[ Single Network

Learned Tuner

L (w, 5)

50
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Training a Tuner
»Csnn — ( I [CS(w7 @) o C*]

How would we train a tuner? Backpropagation
v c*

Single neural network for our [ Cost: Cy(w, ) ]

o)

task is infeasible

Estimated
i | Tuning: ¢

Y
[ Single Network

Learned Tuner

L (w, 5)
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Training a Tuner

How would we train a tuner? _
C*

Single neural network for our Cost: Cig(w, o)
task is infeasible FCslw, ¢
Optimal
Tuning: ¢*

--------------------
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Training a Tuner
»Csnn — ( I [CS(w7 @) o C*]

How would we train a tuner? BaCkP” opagation
e :

f:sll%lies ?I?;lega;lﬂl)lleetwork for our [ Cost: Cs(w, ) ] [ Cost: Cs(w, ¢*) ]
: Estimated Optimal
We would need to have already . | Tuning: Tuning: ¢
solved the problem to obtain A 4 ) ‘
the correct data Single Network . How do we produce an ,
[ Learned Tuner E optimal tuning? E
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The LSM Tuning Problem

w : Workload (z,,z,, q, W)

Writes (u)

@ : Design  (Mpyrsr, Mritrer, T, K1, Ky, oo, K1)
C : Cost (I/0)

(—==~-- (=" "7
Q" —|argmln<p,|C(W go),

R

What is the optimal tuning for What is the cost of a workload
a specific workload? executed on a tuning?
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Task Decomposition of the Tuning Problem

Learned Cost Model
Et = .f(w7 S7 (157 06)
A

We approach each subtask
with a neural network

ovgd

A H "U 5
L= E__[llE=cl CostC | 3 v
(w,S,,C)~D Af S Create Input: (w, S, ¢ |(—
be. o§ [ reate npuA.:(w, ,P)
) Tuning: ¢ | :
V= g v

Learned Cost Model Learned Tuner
f(w7 Sa ("2 00) g(w7 S; at)
A A

(w, S, ) (w, S)

(a) Learned Cost Model (b) Learned Tuner
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Task Decomposition of the Tuning Problem

We approach each subtask
with a neural network

¥ovd

d:

= & [ic{a)] cof0) |13
(w,S,p,C)~D o ;‘%
P8
\ 4
What is the cost of a workload Learned Cost Model
executed on a tuning? fw, S, ;6.)
(w, S, ¢)

(a) Learned Cost Model
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LLearned Cost Model Performance

Randomly sampled workloads with Cost Difference

a fixed environment and tuning Great (< 10%)
» Poor (2 10%) 00%

99% of points evaluated are within
10% of the true cost

0.5 1

PDF

OO ! T T
-25% 0% 25%

Difference of Cost Estimates
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Task Decomposition of the Tuning Problem

What is the optimal tuning for Learned Cost l\A/Iodel
a specific workload? L= f(w, S, ;0.)
X
" = arg min Cs(w, ¢) [ Create Input:v(w S, ) ](—
(p Y )
L; = ( g% i [CS(U)7 @)] Tuning: ¢ V
w, ~
) Learned Cost Model Learned Tuner
Li= E [f(w,S,$) f(w, S, ¢; 6.) g(w, S;6;)
(w,S)~D *
. I
Learned cost model is used as (w, S)

the loss for the tuner (b) Learned Tuner
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Task Decomposition of the Tuning Problem

Learned Cost Model
Et = .f(w7 S7 (157 06)
A

What is the optimal tuning for

a specific workload? ‘ : ; =
)
ey i
Cost C E v
¢ = argmin Cg(w, ) C ;% [ Create Input: (w, S, §) ](—
(p _ & : Y I
L; = ( g% i [Cs(’w, 90)] v S Tuning: ¢ v
w, ~
) Learned Cost Model Learned Tuner
Ly = E [f<w7 S, 90)} f(w, S, p;0.) g9(w, S; 6;)
(w,S)~D *
| ) |
Learned cost model is used as (w, S, ) (w, S)

the loss for the tuner (a) Learned Cost Model (b) Learned Tuner
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LLearned Tuner Performance

Comparison to an expert Cost Difference

configured analytical optimizer N Great (< 10%)
<N, Poor (= 10%) 499

88% of tunings are within 10%
from the optimal

A 0.2
o

00 T T T
—50% 0% 50%

Normalized Cost: Tuner vs Optimizer
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Size Ratio Recommendations

30 30
00%
0%
60% M o0 & 20Z
o o
40% g= =
2 NN 20% f Cﬁ
‘h"""‘“ - 2 O U) (D
0 0%
/ " 20% 0 60%
60% 80%  60% 0%
80% 80%
100% 100%

Analytical (L) and Learned Tuner (R) effectively navigates optimal size ratios
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Building AXE

Learned Cost Model
f (’U), S ) Q07 00)

(w, S, ¢,C)

Collect training data from cost
models or historical traces
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Building AXE

AXE
Va - - I I - I I I - I I I I I \
I
(,9) | |
| Learned Cost Model Learned Tuner |
I f(w7 Sa ()0;96) g(wa S; Ht) I
l (w7 S) ©, C) )
~— — — — — — — e e e e e e — — —

Offline, train a tuner
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Building AXE

AXE
~_ - I I - - - - - - - I - - - \
|
| (,9) § |
Learned Cost Model Learned Tuner |
| f(w7 Sa ©; 06) g(’UJ, S; et) |
l (wa S’ P C) )

At deployment, applications can ask
AXE for a tuning recommendation @

Application RocksDB
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Building AXE

Update training with real traces

AXE
~ - - - - - - - - - - - - - - ~
| (w,8) v ($0); |
| Learned Cost Model Learned Tuner |
| f(w7 Sa 2 06) g(w, S7 et) |
l (w7 Sa @, C) }
Easily to build, requires little to no
systems knowledge to produce examples @

Other method: Bayesian Optimization
y P Application RocksDB
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AXE Compared To BO

(w, S) ¢ E (507 C) :

_______

| |
| Learned Cost Model Learned Tuner |
| f(w’ S’QO;OC) g(w, S;ot) |
| J

Application RocksDB
Application RocksDB

(

BO adapts to new workloads
Mechanism for feedback is expensive
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The Cost of AXE is Marginal

Pays a hefty upfront cost compared to AXE.

i Uniform: wy = (25%, 26%, 26%, 25%) 1:1 Read-Write: wy = (49%, 1%, 1%, 49%)
~ 40 —— BO (95% CI)
S 4 ——— AXE
% 35 -
Q 20 3 4
i
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Tunings Deployed on RocksDB
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(20,21,9 u)

Type

(=]

25%

25%

25%

25%

Uniform

1 BO 7 Opt [ZZ]1 AXE

97%

1%
1%
1%

1%

97%

1%
1%

1%
1%

97%

1%

1%
1%
1%
97%

Unimodal

(ool B W N =

o

We
Workload

AXE on RocksDB creates competitive tunings

_
(=}

49%
49%
49%

1%
1%
1%

49%

1%
1%

49%
49%

1%

1%

49%

1%

49%

1%

49%

1%
1%
49%
1%
49%
49%

Bimodal

_
_

=
W N

33%
33%
33%

1%

33%
33%

1%

33%

33%

1%

33%
33%

1%
33%
33%
33%

Trimodal

Less domain expertise needed compared to an optimizer

Less upfront cost compared to iterative tuning
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Thanks!
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Learn more at

. 833
disc.bu.edu/ |(Sic

www.ndhuynh.com/
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