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PRIVACY RISKS IN LSM-TREE DATABASES
● LSMTree Databases: Power data-driven apps like e-commerce platforms 

with efficient key-value operations
● Privacy Issue: Workload statistics are used to tune these systems, which 

can leak sensitive user information
● Example: In an e-commerce platform, a spike in write operations to a key 

range might reveal a user frequently buying medical supplies, hinting at a 
health condition

● Consequence: Attackers can infer personal details without accessing the 
data itself, just by analyzing workload patterns
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DIFFERENTIAL PRIVACY AS A SOLUTION
● Differential Privacy DP: Adds noise to workload statistics to protect 

individual user data
● How It Works: In the e-commerce example, DP might adjust the write 

operation statistic (e.g. 0.2→ 0.22, masking individual actions
● Benefit: Preserves aggregate trends for system tuning while making it 

statistically impossible to infer personal details
● Our Goal: Quantify DPʼs impact on tuning, optimize noise levels, and 

enhance Endure to balance privacy and performance
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CORE COMPONENTS

● LSM Trees
○ Storage engine in systems like RocksDB, Cassandra → known for high write throughput
○ Structure: Data organized in levels, with merging (compaction) of sorted runs to optimize reads

○ Key Parameters: Size ratio, merge policy (tiering vs. leveling), memory for Bloom filters

○ Tuning Need: Performance depends on workload-based tuning (e.g. Bloom filter allocation)

● Endureʼs Robust Tuning
○ Addresses workload uncertainty by modeling a neighborhood of probable workloads

○ Goal: Compute configurations maximizing worst-case throughput across the neighborhood

○ Traditional Assumption: Expected workload is known, with potential deviations

● Differential Privacy DP
○ Framework to release aggregate statistics without revealing individual data

○ Mechanism: Add noise to workload proportions
○ Privacy Parameter (ε): Smaller ε increases privacy by adding more noise, perturbing the workload
○ Goal in LSM Tuning: Prevent inference of individual user operations from the workload distribution
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PROJECT WORKFLOW

 Ω    →    ρ    →    Φ    →    CΩ, Φ)    →    Results

 ↓
 Ωε    →    ρ    →    Φε    →    CΩε, Φε)    →    Results
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Workload               ENDURE                Optimal DB                    Cost Function 
Proportion             Uncertainty           Configuration
Vector                 Parameter

Perturbed                ENDURE                Optimal DB                      Cost Function 
Workload                 Uncertainty           Configuration                   
Proportion Vector        Parameter             For Perturbed Workload          



WORKLOAD PERTURBATION
● A perturb_workload function applies differential privacy to the workload vector Ω to produce Ωϵ

● Ω = [z0, z1, q, w]

○ z0  = % empty point lookups | z1 = % point lookups | q = % range queries | w = % writes

○ z0 +  z1 + q + w = 1

●  Ωϵ = [zʼ0, zʼ1, q ,̓ wʼ]

○ A Laplace distribution is used to perturb(add noise) the workload proportions

○ Δ = sensitivity

○ ε = noise parameter

○ The vector is then normalized to ensure zʼ0 +  zʼ1 + qʼ + wʼ = 1
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ENDURE’S UNCERTAINTY PARAMETER

● What is ρ?
○ ρ is the uncertainty parameter in Endure and is what separates nominal and robust tuning

● How ρ Improves Robustness
○ By tuning for a range of possible workloads, ρ ensures the configuration (Φ) can adjust to variation in 

workload during tuning

○ A larger ρ prepares the system for greater uncertainty

● ρ and Nominal Tuning
○ When ρ approaches 0, the uncertainty region shrinks, and Endureʼs tuning becomes equivalent to 

nominal tuning (optimizing for the expected workload only)

● Our Experiment with ρ
○ We test how different ρ values 0.1, 0.3, 0.5, etc.) impact performance
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ENDURE’S OPTIMAL LSM-TREE CONFIGURATION

● What is Φ?
○ Φ is the optimized LSM tree configuration for the expected workload

● Inputs to Φ
○ Workload: Either the original workload (Ω) or the perturbed workload (Ωε) 

○ Uncertainty Parameter (ρ)

● Outputs of Φ
○ Optimal size ratio T, memory allocation for Bloom filters (mfilt), and compaction policy (π) 

based on workload proportions
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COST FUNCTION

● What is the Cost Function?
○ The cost function CΩ, Φ) measures the expected cost of a workload under a given Φ

● Inputs
○ Original workload (w = Ω) or perturbed workload (w = Ωε)

○ Baseline configuration (Φ) or private configuration (Φε)

● Outputs of the Cost Function
○ A scalar cost value representing the performance of the configuration on the workload

● How We Used It to Compare Performance
○ Compared baseline performance with private performance to assess the impact of differential privacy

○ Analyzed how different ρ values affect the performance gap between the two costs
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READ WORKLOADS
● Figure: Average Total Cost vs. Epsilon across Different Read Workloads.

Each line represents a different query mix profile (e.g., range-heavy, point-heavy, etc.). Results are averaged across 100 
trials, with log-scaled Y-axis to highlight performance differences.
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UNIFORM WORKLOADS
● Average Total Cost vs. Epsilon under uniform workload (equal z0, z1, q, w)
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WRITE WORKLOADS
● Workload = [z0=0.01, z1=0.01, q=0.01, w=0.97] — Write-Intensive Profile
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ρ PARAMETERIZATION
● Evaluate impact of ρ (robust tuning parameter) on total cost under DP
● Workload = Uniform 0.25, 0.25, 0.25, 0.25
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Conclusion
● Differential privacy introduces real cost in LSM-tree tuning — especially under strong privacy (small ε).

● Workload sensitivity varies:

○ Range queries (q) and empty lookups (z0) are most impacted by noise.

○ Write-heavy workloads are more stable, but still require robust modeling.

● Robust tuning via ρ improves reliability:

○ High ρ guards against workload distortion and improves total cost under DP.

● No one-size-fits-all strategy:

○ Tuning depends on workload type, privacy budget, and tolerance for risk.

● Endure remains effective under DP when paired with careful parameterization.
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