
Tuning	Log-Structured	Merge	Trees
Andy	Huynh

February	25th	2025

Serving	Diverse	Data	Domains

2

NoSQL	Distributed	Database

💬	Messaging*

🛜Distributed	IOT

LLM	Vector	Databases 📈Time	Series

🏥HIPAA	Compliant

💻Low	Latency

Flexibility	Due	To	Configuration

3

NoSQL	Distributed	Database

num_tokens

max_hints_delivery_threads

batchlog_endpoint_strategy

credentials_validity

row_cache_size

column_index_size

column_index_cache_size

memtable_flush_writers

…

cassandra.yaml

Database	Complexity	

Van Aken D. et. al., “Automatic Database Management System Tuning Through
Large-scale Machine Learning”. SIGMOD 2017 4

LSM	Trees	Are	Everywhere!

5

Log-Structured	Merge-Trees

NoSQL	Distributed	Database

Outline

A	Primer	on	LSM	Trees
	 Flexibility	in	Compaction	Design	[VLDB-J	24]
	 Modeling	LSM	Trees

Tuning	LSM	Trees
ENDURE:	Finding	Robust	Tunings	for	LSM	Trees	[VLDB	22]
AXE:	Learning	to	Tune	LSM	Trees	By	Task	Decomposition	[UR*]

6

Primer:	Log-Structured	Merge-Trees

buffer

Sorted	Run

Buffer	fills	à	Sort	and	Flush	to	disk

7

Application

GET	25
PUT	87,	DATA
SCAN	10	–	275
PUT	86,	
GET	99
GET	47
…
PUT	25

DISK

Level	1

Level	2

Level	L

<key,	value>

Size	Ratio	(Compaction	Growth	Rate)

Compact!

RAM

Primer:	Log-Structured	Merge-Trees

<key,	value>

8

DISK

Level	1

Level	2

Level	L

Compaction	Growth	Rate

Size	Ratio

Memory	Buffer

Fence	Pointers

…	

Bloom	Filters

Compaction	policy

Tiering	(Lazy	⬆)	or	Leveling	(Eager	⬇)

RAM

Compaction	Design

9

Write	Optimized Read	Optimized

Tiering Leveling

Lazy	Leveling 1-Leveling

Unifying	Compaction	Design	Language

10

Write	Optimized Read	Optimized

𝐾E = 3

𝐾F = 2

𝐾G = 1

“Kapacity”	-	KapLSM

*[VLDB-J	24]

𝐾E = 3

𝐾F = 3

𝐾G = 3

Tiering Leveling
𝐾E = 1

𝐾F = 1

𝐾G = 1

Navigating	Flexibility

11

<key,	value>

Memory	Buffer	(𝑚2344)	 Bloom	Filters	(𝑚4567)
Application

GET	25
PUT	87,	DATA
SCAN	10	–	275
PUT	86,	
GET	99
GET	47
…
PUT	25

How	do	we	decide	on	the	best	configuration	for	a	specific	application?

𝐾8

𝐾9

𝐾:*[VLDB-J	24]

Size	Ratio	𝑇

Design	Space	(𝑚2344 , 𝑚4567 , 𝑇, 𝐾8 , 𝐾9 , … , 𝐾;)Workload

The	Tuning	Problem
𝑤	:	Workload
𝜑	:	Design				(𝑚!"## , 𝑚#$%&'(, 𝑇, 𝐾), … , 𝐾*)
𝐶	:	Cost

12

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛, 	𝐶(𝑤, 𝜑)

The	LSM	Tuning	Problem
𝑤	:	Workload
𝜑	:	Design				(𝑚!"## , 𝑚#$%&'(, 𝑇, 𝐾), … , 𝐾*)
𝐶	:	Cost

13

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛, 	𝐶(𝑤, 𝜑)

<key,	value>

Memory	Buffer	(𝑚2344)	 Bloom	Filters	(𝑚4567) 𝐾8

𝐾9

𝐾:*[VLDB-J	24]

Size	Ratio	𝑇

Workloads

14

Reads

W
ri
te
s

Application

GET	25
PUT	87,	DATA
SCAN	10	–	275
PUT	86,	
GET	99
GET	47
…
PUT	25

Workload

(40%,	60%)

Query	Types

Empty	Reads	:	z0 Non-Empty	Reads	:	z1

Range	Reads:	q Writes	:	u

15

u

Workload	:	(z0,	z1,	q,	u)

Hit

Miss

Point	Reads

16

Empty	Reads	:	z0

Non-Empty	Reads	:	z1

Sum	of	false	positives

Probability	query	is	
satisfied	at	Level	𝑖 False	positives	from	levels	above

Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis. 2024.
Towards flexibility and robustness of LSM trees. The VLDB Journal (2024), 1–24.

