CAS CS 561: Data Systems Architectures

gg Q Data-intensive Systems and Computing
BU

D IS C Department of Computer Science
College of Arts and Sciences, Boston

University
http://bu-disc.github.io/CS561/

CS561 Spring 2025 - Research Project

Title: Cache-Awareness for Near-Sorted Indexing

Background: B+trees are widely used for indexing in databases and
key-value stores due to their efficiency in handling large, ordered datasets.
However, traditional B+tree implementations can suffer from performance
bottlenecks when ingesting near-sorted data, particularly due to frequent tree
traversals and cache misses. Optimizing for cache awareness and leveraging
the near-sorted nature of the data presents an opportunity to improve
insertion performance without compromising search efficiency.

S

In a B+tree, nodes may be page-sized (e.g., 4 KB) to optimize for disk or
memory paging, while cache lines are much smaller (e.g., 64 bytes). This
disparity can lead to inefficiencies: while reducing the number of key
comparisons a binary search within a node often accesses non-contiguous
memory locations. These accesses may evict useful data from the CPU
cache, increasing cache misses and degrading performance.

Objective: The objective of this project is to design and evaluate a B+tree
optimized for near-sorted data ingestion by:

1. Implementing a B+tree that uses the last accessed leaf as a fast path
for future inserts.
2. Append policy for the fast leaf instead of in-place inserts.
3. Investigating policies for handling unsorted leaves:
o Sorting leaves on split.
o Sorting leaves after moving the fast path to another leaf.
o Keeping leaves always sorted.
4. Exploring cache-friendly optimizations, such as branchless
binary-search algorithms.

Responsible Mentor: Konstantinos Karatsenidis


http://bu-disc.github.io/CS561/
https://cs-people.bu.edu/mathan/publications/edbt25-raman.pdf
https://en.algorithmica.org/hpc/data-structures/binary-search/
https://en.algorithmica.org/hpc/data-structures/binary-search/

