Qd-tree: Learning Data
Layouts for Big Data
Analytics

Group Members: Songming Fan and Tianling Gong

Introduction and Problem Definition

How the need of Qd-tree comes out

1. Increasing Data Volumes:
The last decade has seen an exponential increase in the amount of data

collected, emphasizing the need for efficient data analytics. This makes
the need to run queries on large datasets increasingly important.

2. Limitation of the previous method
More recently, most of researches focus on the method of organizing data in

each block, focusing on reducing query time within a block. Ignoring how to
reduce the time of doing 1/0.

3. Current systems partition data by arrival time or range, which fails to minimize
the number of data blocks accessed by a query. This highlights a gap in optimizing
for query-specific data layouts.

The goal of Qd-Tree

Aiming to reduce I/O costs by learning optimal data layouts tailored to
specific query workloads

What Qd-Tree does in high level

1. Generate a tree like structure to assign the data into block.

2. Using the tree like structure to do queries.

Problem Definition

I/O cost 1s related to the tuple need to be scanned. Given a set of tuples V/,
aiming to partition them into multiple blocks, such that the number of tuples
required to scan fora workload is minimized. Suppose the block partitioning

is P = {P1,...,Pk}, the worklord is W .

CP)=IPI) S(Pa) WhereS(P,q) = 10r0
qeEW
QERIAC)
P;eP

In that case, minimize [/O cost translate to maximized C(P), the total number of
tuples skipped for the given workload W'.

Problem Definition

Problem 1 (MaxSkip Partitioning).
Given a set IV of tuples, a workload W of queries, and a minimal block size b,
find a partitioning P to maximize C(P), s.t. |Pi | > b for all Pi € P

Problem 2 (Learned MaxSkip Partitioning).

Given a set I/ of tuples, a workload W of queries, a skipping function S, and a
minimal block size b, find a partitioning function F, such that for the next V
tuples ingested, the partitioning P generated by F(V) maximizes C(P).

Qd-Tree structure

Routing Data

The overall strategy 1s to use a qd-tree to
assign data to blocks on storage. Each
record ““arrives” at the root and 1s
recursively routed down

Records are stored with an additional block
ID (BID) field to denote the block they
belong to, and the dataset is partitioned by
this field.

CPU<10%
MEM <8GB CPU<50%
B1 B2 B3

B4

Semantic Description of Nodes

Two kind of comparisons need to handle:

1. Range comparisons: It can be easily
handled by using a 2*N array. Like the R
can be described as [0,MAX CPU),
[0,MAX MEM)

2. Equality comparisons: Some column in the
database can be called categorical column. Like
a “color” column.

CPU<10%(R)

/\

MEM <8GB(L1)

B1

—\

CPU<50%

B2

B

A7 <

4

Semantic Description of Nodes

2. Equality comparisons: We can use a array with length
D array to handle each category column. For example, for
Color column: priority € {Red , Blue, White}

R.color mask: priority € [1,1,1]

There 1s a cut on root with color mask = Blue, and create
two leaf node called B1(left) and B2(right).

Bl .color_mask: priority (= [1, 1, 1] Why not use Bl.color_mask: priority € [0,1,0]?

B2.color mask: priority € [1,0,1]

color_mask = Blue (R)

/X

B1

B2

10

How to get Candidate Cuts?

Using simple treatment

Since we are given a target workload W of queries, we simply parse them through
a standard SQL planner and take all pushed-down unary predicates as allowed
cuts.

T
TABLE T
WHERE (T.a<10 OR T.b<90) AND (T.c IN (1,4))

We can get three cuts from this query: T.a<10; T.b<90 ; T.c IN (1,4).

11

How to do queries?

Two ways are given

1. Using qd-tree to do search:
From root to leaf, find the BID in the leaf that fit the query.

Queries need to be reconstructed to fit the qd-tree node

2. Scan the leaf node: This is the author actually doing in experiments
We can just scan all the leaf nodes(block) of the qd-tree, check whether
its description intersects with the query

12

Greedy construction of Qd-tree

13

Why use greedy approach and how it works?

