
Faster: A Concurrent KV
Store with In-Place Updates
By: Phillip Tran, Vineet Raju, Arkash Jain

Introduction, Motivation &
Solution

Background

Edge devices produce vast amounts of data that are update intensive and require large amounts of state

● Data has been produced at a
large scale from edge
sources like browsers,
devices, servers, and
processed by cloud
applications for analytics.

● Hadoop and Spark need to
process data as it arrives.

Large Amounts of Data Produced

● There is significant update

traffic.

● Updates of states should

be readily available for

offline analytics

Update Intensity

● A search engine may have

billion users alive in a system

but only a million are currently

actively surfing in the alive.

● Range queries if infrequent,

can be solved

Locality & Point Operations

Background Questions?

● Can you think of examples where tons of
data is produced which may need to be
processed?

● What value lies in optimizing for point
queries?

Motivation

State exceeds main memory while constant updates temporal locality of objects are cumbersome to deal with

The combination of concurrency, in-place updates (in-memory), and ability to handle data larger than memory is
important in our target applications; but these features are not simultaneously met by existing systems

In-Memory Data Stores

Systems partition the state across

multiple machines and use pure

in-memory data structures

Solutions are expensive and

severely under-utilized

Key-Value Stores

KV store is designed to handle

larger than memory data and

support failure recovery by storing

data on a secondary storage.

Do not scale over a million updates

per second.

● New concurrent key-value store, designed to serve applications that involve update-intensive state
management supporting data larger than memory

FASTER

What are the major technical
contributions of the paper?

FASTER

Major Contributions:

(1) Threading: epoch protection with trigger actions

(2) Indexing: concurrent hash index

(3) Record Storage: Hybrid Log Record Allocator

System Architecture

System Architecture

Background Questions?

● What’s the benefit of in-place updates in a
hybrid log?

● Why can you not use in-place updates in
append-only logs?

System Architecture: User Interface

● Read, Blind updates

● Atomic read-modify-write (RMW) for running aggregates, partial field updates, …

read()

upsert()

rmw()

delete()

System Architecture: Epoch Protection Framework

● avoiding thread synchronization in the common fast path
● we still need a mechanism to agree on shared system state

Epoch Protection

● system maintains a shared, atomic counter, E (current epoch) - can be incremented by any thread

● each thread keeps a (stale) local epoch counter copied from E (refresh periodically)

● epoch, c is safe if all threads have a strictly higher local thread-local value than c

System Architecture: Epoch Protection Framework

Epoch Protection

● system maintains a shared, atomic counter, E (current epoch) - can be incremented by any thread
● each thread keeps a (stale) local epoch counter copied from E (refresh periodically)
● epoch, c is safe if all threads have a strictly higher local thread-local value than c

Extending Epoch Protection: Adding Trigger Actions

How did the authors extend Epoch
Protection to make it a more general

framework?

Extending Epoch Protection: Adding Trigger Actions

● adds a primitive to epoch protection: function callbacks (trigger) with epoch increment from c to

c+1
● trigger action specified with be executed later when c becomes safe

● simplifies lazy synchronization in multi-threaded systems

● function, active_now() must be invoked when a shared variable, status is updated to active
● thread updates shared status to active

● increment current epoch with trigger active_now()
● now we are guaranteed that all threads have seen the active status before active_now() is invoked

● used extensively throughout the system: memory safety, non-blocking index resizing, log buffer

maintenance, recovery

Applications

Handling Large Data: Logical Address Space

● Spans primary and secondary storage where record

allocator returns 48-bit logical addresses of spaces in

memory instead of the physical address.

● Tail offset finds the next free space in the tail of the log

and head offset finds lowest logical address available at

a lag from the tail present in a contiguous address space

using an in-memory circular buffer

Adapting Log Structuring along with an epoch protection framework for lower synchronization overhead.

Handling Large Data: Circular Buffer Maintenance

Epochs allow latch free eviction of data from storage for efficiency.

● 2 arrays are maintained:

○ Flush array - tracks the status of the page to check if

its flushed to secondary storage or not.

○ Closed array - determines whether the page can be

evicted for reuse or not.

● The logs are immutable so when the page number is

changed from p to p+1 there is a trigger action to flush this

page to secondary storage via asynchronous I/O calls, done

when the epoch is safe.

● Status of the page is set to flush once done.

Background Questions?

● How do traditional databases flush pages?

● What makes FASTER so different then?

Handling Large Data: Append-Only Allocator

● Blind updates simply append a new record to the tail of the log and update the hash index using a
compare-and-swap as before

● If operation fails we mark it as invalid and retry

● Deletes insert a tombstone record (again, using a header bit), and require log garbage collection
● Read and RMW operations are similar to their in-memory counterparts

Adapting Log Structuring along with an epoch protection framework for lower synchronization overhead.

● Updates are appended to tail

● Retrieve only the record not the entire logical page

Background Questions?

● How do in-memory databases read?

● Is RMW atomic and why are they used?

Features

Background Questions?

● What is a hash-based index?
● Define all of the bolded terms: “A

concurrent, latch-free, scalable,
resizable hash-based index.”

Features: The Faster Hash Index

“A concurrent, latch-free, scalable, resizable
hash-based index.”

● Concurrent: Supports multiple threads at
the same time.

● Latch-Free: Doesn’t require locking,
which will reduce performance.

● Scalable: Able to handle large amounts of
data.

