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Introduction and Problem Definition
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How the need of Qd-tree comes out

1. Increasing Data Volumes:
The last decade has seen an exponential increase in the amount of data 

collected, emphasizing the need for efficient data analytics. This makes 
the need to run queries on large datasets increasingly important.  

2. Limitation of the previous method       
More recently, most of researches focus on the method of organizing data in 

each block, focusing on reducing query time within a block. Ignoring how to 
reduce the time of doing I/O.

3. Current systems partition data by arrival time or range, which fails to minimize 
the number of data blocks accessed by a query. This highlights a gap in optimizing 
for query-specific data layouts.
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What Qd-Tree does in high level

1. Generate a tree like structure to assign the data into block.

2. Using the tree like structure to do queries.

The goal of Qd-Tree
Aiming to reduce I/O costs by learning optimal data layouts tailored to 
specific query workloads
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Problem Definition
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Problem Definition
Problem 1 (MaxSkip Partitioning). 
Given a set of tuples, a workload of queries, and a minimal block size , 
find a partitioning P to maximize (P), s.t. | | ≥ for all P

Problem 2 (Learned MaxSkip Partitioning). 
Given a set of tuples, a workload of queries, a skipping function , and a 
minimal block size , find a partitioning function , such that for the next 
tuples ingested, the partitioning P generated by ( ) maximizes (P).
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Qd-Tree structure 
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Routing Data

The overall strategy is to use a qd-tree to 
assign data to blocks on storage. Each 
record “arrives” at the root and is 
recursively routed down

Records are stored with an additional block 
ID (BID) field to denote the block they 
belong to, and the dataset is partitioned by 
this field.

CPU<10%

MEM <8GB CPU<50%

B1 B2 B3 B4
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Semantic Description of Nodes

Two kind of  comparisons need to handle:
1. Range comparisons: It can be easily 

handled by using a 2*N array. Like the R 
can be described as  [0,MAX_CPU), 
[0,MAX_MEM)

2. Equality comparisons: Some column in the 
database can be called categorical column. Like 
a “color” column. 

CPU<10%(R)

MEM <8GB(L1) CPU<50%

B1 B2 B3 B4
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Semantic Description of Nodes

2. Equality comparisons: We can use a array with length 
D array to handle each category column. For example, for 
Color column: {Red , Blue, White}

R.color_mask: [1,1,1]

There is a cut on root with color_mask = Blue, and create 
two leaf node called B1(left) and B2(right).

B1.color_mask: [1,1,1]
B2.color_mask: [1,0,1]

color_mask = Blue (R)

B1 B2

Why not use B1.color_mask: 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 ∈ [0,1,0]?
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How to get Candidate Cuts?

Since we are given a target workload of queries, we simply parse them through 
a standard SQL planner and take all pushed-down unary predicates as allowed 
cuts.

SELECT T
FROM TABLE T
WHERE (T.a<10 OR T.b<90) AND (T.c IN (1,4))

Using simple treatment

We can get three cuts from this query: T.a<10; T.b<90 ; T.c IN (1,4).
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How to do queries?

1. Using qd-tree to do search:
From root to leaf, find the BID in the leaf that fit the query.

Queries need to be reconstructed to fit the qd-tree node

2.  Scan the leaf node: This is the author actually doing in experiments
We can just scan all the leaf nodes(block) of the qd-tree, check whether 

its description intersects with the query

Two ways are given
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Greedy construction of Qd-tree
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Why use greedy approach and how it works?
The construction of a qd-tree is an NP-hard combinatorial optimization problem. 
Greedy algorithms are a typical family of solutions that are usually efficient and 
make locally optimal choices. It can give a qd-tree not so bad.

To present the algorithm, we define an action = ( , ) as applying cut to node 
in qd-tree . The result of action is denoted as = ( , ). 
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How it works?
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The problem of greedy approach

Can’t handle  work lord with just disjunctive range queries. 
Like a simple query: Q1: cpu<10 OR cpu>90

[0,10) [10,100)

[0,90) (90,100)

Cut 1

Cut 2

[10,90) (90,100)(0,10)
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Qd-Tree Using Deep RL
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Qd-Tree Using Deep RL
Issues with techniques for optimization

Greedy Technique does not handle well for global optimization.

Memoized Search (Dynamic Programming) is not viable as high-dimensional 
search space is too large, approximate dynamic programming required.

What’s a better approach?

Approximate, accelerated, and incremental memoized search performed by deep 
RL
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Qd-Tree Using Deep RL

WOODBLOCK, a deep RL agent.

How it works?

Construct routing trees for a target dataset and workload

Learns to identify better cuts through rewards

Deploys best tree after a timeout is reached or a number of tree are attempted.
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Qd-Tree Using Deep RL
What are the benefits of using WOODBLOCK?