The construction of a qd-tree 1s an NP-hard combinatorial optimization problem.
Greedy algorithms are a typical family of solutions that are usually efficient and
make locally optimal choices. It can give a qd-tree not so bad.

To present the algorithm, we define an action a = (p, n) as applying cut p to node
n in qd-tree T. The result of action a is denotedas T @ a=T @D (p, n).

What greedy algorithm do is try all possible cut p on node n and choose the one
can maximize C(T & (p, n))

14

How it works?

Algorithm 1 Greedy construction of qd-tree

Input: Tuple set V, min block size b, workload W, candi-
date cut set P
Initializatioin: Set T, « V,t « 1, CanSplit < True
while CanSplit do
CanSplit < False
for each node n € T,_; on the last level do
if n.size > 2b then
p < argmaXpep |nP|2b,|n"?|2b C(Ti-1® (p,n))
if C(Ty-1 ® (p,n)) > C(T;-1) then
T; < T;-1 ® (p,n)

t « t+1,CanSplit « True
Return T;_;

The problem of greedy approach

Can’t handle work lord with just disjunctive range queries.
Like a simple query: Q1: cpu<10 OR cpu>90

E oo) SR <
010 | [10,100) } Cut 1
om | O

p < argmax,cp nr|>b,|nr|2b C(Tr—1 ® (p,n))
if C(T;—1 & (p, n)) > C(T;-1) then

T; — Ti—1 ® (p,n)

t «— t+1,CanSplit < True

16

Qd-Tree Using Deep RL

17

Qd-Tree Using Deep RL

Issues with techniques for optimization
Greedy Technique does not handle well for global optimization.

Memoized Search (Dynamic Programming) is not viable as high-dimensional
search space 1s too large, approximate dynamic programming required.

What’s a better approach?

Approximate, accelerated, and incremental memoized search performed by deep
RL

18

Qd-Tree Using Deep RL

WOODBLOCK, a deep RL agent.

How 1t works?

Construct routing trees for a target dataset and workload
Learns to 1dentify better cuts through rewards

Deploys best tree after a timeout 1s reached or a number of tree are attempted.

19

Qd-Tree Using Deep RL
What are the benefits of using WOODBLOCK?

Featurization the states and uses the model to make prediction about rewards
given current state

Sampling subsets of follow-up actions of search states and updating model from
rewards

Produces better trees and efficient deployment of solution

20

Qd-Tree Using Deep RL

Greedy construction relies on tree-submodularity

e Disjunctive range and candidate cut fails to satisfy
and cannot skip

e Must choose the cut on disk, neither query 1 nor
query 2 can be satisfy, lacks skipping ability.

RL produces better partitioning and handles candidate

cuts and large number of data dimension.
B

o B
o B
e B

Ptk — f—

| Q1: cpu<10 OR cpu>90
Q2: disk<0.01

.... ® o o|
L] ®

® o ..°°%]

@

disk
°
®
0)
(8]
O
®
®
)
[]
e
[]
®

cpu

Figure 3: A dataset with disjunctive queries. Regions s¢
lected by Q1/Q2 are shown in grey/blue. The candidate cut
are: {cpu<10, cpu>90, disk<0.01}. The first two cuts canno
skip any query, so Greedy opts for the third cut, resulting ir
a scan ratio of 50.5%. WoopBLocK is not limited by the form
of queries; it produces a layout with a scan ratio of 10.4%,
4.8x improvement. Discussion in Section 5.1.

ock 1: disk < 0.01

ock 2: (disk > 0.01) A (cpu > 90)

ock 3: (disk > 0.01) A (cpu < 10)

ock 4: (disk > 0.01) A (cpu < 90) A (cpu > 10)

21

WOODBLOCK

22

WOODBLOCK

Application of RL algorithm:

Variables:

Tree Construction Markov Decision Process (MDP)

State Space: subspace of the entire data space of the relation under optimization

Action Space: set of allowed cuts.