Additional	Notation

𝐸 Num	entries	in	1	page

𝐿(𝑇) Total	levels

𝑓!(𝑇) BF	false	positive	rate	at	level	𝑖

𝑁"(𝑇) Total	keys	if	tree	was	full

Range-Reads	and	Writes

17

1	I/O	per	Seek	per	level

Writes	only	flush	once	buffer	is	full

Average	number	of	merges	a	write	will	participate	in

Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis. 2024.
Towards flexibility and robustness of LSM trees. The VLDB Journal (2024), 1–24.

Additional	Notation

𝐵 Num.	entries	in	buffer

𝐿(𝑇) Total	levels

𝑆#$ Range	query	selectivity

𝑓%&' Sequential	access	costRange	Reads:	q

Writes	:	u

Sequential	read	based	on	selectivity

The	LSM	Tuning	Problem
𝑤	:	Workload				(z0,	z1,	q,	w)
𝜑	:	Design				(𝑚!"## , 𝑚#$%&'(, 𝑇, 𝐾), 𝐾X, … , 𝐾*)
𝐶	:	Cost	(I/O)

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛, 	𝐶(𝑤, 𝜑)

18

Cost	function	is	a	weighted	sum	over	each	operation	type

Tuning	Problems

19

Best	Configuration𝐰𝟎 	:	Workload				(z0,	z1,	q,	u)

u

Outline

A	Primer	on	LSM	Trees
	 Flexibility	in	Compaction	Design	[VLDB-J	24]
	 Modeling	LSM	Trees

Tuning	LSM	Trees
	 ENDURE:	Finding	Robust	Tunings	for	LSM	Trees	[VLDB	22]
	 AXE:	Learning	to	Tune	LSM	Trees	By	Task	Decomposition

20

We	Are	Not	Oracles
𝑤	:	Workload				(z0,	z1,	q,	u)
𝜑	:	LSM	Tree	Design				(𝑚!"## , 𝑚#$%&'(, 𝑇, 𝐾), 𝐾X, … , 𝐾*)
𝐶	:	Cost	(I/O)

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛, 	𝐶(𝑤, 𝜑)

21

Workload
𝑤 Tuner DB	Config

𝜑

Production
h𝑤h𝑤 ≠ 𝑤

Tuning	Problems

22

'Best’	Configuration

Optimal	tuning	depends	on	workload

Workload	uncertainty	leads	to	
sub-optimal	tuning

𝐰𝟎 	:	Workload				(z0,	z1,	q,	u)

u

𝑈]
^ :	Uncertainty	Neighborhood	of	Workloads

𝜌	 :	Size	of	this	neighborhood

The	LSM-Tuning	Problem
𝑤	:	Workload				(z0,	z1,	q,	u)
𝜑	:	Design				(𝑚!"## , 𝑚#$%&'(, 𝑇, 𝐾), 𝐾X, … , 𝐾*)
𝐶	:	Cost	(I/O)

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛, 	𝐶(𝑤, 𝜑)

𝜑∗ = argmin$ 	𝐶 +𝑤, 𝜑

𝑠. 𝑡., +𝑤 ∈ 𝑈%
&

Nominal

Robust

23

u

Robust	Tuning

24

Optimal	configuration	for	
expected	workload

Robust	configuration	for	the	
workload	neighborhood

𝑤	:	Workload				(z0,	z1,	q,	u)
𝜑∗ = argmin? 	𝐶 h𝑤, 𝜑

𝑠. 𝑡., h𝑤 ∈ 𝑈@
A

u

Uncertainty	Neighborhood

25

𝐼B; h𝑤, 𝑤 = r
5C8

D

h𝑤5 ⋅ log(
h𝑤5
𝑤5
)

Neighborhood	of	workloads	(𝜌)	via	the	KL-divergence

𝑈E
F :	Uncertainty	Neighborhood	of	Workloads

𝜌	 :	Size	of	this	neighborhood

𝑈E
A

Workload	Characteristic

𝑈E
A

u

Calculating	Neighborhood	Size

Historical	workloads
maximum/average	uncertainty	among	
workload	pairings

User	provided	workload	uncertainty

26

Workload	Characteristic

𝑈E
A

𝑈E
F :	Uncertainty	Neighborhood	of	Workloads

𝜌	 :	Size	of	this	neighborhood

u

Solving	Robust	Problem

27

Iterating	over	every	possible	
workload	is	expensive

u

Solving	Robust	Problem

28

Iterating	over	every	possible	
workload	is	expensive

Formulation	of	the	dual	problem	to	
reduce	to	a	feasible	problem‡

‡Aharon	Ben-Tal,	Dick	den	Hertog,	Anja	De	Waegenaere,	Bertrand	Melenberg,	and	Gijs	Rennen.	
2013.	Robust	Solutions	of	Optimization	Problems	Affected	by	Uncertain	Probabilities.

