Ie) CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab

C—U Department of Computer Science B l |
D iS C College of Arts and Sciences, Boston University

http://bu-disc.github.io/CS561/

CS561 Spring 2024 - Systems Project
Title: Implementing a Bufferpool Manager of a DBMS

Background: The bufferpool of a DBMS always maintains iz memory a set of pages,
and allows incoming page requests (writes or reads) to be served without accessing
the disk. The purpose of the bufferpool is to improve database system performance.
Since data can be accessed much faster from memory than from disk, the fewer times
the database manager needs to access disk, the better the performance.

When an application accesses a page, the database manager checks the bufferpool
first. If the requested page is in the bufferpool (page Ai?), the database manager does
not need to go out to the disk to fetch the requested data. However, if the requested
page is not found in the bufferpool, then a page missoccurs and the database manager
needs to access the disk to retrieve the corresponding page. If we have a page miss
and there is no space in the bufferpool, the page replacement policy selects a page to
be evicted from the bufferpool. If the page has not been updated (it is c/ean), it is just
removed from the bufferpool. Otherwise, if the page has been updated (dirty), it is
written back to the disk before being removed. In essence, the page replacement
policy dictates the order in which page access requests reach disk.

Page Requests from Higher Levels

BUFFER POOL

/_/

disk page

~

free frame -

MAIN MEMORY

- —
~N

DISK choice of frame dictated
DB by replacement policy

Popular Page Replacement Policies:

The goal of a page replacement algorithm is to select a victim page for eviction. An
ideal page replacement policy is supposed to minimize the number of disk access
(minimize page miss). However, it is impossible to select one best page replacement
policy because the workload dominates which page replacement policy will be best.
Here we list some popular page replacement policies used in Database and Operating
System communities.

CAS CS 561: Data Systems Architectures

g:g % Data-intensive Systems and Computing Lab
— Department of Computer Science B l |
College of Arts and Sciences, Boston University

D |S C http://bu-disc.github.io/CS561/

e LRU is the most commonly used policy for page replacement because of its
simplicity and competitive performance in traditional hard disks. LRU

considers temporal locality, which means it assumes that a page accessed
(referenced) more recently is likely to be accessed (referenced) again in the
near future. LRU maintains the page list in the order of last access time and
selects the least recently accessed page as a victim.

e LFU keeps track of how many times each page has been accessed since the
page was brought in the bufferpool. The page that has been referenced the
least is selected for eviction

e FIFO as the name suggests maintains a FIFO (First In First Out) list and evicts
in that manner.

e CFLRU is optimized for flash-based storage. CFLRU maintains the LRU order
of the pages and divides the LRU list into two regions: working region and
clean-first region. The working region contains the recently accessed pages.
In order to minimize the number of writes, CFLRU evicts clean pages from the
clean-first region and when there are no clean pages in that region, it evicts
dirty pages following classical LRU. The size of the clean-first region is decided
by a parameter called the window size. Although, the optimal window size
depends on the workload characteristics, the rule-of-thumb is that if N is the
size of the bufferpool, then N/3 is a good window size.

e LRU-WSR or LRU with Write Sequence Reordering (LRU-WSR) is another
policy optimized for flash storage. It delays evicting co/d dirty pages to reduce
the number of writes. Each page in LRU-WSR maintains a cold flag which is
cleared every time the page is referenced. If the candidate page for eviction is
dirty, it will be evicted only if its cold flag is set; otherwise the page is moved
to MRU position while setting the cold flag and another candidate page is
selected based on the LRU order. If the candidate page is clean, it is evicted
irrespectively of the status of its cold flag.

e SIEVE is an efficient cache eviction algorithm designed for web caches.
SIEVE offers better performance than traditional LRU-based methods
while maintaining ease of implementation. Unlike complex eviction
policies that rely on multiple queues or SIEVE requires only one FIFO
queue and one pointer called “hand”. The queue maintains the insertion
order between objects. Each object in the queue uses one bit to track the
visited/non-visited status. The hand points to the next eviction candidate
in the cache and moves from the tail to the head.

Objective: The objective of the project is to implement a Bufferpool Manager with at
least three page replacement policies: LRU, CFLRU, and LRU-WSR [1, 2, 3].

(a) Review and understand how bufferpool is used in DBMS to optimize performance.
(b) Understand the impact of different page replacement policies and how they play
out. Learn about various page replacement policies: LRU, LFU, CFLRU, LRU-WSR.

CAS CS 561: Data Systems Architectures

g:g % Data-intensive Systems and Computing Lab
— Department of Computer Science B l |
College of Arts and Sciences, Boston University

D l S C http://bu-disc.github.io/CS561/

You should go over the CFLRU and LRU-WSR papers to understand how they
work.

(c) Develop a bufferpool and implement the three page replacement policies (LRU,
CFLRU, and LRU-WSR) by cloning the API available to you at:
https://github.com/BU-DiSC/cs561 templatebufferpool. By default, without
simulation on disk, you can just count the page miss/hit without performing real

reads and writes. However, you are also required to implement the simulation on
disk. With adding “--simulation_on_disk” flag, each read should go to the specific
page with a specific offset, and read the whole entry; each write should update one
entry within a specific page and offset using the input new entry. You must
perform a comparative analysis on the three page-replacement policies based on
different workloads with/without simulation on disk. Some useful metrics: #page
misses, #page hits, #total writes, execution latency, etc.

[1] E. J. O'Neil, P. E. O’Neil, G. Weikum, “The LRU-k Page Replacement Algorithm
for Database Disk Buffering”, Proc. ACM SIGMOD Conf., May, 1993.

[2] Seon-Yeong Park, Dawoon Jung, Jeong-Uk Kang, Jinsoo Kim, and Joonwon Lee.
2006. CFLRU: a replacement algorithm for flash memory. In Proceedings of the
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES).234-241. https://doi.org/10.1145/1176760.1176789

[3] Hoyoung Jung, Hyoki Shim, Sungmin Park, Sooyong Kang, and Jaehyuk Cha.
2008. LRU-WSR: integration of LRU and writes sequence reordering for flash memory.
IEEE Trans. Consumer Electron. 54, 3(2008), 1215-1223. https://doi.org/
10.1109/TCE.2008.4637609