Core of WOODBLOCK: 2 learnable networks parameterized by 0
Policy network: returns a probability distribution over action space 7Tg S— A

Value network: returns the expected cumulative reward from a given state Vp:S5 — R

23

WOODBLOCK

Process of construction of qd-tree:
e The agent starts construction of one tree with a root node
e Agent transitions into next states.
e Once a stopping condition is reached, described next, a qd-tree 1s completed.

Higher skipping ratio is achieved through cuts made by the refined 6.

24

WOODBLOCK

Stopping Condition
Each leaf block must contain at least b records.

If the resultant children contain more than b records by approximation, then agent
can make a cut on current node.

This approximation 1s achieved by testing the cut on a data sample.

After cut 1s made, begin evaluation of the cut on the data sample as a cut is made,
and resulted in a subset of records that satisfy it and a subset that does not.

When current node has no legal cuts left in action space, stop cutting on it and a
leaf 1s form.

25

WOODBLOCK
Calculating Reward for WOODBLOCK to learn

Number of skipped records under node n across all queries

S(n) = C(n.records) if n is a leaf
o S(n.left) + S(n.left) otherwise

For every action, a reward 1s assigned

R((n,p)) = S(n)/(|W] - |n.records|)

26

WOODBLOCK

How are the networks implemented?

Policy network and the value network have shared weights, which are two
fully-connected layers, 512 units each, with ReLU activation.
Output layer:

e Policy network: a |A|-dimensional linear projection
e Value network: a scalar projection.

Each state is featurized as the concatenation of n.range and n.categorical mask.

27

Framework Extension

28

Framework Extension
Advanced Cuts

Fast evaluation in the process of tree construction is enabled by single-column
predicates

Qd-tree can be extended to support binary cuts of the form (attrl, op, attr2)
Append a new component to each node’s description

n.adv_cuts: a bit vector of size |AC|

29

Framework Extension

Data Overlap
Qd-tree also supports duplicating data.

The (N + 1)-record block is not further cut because of the minimum block size
constraint

Construction algorithms with a relaxed cutting condition which allows one of the
children to have size smaller than the constrained block size.

The lucky block would be further cut into an N-record one and a block with a
single record.

Modifications to node metadata still maintain and the semantic descriptions

preserve completeness.
30
No extra storage cost.

Framework Extension

N : £22.Ql
o~ L7 Q2
QU |==—=——=—= —_e——e—. e .
SUN Je| N I Q3
Ao N TR IS - i - ! Q4
£)
< ' N

Lo ot

Attribute 1

Figure 4: A scenario where significant data skipping is
gained by replicating a single record. Each query selects N+1
records. The queries only overlap in the one tuple placed
at the center. If the space is naively cut in a binary fashion,
3 out of 4 queries each reads N extra tuples. By handling
overlap, qd-tree replicates the singleton record to all four
N-record regions, so no queries touch unnecessary records.

31

Framework Extension

Data and Query Routing

Data routed the same way, except a row routed to all matching blocks.

Candidate set of blocks includes all blocks that overlap with the query rectangle.

With overlap, the set of blocks scanned when evaluating a query may contain
duplicate rows.

Prune away the other blocks because a block covers the query rectangle.

When scanning block ID, ignore tuples match block’s semantic description with
ID <1.

32

Framework Extension

Solution to Data Replication: Two-tree approach
Full-copy data replication is an approach to overlap when utilizing extra storage.
Using Greedy or RL to learn a qd-tree optimized for the full workload

Building a second qd-tree tuned for the queries that has the issue of the worst skippability under
the qd-tree learnt.

Modifying the reward function for RL through accounting for the existence of the first tree.
Changes to be made:

e Picking one of the two trees that maximizes the skippability for each query
e C(alculating the number of skipped tuples
e Summing up skipped tuples for all queries in the workload

33

Weak Points

Due to the random cut that is made 1nitially, WOODBLOCK'’s performance at the
start can be suboptimal. The agent need to gradually learn through reward
function, identifying profitable cuts and to optimize data skipping.