ENDURE	Pipeline

29

Workload	Characteristic System	Information
				Page	Size
				Memory	Budget

ENDURE
Solves	the	

Robust	Problem

Expected	performance

RocksDB	Configuration

u

u

Testing	Suite
ENDURE	in	Python,	implemented	in	tandem	with	RocksDB

Uncertainty	benchmark
• 15	expected	workloads
• 10K	randomly	sampled	workloads	as	a	test-set

Normalized	delta	throughput

Nominal	vs	Robust:	>	0	is	better
	 	 						1	means	2x	speedup

30

Impact	of	Workload	Type

31

Unbalanced	workloads	result	in	overfitted	nominal	tunings

Given	to	ENDURE

u

Uncertainty	Neighborhood

N
or
m
.	D
el
ta
	C
os
t

Impact	of	Workload	Type

Unbalanced	workloads	result	in	overfitted	nominal	tunings

Tuning	with	uncertainty	(𝜌	>	0.5)	provides	benefits	

32

u

Uncertainty	Neighborhood

N
or
m
.	D
el
ta
	C
os
t

Given	to	ENDURE

Relationship	of	Expected	and	Observed	𝜌

33

Highest	throughput	when	observed	and	expected	𝜌	match

Lowest	throughput	when	𝜌	is	mismatched

Expected	𝜌:	workload	given	to	tuner

Observed	𝜌:	distance	from	executed	
workload	to	expected	workload		

Impact	of	Observed	vs	Expected	𝜌

34

Expected	𝜌:	given	to	tuner

Observed	𝜌:	distance	from	executed	
workload	to	expected	workload		

Impact	of	Observed	vs	Expected	𝜌

35

• Higher	expected	𝜌	accounts	for	more	uncertainty,	
• Potential	speed	up	of	4x
• Higher	expected	𝜌	→	anticipates	writes	→	shallow	tree

𝜌	and	Performance	Gain	Distribution

𝑤88 = (33%	, 33%, 33%, 1%)

36

Expected	𝜌:	given	to	tuner

Throughput

𝜌	and	Performance	Gain	Distribution

𝑤88 = (33%	, 33%, 33%, 1%)

37

Peak	of	the	distribution	moves	towards	higher	throughput	as	we	consider	higher	uncertainty

Workload	Sequence	on	RocksDB

38

oRocksDB	instance	setup	with	10	million	unique	key-value	pairs	of	size	1KB

oEach	observation	period	is	200K	queries,	with	5	observations	per	session	6	
million	queries	to	the	DB

oWrites	are	unique,	range	queries	average	1-2	pages	per	level

Workload	Sequence

39

Workload	Sequence

40

120%	
⬆	

Small	subset	of	results!	Take	a	look	at	the	paper	for	a	more	detailed	analysis

Outline

A	Primer	on	LSM	Trees
	 Flexibility	in	Compaction	Design	[VLDB-J	24]
	 Modeling	LSM	Trees

Tuning	LSM	Trees
	 ENDURE:	Finding	Robust	Tunings	for	LSM	Trees	[VLDB	22]
	 AXE:	Learning	to	Tune	LSM	Trees	By	Task	Decomposition

41

Limitations	in	ENDURE

42

Optimizers	tends	to	scale	poorly	as	the	
decision	space	grows,	hence,	we	limited	
the	decision	to	Tiering	or	Leveling

Cost	model	took	a	lot	of	man	hours

Tiering Leveling

𝜋 ∈

,
Model

Optimizer

Complex	Decision	Space

43

Knob Value

𝐾8 1.0
𝐾9 4.0
𝐾: 2.0
𝐾i 3.0
𝑇 6.0

Knob 1 2 3 4 5 6

𝐾8 1 0 0 0 0 0
𝐾9 0 0 0 1 0 0
𝐾: 0 1 0 0 0 0
𝐾i 0 0 1 0 0 0
𝑇 0 0 0 0 0 1

We	like	to	think	of	knobs	as	continuous	values Reality	is	they	take	on	a	set	number	of	values