Featurization the states and uses the model to make prediction about rewards 
given current state

Sampling subsets of follow-up actions of search states and updating model from 
rewards

Produces better trees and efficient deployment of solution
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Qd-Tree Using Deep RL

Greedy construction relies on tree-submodularity

● Disjunctive range and candidate cut fails to satisfy 
and cannot skip

● Must choose the cut on disk, neither query 1 nor 
query 2 can be satisfy, lacks skipping ability.

RL produces better partitioning and handles candidate 
cuts and large number of data dimension.
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WOODBLOCK
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WOODBLOCK
Application of RL algorithm: 
Variables:
Tree Construction Markov Decision Process (MDP)

State Space: subspace of the entire data space of the relation under optimization

Action Space: set of allowed cuts. 

Core of WOODBLOCK: 2 learnable networks parameterized by 
Policy network: returns a probability distribution over action space

Value network: returns the expected cumulative reward from a given state
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WOODBLOCK
Process of construction of qd-tree:

● The agent starts construction of one tree with a root node

● Agent transitions into next states. 

● Once a stopping condition is reached, described next, a qd-tree is completed.

Higher skipping ratio is achieved through cuts made by the refined .
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WOODBLOCK

Stopping Condition

Each leaf block must contain at least records.

If the resultant children contain more than records by approximation, then agent 
can make a cut on current node.

This approximation is achieved by testing the cut on a data sample.

After cut is made, begin evaluation of the cut on the data sample as a cut is made, 
and resulted in a subset of records that satisfy it and a subset that does not.

When current node has no legal cuts left in action space, stop cutting on it and a 
leaf is form.
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WOODBLOCK
Calculating Reward for WOODBLOCK to learn

Number of skipped records under node across all queries

For every action, a reward is assigned

26



WOODBLOCK
How are the networks implemented?

Policy network and the value network have shared weights, which are two

fully-connected layers, 512 units each, with ReLU activation. 

Output layer:

● Policy network: a | |-dimensional linear projection 
● Value network: a scalar projection.

Each state is featurized as the concatenation of n.range and n.categorical_mask.
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Framework Extension
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Framework Extension
Advanced Cuts

Fast evaluation in the process of tree construction is enabled by single-column 
predicates 

Qd-tree can be extended to support binary cuts of the form (attr1, op, attr2)

Append a new component to each node’s description

n.adv_cuts: a bit vector of size |AC|
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Framework Extension

Data Overlap

Qd-tree also supports duplicating data.

The ( + 1)-record block is not further cut because of the minimum block size 
constraint

Construction algorithms with a relaxed cutting condition which allows one of the 
children to have size smaller than the constrained block size.

The lucky block would be further cut into an -record one and a block with a 
single record.

Modifications to node metadata still maintain and the semantic descriptions 
preserve completeness. 

No extra storage cost.
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Framework Extension
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Framework Extension

Data and Query Routing

Data routed the same way, except a row routed to all matching blocks.

Candidate set of blocks includes all blocks that overlap with the query rectangle.

With overlap, the set of blocks scanned when evaluating a query may contain 
duplicate rows. 

Prune away the other blocks because a block covers the query rectangle.

When scanning block ID, ignore tuples match block’s semantic description with 
ID < i.
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Framework Extension

Solution to Data Replication: Two-tree approach

Full-copy data replication is an approach to overlap when utilizing extra storage.

Using Greedy or RL to learn a qd-tree optimized for the full workload

Building a second qd-tree tuned for the queries that has the issue of the worst skippability under 
the qd-tree learnt.

Modifying the reward function for RL through accounting for the existence of the first tree. 

Changes to be made:

● Picking one of the two trees that maximizes the skippability for each query
● Calculating the number of skipped tuples 
● Summing up skipped tuples for all queries in the workload
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Weak Points

Due to the random cut that is made initially, WOODBLOCK’s performance at the 
start can be suboptimal. The agent need to gradually learn through reward 
function, identifying profitable cuts and to optimize data skipping.

A large portion of tree construction time is taken up by routing records and 
calculation of rewards, therefore in most occasions, only CPUs are used for the 
WOODBLOCK agent.
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Evaluations and Conclusions
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Evaluation
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Evaluation
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Evaluation
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Evaluation

39



Evaluation
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Evaluation
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Conclusions

qd-tree is implemented as a lightweight Python library

Woodblock, the RL agent, is implemented using Ray RLlib, a scalable 
reinforcement learning library. 

Compared to current blocking schemes, qd-tree can provide physical speedups of 
more than an order of magnitude 

Reaches 2 times of the lower bound for data skipping based on selectivity

Provides complete semantic descriptions

In future work, strategies for pruning away the redundant work are explored

as well as the extension to more than two trees in data replication.
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