● Resizeable: The size of the index change
be changed after the fact.

Hash-Based Index: allows us to quickly find
data given a a search key value.

Features: The Faster Hash Index

● 2^k hash buckets (k = keys)
● 8-byte entries = 64-bit atomic

compare-and-swap operations
● Tag increases hashing resolution

to k + 15 bits; reduces collisions
● (offset, tag)

○ Key with hash value h
○ First k bits of h (offset)
○ Next 15 bits of h (tag)

● Invariant
○ Each (offset, tag) has unique

index entry

Features: The Faster Hash Index (cont.)

Find Operation

1. Use k hash bits: find the hash bucket
2. Scan through bucket, find entry matching the tag

Delete Operation

1. Perform the find operation.
2. Use compare-and-swap, replace the matching entry with 0.

Features: The Faster Hash Index (cont.)

Insert Operation

1. Find empty slot; insert record
with tentative bit = 1

a. This slot is now invisible to
concurrent read/update
operations

2. Scan bucket to check if another
tentative entry for the tag
exists; if so, try again

3. Else reset bit to 0 to finalize
insert operation

Features: The Faster Hash Index (cont.)

Background Questions?

● What is a linked list?

Features: In Memory KV Store

● Combine hash index with simple in-memory
allocator to create complete in-memory KV
store.

● Records with same (offset, tag) organized in
singly-linked-list.

● Hash bucket entry points to tail (most recent
entry), which points to previous record, etc.

Features: In Memory KV Store (cont.)

Read Operations:

1. Find tag entry from index.
2. Traverse linked-list for entry to find record with matching key.

Delete Operations:

1. Compare-and-swap on record header or (for the first record) hash bucket entry.
2. Set entry to 0, which makes it available for future inserts.
3. Not immediately returned to memory allocator, only does so when epoch becomes safe.

Update/Insert Operations:

1. Find hash bucket entry for the key…
2. If doesn’t exist, use 2 phase algorithm to insert it as described previously.
3. If exists, scan linked-list to find record with matching key and insert in-place.
4. If match key doesn’t exist, splice new record into tail of list using compare-and-swap.

Features: HybridLog

● memory is divided into three regions:
○ stable (on disk): read-copy-update
○ mutable (in memory): in-place update
○ read-only (in memory): read-copy-update

● hybrid concurrency model:
○ read-copy-update on index
○ in-place update for record-level concurrency

basic read-write-modify algorithm:

if < head_offset: issue async io request

if < ReadOnly_offset: copy to tail, CAS update hash
index

if < infinity: update in-place

new_record: add to tail, update hash table

Features: HybridLog

Any issues with this design?

HybridLog- Lost Update Anomaly

● threads guaranteed to read new offsets only at epoch

boundaries

● example:
○ thread 1 sees only ReadOnly offset = R1

○ thread 2 sees only ReadOnly offset = R2

○ update by thread 1 is lost => BAD

HybridLog- Fuzzy Region

● fuzzy region: mutability status is not agreed upon by all threads

● safe readonly offset

Epoch protection with trigger action:

● ReadOnlyOffset = k;

BumpEpoch(() => {SafeReadOnlyOffset = K });

modified read-write-modify algorithm:

if < head_offset: issue async io request

if < Safe ReadOnly_offset: copy to tail, update hash table

if < ReadOnly_offset: go pending

if < infinity: update in-place

new_record: add to tail, update hash table

HybridLog- Caching, Recovery and Consistency

caching:

● good caching behavior at a per-record granularity without overheads of typical

fine-grained caching algorithms

● similar to the second-chance FIFO protocol

● hybrid log size matters
○ 90 : 10 division of buffer size for the mutable and read-only regions result in good performance

recovery and consistency:

● on failure, unflushed tail is lost

● Consistent with the monotonicity property

○ typically, achieved with write-ahead-log (WAL)

● treat hybrid log as a WAL and delay commit to allow in-place updates within a limited time

window

Evaluation & Conclusion

Evaluation

Experimental Setup

1. Implemented in C#
2. When applicable: HybridLog only
3. Threads continuously generate operations for

30 seconds, measure # of operations
4. Two Identical machines (one Windows for

Faster, one Ubuntu for others)
a. 2x Xeon E5-2690 v4, 256GB RAM, 3.2TB

NVMe SSD
5. YCSB-A workload

a. 250M 8-byte keys, values from 8-bytes to
100-bytes

6. Compare against: in-memory,
larger-than-memory systems

Zipf Distribution: Does
anyone know what this is?

Evaluation (cont.)

Benchmark: threading capabilities

Evaluation (cont.)

Benchmark: Throughput capabilities

Evaluation (cont.)

Benchmarks: HybridLog

Evaluation (cont.)

Benchmarks: Caching Behavior

Conclusions

Possible further areas of exploration:

● detailed exploration of optimal recovery strategies
● issues with monotonicity in fuzzy checkpointing
● optimizing I/O path to improve performance degradation characteristics in larger-than-memory experiments
● hybrid log analytics
● could this design work on read-only workload variants?

● FASTER is a high-performance concurrent KV store optimized for update-intensive

applications

○ C# implementation provided

● demonstrated that following properties are achievable in the same system:
○ heavy update workload with larger-than-memory data

○ exceed pure in-memory performance when workload fits in memory

○ optimize for moving hot set without any fine-grained caching statistics