Design

Co
st

Design

Co
st

Solution:	Pretend	we’re	in	a	continuous	space	then	round	off

Knob Value

𝐾8 1.27

𝐾9 4.46

Linear Program
Solver

Knob Value

𝐾8 1
𝐾9 4

Round Off

Problem:	Errors	propagate	fast

Sensitive	Optimizers

0 5 10
Cost CS(w, ')

0.0

0.5

1.0

C
D

F

Boundary

Random

Optimized

44

Percentile Boundary Random

P50% 1.0x 1.0x

P75% 1.7x 1.1x

P90% 2.4x 1.2x

P99% 4.1x 1.7x

P99.9% 6.2x 3.3x

1. Build	optimizer	with	different	initial	starting	conditions

2. For	each	optimizer,	test	recommended	designs	for	various	workloads

No	workload	drift.	(𝒘𝟎 = h𝒘)

Median	Slowdown	from	Optimal

Tackling	Discrete	Optimization

Machine	learning	strategies	proven	to	work	
well	in	discrete	optimization	tasks

Adapt	techniques	for	systems	tuning

45

The	LSM	Tuning	Problem
w	:	Workload				(z0,	z1,	q,	w)
𝜑	:	Design				(𝑚!"## , 𝑚#$%&'(, 𝑇, 𝐾), 𝐾X, … , 𝐾*)
𝐶	:	Cost	(I/O)

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛, 	𝐶(𝑤, 𝜑)

46

u

Workload
𝑤 Tuner DB	Con}ig

𝜑
Neural	
Network

Backpropagation	Requires	Differentiability

Training	a	Tuner

47

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

How	would	we	train	a	tuner?

Single	neural	network	for	our	
task	is	infeasible

Training	a	Tuner

48

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

How	would	we	train	a	tuner?

Single	neural	network	for	our	
task	is	infeasible

Training	a	Tuner

49

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

How	would	we	train	a	tuner?

Single	neural	network	for	our	
task	is	infeasible

Training	a	Tuner

50

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

How	would	we	train	a	tuner?

Single	neural	network	for	our	
task	is	infeasible

Training	a	Tuner

51

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

How	would	we	train	a	tuner?

Single	neural	network	for	our	
task	is	infeasible

Training	a	Tuner

52

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

Single Network
Learned Tuner

Cost: Cost:

How do we produce an
optimal tuning?

Backpropagation

Optimal
Tuning:

Estimated
Tuning:

How	would	we	train	a	tuner?

Single	neural	network	for	our	
task	is	infeasible

Training	a	Tuner

53

How	would	we	train	a	tuner?

Single	neural	network	for	our	
task	is	infeasible

We	would	need	to	have	already	
solved	the	problem	to	obtain	
the	correct	data

The	LSM	Tuning	Problem
w	:	Workload				(z0,	z1,	q,	w)
𝜑	:	Design				(𝑚!"## , 𝑚#$%&'(, 𝑇, 𝐾), 𝐾X, … , 𝐾*)
𝐶	:	Cost	(I/O)

𝜑∗ = 𝑎𝑟𝑔𝑚𝑖𝑛, 	𝐶(𝑤, 𝜑)

54

What	is	the	cost	of	a	workload	
executed	on	a	tuning?

What	is	the	optimal	tuning	for	
a	specific	workload?

u

Task	Decomposition	of	the	Tuning	Problem

55

We	approach	each	subtask	
with	a	neural	network

Task	Decomposition	of	the	Tuning	Problem

56

Learned Cost Model

Cost

Learned Cost Model

Learned Tuner

Create Input:

(a) Learned Cost Model (b) Learned Tuner

Backpropagation Tuning:

We	approach	each	subtask	
with	a	neural	network

What	is	the	cost	of	a	workload	
executed	on	a	tuning?

Randomly	sampled	workloads	with	
a	fixed	environment	and	tuning

99%	of	points	evaluated	are	within	
10%	of	the	true	cost

Learned	Cost	Model	Performance

57

Cost	Difference

°25% 0% 25%
¢(CM , C)

0.0

0.5

P
D

F

Difference	of	Cost	Estimates

Task	Decomposition	of	the	Tuning	Problem

58

Learned Cost Model

Cost

Learned Cost Model

Learned Tuner

Create Input:

(a) Learned Cost Model (b) Learned Tuner

Backpropagation Tuning:

Learned	cost	model	is	used	as	
the	loss	for	the	tuner

What	is	the	optimal	tuning	for	
a	specific	workload?

