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PRIVACY RISKS IN LSM-TREE DATABASES

e LSM-Tree Databases: Power data-driven apps like e-commerce platforms
with efficient key-value operations

e Privacy Issue: Workload statistics are used to tune these systems, which
can leak sensitive user information

e Example: In an e-commerce platform, a spike in write operations to a key
range might reveal a user frequently buying medical supplies, hinting at a
health condition

e Consequence: Attackers can infer personal details without accessing the
data itself, just by analyzing workload patterns
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DIFFERENTIAL PRIVACY AS A SOLUTION

e Differential Privacy (DP): Adds noise to workload statistics to protect
individual user data

e How It Works: In the e-commerce example, DP might adjust the write
operation statistic (e.g. 0.2-> 0.22), masking individual actions

e Benefit: Preserves aggregate trends for system tuning while making it
statistically impossible to infer personal details

e Our Goal: Quantify DP's impact on tuning, optimize noise levels, and
enhance Endure to balance privacy and performance
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CORE COMPONENTS

e LSM Trees
o  Storage engine in systems like RocksDB, Cassandra - known for high write throughput
o  Structure: Data organized in levels, with merging (compaction) of sorted runs to optimize reads
o  Key Parameters: Size ratio, merge policy (tiering vs. leveling), memory for Bloom filters
o  Tuning Need: Performance depends on workload-based tuning (e.g. Bloom filter allocation)
e Endure’s Robust Tuning
o  Addresses workload uncertainty by modeling a neighborhood of probable workloads
o  Goal: Compute configurations maximizing worst-case throughput across the neighborhood
o  Traditional Assumption: Expected workload is known, with potential deviations
e Differential Privacy (DP)
o  Framework to release aggregate statistics without revealing individual data
o  Mechanism: Add noise to workload proportions
o  Privacy Parameter (€): Smaller € increases privacy by adding more noise, perturbing the workload

o  Goal in LSM Tuning: Prevent inference of individual user operations from the workload distribution
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PROJECT WORKFLOW

Q > p > O > C(Q D) -> Results

Workload ENDURE Optimal DB Cost Function
Proportion Uncertainty Configuration
Vector Parameter

N2
Q > p > O -> C(Q,d) -> Resuls

Perturbed ENDURE Optimal DB Cost Function
Workload Uncertainty Configuration
Proportion Vector Parameter For Perturbed Workload
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WORKLOAD PERTURBATION

e A perturb_workload function applies differential privacy to the workload vector Q to produce Q_
e Q=[z,2z,q W]
o z,= % empty point lookups | z, = % point lookups | q = % range queries | w = % writes
o Zyt+ z,+q+w=1
e Q. =[2',27,d,wl]

o A Laplace distribution is used to perturb(add noise) the workload proportions

A
w; — w; + Laplace (—\

€ )

o A = sensitivity
o € = noise parameter

o  The vector is then normalized to ensure z'; + z'. + Q"+ W' =1
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Workload ENDURE Optimal DB Cost Function
Proportion Uncertainty Configuration
Vector Parameter
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Q > p > O > C(Q,0) -> Results

Perturbed ENDURE Optimal DB Cost Function
Workload Uncertainty Configuration
Proportion Vector Parameter For Perturbed Workload
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ENDURE'S UNCERTAINTY PARAMETER

e Whatisp?
o pisthe uncertainty parameter in Endure and is what separates nominal and robust tuning
e How p Improves Robustness
o By tuning for a range of possible workloads, p ensures the configuration (d) can adjust to variation in
workload during tuning
o Alarger p prepares the system for greater uncertainty
e pand Nominal Tuning
o  When p approaches O, the uncertainty region shrinks, and Endure's tuning becomes equivalent to
nominal tuning (optimizing for the expected workload only)
e Our Experiment with p

o  We test how different p values (0.1, 0.3, 0.5, etc.) impact performance
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PROJECT WORKFLOW

Q > p > ® > C(Q ®d®) > Results

Workload ENDURE Optimal DB Cost Function
Proportion Uncertainty Configuration
Vector Parameter

N2
Q > p > ® > C(Q,0) -> Results

Perturbed ENDURE Optimal DB Cost Function
Workload Uncertainty Configuration
Proportion Vector Parameter For Perturbed Workload



EXPERIMENT DESIGN BOSTON UNIVERSITY

ENDURE'S OPTIMAL LSM-TREE CONFIGURATION

e Whatis ©?
o @ isthe optimized LSM tree configuration for the expected workload

e Inputsto ®
o Workload: Either the original workload (Q) or the perturbed workload (Qs)
o Uncertainty Parameter (p)

e Outputs of ®

o Optimal size ratio (T), memory allocation for Bloom filters (m.. ), and compaction policy (m)

filt)'
based on workload proportions
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PROJECT WORKFLOW

Q > p > O > C(Q d) -> Results

Workload ENDURE Optimal DB Cost Function
Proportion Uncertainty Configuration
Vector Parameter
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Workload Uncertainty Configuration
Proportion Vector Parameter For Perturbed Workload
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COST FUNCTION

e Whatis the Cost Function?

o  The cost function C(Q, ®) measures the expected cost of a workload under a given ©

C(w,®) = 20Zo(®) + 2121(2) + ¢Q(2) + wW(2)

e Inputs
o  Original workload (w = Q) or perturbed workload (w = QS)
o  Baseline configuration (®) or private configuration ()
e Outputs of the Cost Function
o A scalar cost value representing the performance of the configuration on the workload
e How We Used It to Compare Performance
o Compared baseline performance with private performance to assess the impact of differential privacy

o Analyzed how different p values affect the performance gap between the two costs
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READ WORKLOADS

e Figure: Average Total Cost vs. Epsilon across Different Read Workloads.

Each line represents a different query mix profile (e.g., range-heavy, point-heavy, etc.). Results are averaged across 100
trials, with log-scaled Y-axis to highlight performance differences.

Average Total Cost vs. Epsilon for Different Read Workloads
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UNIFORM WORKLOADS

e Average Total Cost vs. Epsilon under uniform workload (equal zO, z1, q, w)

Average Total Cost vs. Epsilon (DP)
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WRITE WORKLOADS

e  Workload = [2z0=0.01, z1=0.01, g=0.01, w=0.97] — Write-Intensive Profile

Total Cost
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p PARAMETERIZATION

e Evaluate impact of p (robust tuning parameter) on total cost under DP
e Workload = Uniform [0.25, 0.25, 0.25, 0.25]

Average and Median Total Cost vs. Epsilon for Different Rho Values
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Conclusion

e Differential privacy introduces real cost in LSM-tree tuning — especially under strong privacy (small €).
e Workload sensitivity varies:
o  Range queries (q) and empty lookups (z0) are most impacted by noise.
o  Write-heavy workloads are more stable, but still require robust modeling.
e Robust tuning via p improves reliability:
o High p guards against workload distortion and improves total cost under DP.
e No one-size-fits-all strategy:
o  Tuning depends on workload type, privacy budget, and tolerance for risk.

e Endure remains effective under DP when paired with careful parameterization.