A large portion of tree construction time is taken up by routing records and

calculation of rewards, therefore in most occasions, only CPUs are used for the
WOODBLOCK agent.

34

Evaluations and Conclusions

35

Evaluation

Workload Baseline Bottom-Up Greedy (ours) RL (ours)

TPC-H 56% 46.1% 26.3% 25.8%
ErrLog-Int 100% 5.6%" 3.1% 0.4%
ErrLog-Ext 100% 12.2%* 1.7% 0.2%

Table 2: Logical I/O costs: percentage of tuples accessed un-
der different layout schemes, compared to full scan. Base-
line is a random shuffler for TPC-H, and range partitioning
on an “ingest time” column for the two ErrorLog workloads.
(*Results of BU*, our tuned version. The untuned version
fares at 100% and 96.9%, respectively.)

36

Evaluation

40

— B bottom-up —~ BN bottom-up

P 30 qd-tree o 100 dd-tree

E 20 E

+ +
0 n_ 1§

1 3 45 6 7 8 9 1012 1417 18 19 21 1 3 4 5 6 7 8 9 1012 14 17 18 19 21
Template Template
(a) Distributed Spark (b) DBMS

Figure 5: TPC-H execution runtimes, grouped by each template.

37

Evaluation

400K i
@ 0.75
w w
B a 0.
§ 200K g 0.50
0 0.25
0 0.00
1 2 4 8 16 32 64 0 5 10 15
Num Threads Latency (ms/query)
(a) Data routing (b) Query routing

Figure 6: Performance of routing data and queries.

38

Evaluation

Runtime (s)

% of Queries

20000
7500 o
s jE: 10000
c
2500 s 4126
627 753 = 2852
0
BUT QD-Tree no route 0 BUT QD-Tree no route
(a) ErrorLog-Int (b) ErrorLog-Ext
100%
75%
0,
50% ErrorLog-Int
25% ErrorLog-Ext
0%

0 25 50 75 100 125 150 175
Speedup
(c) CDF of per-query speedups over BU*

Figure 7: ErrorLog execution runtimes.

39

Evaluation

S
o
=

35%

Scan Ratio
w
<L
o~

25%

TPC-H

2000

0.30%
0.25% ErrorLog-Ext
0.20%
0.15%
0 1000 2000

Elasped Time (sec)

Figure 8: Learning curve of WoopsLock. On TPC-H, most
quality improvement is learned in the first ~10 minutes;
on ErrorLog-Ext, high quality is achieved immediately (.3%)

and continuously improved when given more time budget.

The trend for ErrorLog-Int is similar (not shown).

40

Evaluation

sn_name (127) p_brand (14)
|_shipmode (95) |_receiptdate (8)
M |_quantity (75) I_shipdate (5)
M |_returnflag (61) AC 0 (2)

N
o

|_discount (57) M cr_name (1)

AC1(42) p_size (1)

p_container (34) ® p_type (1)

sr_name (29) AC 2 (1)
cn_name (20)

| ﬁ .

° hiii' i
.. ’!!.l.l | |

Tree Depth

Num Cuts
[}

WML aalt

Figure 9: A WoobpBLocK-produced top-performing qd-tree
for TPC-H. The number after each legend indicates the total
number of cuts on that column (or advanced cut).

41

Conclusions

qd-tree 1s implemented as a lightweight Python library

Woodblock, the RL agent, is implemented using Ray RLIib, a scalable
reinforcement learning library.

Compared to current blocking schemes, qd-tree can provide physical speedups of
more than an order of magnitude

Reaches 2 times of the lower bound for data skipping based on selectivity
Provides complete semantic descriptions
In future work, strategies for pruning away the redundant work are explored

as well as the extension to more than two trees in data replication.

42