Task	Decomposition	of	the	Tuning	Problem

59

Learned	cost	model	is	used	as	
the	loss	for	the	tuner

What	is	the	optimal	tuning	for	
a	specific	workload?

Learned	Tuner	Performance

60

Comparison	to	an	expert	
configured	analytical	optimizer

88%	of	tunings	are	within	10%	
from	the	optimal

Cost	Difference

°50% 0% 50%
®(w, '̂, ')

0.0

0.2

P
D

F

Normalized	Cost:	Tuner	vs	Optimizer

Size	Ratio	Recommendations

0%
20%

40%
60%

80%
100%

Point-Reads

20%
40%

60%
80%

Ran
ge

-R
ea

ds

0%

20%

40%

60%

80%

100%

W
ri

te
s

10

20

30

Si
ze

R
at

io
(T

)

61

0%
20%

40%
60%

80%
100%

Point-Reads

20%
40%

60%
80%

Ran
ge

-R
ea

ds

0%

20%

40%

60%

80%

100%

W
ri

te
s

10

20

30

Si
ze

R
at

io
(T

)

Analytical	(L)	and	Learned	Tuner	(R)	effectively	navigates	optimal	size	ratios

Building	AXE

62

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Collect	training	data	from	cost	
models	or	historical	traces

Building	AXE

63

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Ofgline,	train	a	tuner

Building	AXE

64

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Learned Cost Model Learned Tuner

AXE

Application RocksDB

At	deployment,	applications	can	ask	
AXE	for	a	tuning	recommendation

Learned Cost Model Learned Tuner

AXE

Application RocksDB

Building	AXE

65

Easily	to	build,	requires	little	to	no	
systems	knowledge	to	produce	examples
Other	method:	Bayesian	Optimization

Update	training	with	real	traces

AXE	Compared	To	BO

66

Application RocksDB

Bayesian Optimization

BO	adapts	to	new	workloads
Mechanism	for	feedback	is	expensive

Learned Cost Model Learned Tuner

AXE

Application RocksDB

The	Cost	of	AXE	is	Marginal

67

0 25 50 75 100

30

35

40

45
Uniform: w0 = (25%, 25%, 25%, 25%)

//

0 25 50 75 100

3

4

1:1 Read-Write: w7 = (49%, 1%, 1%, 49%)

BO (95% CI)

AXE

0 25 50 75 100

100

120

140

160

Range Heavy: w3 = (1%, 1%, 97%, 1%)

//

0 25 50 75 100

40

50

60
Read-Write-Range: w13 = (33%, 1%, 33%, 33%)

//

Round

C
S
(w

,'
)

0 25 50 75 100

30

35

40

45
Uniform: w0 = (25%, 25%, 25%, 25%)

//

0 25 50 75 100

3

4

1:1 Read-Write: w7 = (49%, 1%, 1%, 49%)

BO (95% CI)

AXE

0 25 50 75 100

100

120

140

160

Range Heavy: w3 = (1%, 1%, 97%, 1%)

//

0 25 50 75 100

40

50

60
Read-Write-Range: w13 = (33%, 1%, 33%, 33%)

//

Round

C
S
(w

,'
)

0 25 50 75 100

30

35

40

45
Uniform: w0 = (25%, 25%, 25%, 25%)

//

0 25 50 75 100

3

4

1:1 Read-Write: w7 = (49%, 1%, 1%, 49%)

BO (95% CI)

AXE

0 25 50 75 100

100

120

140

160

Range Heavy: w3 = (1%, 1%, 97%, 1%)

//

0 25 50 75 100

40

50

60
Read-Write-Range: w13 = (33%, 1%, 33%, 33%)

//

Round

C
S
(w

,'
)

Pays	a	hefty	upfront	cost	compared	to	AXE.

Tunings	Deployed	on	RocksDB

0

50

100

150

R
u
n
n
in

g
T

im
e

(s
) BO Opt AXEz0

z1
q
w

w0 w2 w3 w6 w7 w11 w13

Workload

100

50

T
u
n
in

g
T

im
e

(s
)

68

AXE	on	RocksDB	creates	competitive	tunings
Less	domain	expertise	needed	compared	to	an	optimizer
Less	upfront	cost	compared	to	iterative	tuning

u

Thanks!
Learn	more	at

disc.bu.edu/
www.ndhuynh.com/

69

https://disc.bu.edu/
http://www.ndhuynh.com/

