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Traditional Index

Indexing is a process of narrowing the search range to make it easier

to find the lookup key

B-Tree & B+ Tree:
Narrowing the range level by
level

E.g B-Tree

Data must be sorted
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Traditional Index

Indexing is a process of narrowing the search range to make it easier
to find the lookup key

B-Tree & B+ Tree:
Narrowing the range level by
level

15 20425 304 35 40 8

E.g B+ Tree

Data must be sorted
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1. Storing key-pointer
2. Narrowing the search range by comparing key level by level
3. The underlying data must be sorted
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Traditional Index

1. Storing key-pointer
2. Narrowing the search range by comparing key level by level
3. The underlying data must be sorted

Q1: Is it possible to narrow the search range faster or directly?

Q2: How could we know the lookup key position on unsorted
underlying data?
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Learned Index

Unlike traditional index structures such as
B-trees,

learned indexes build a model over the
underlying data to predict the position of
a lookup key in a sorted arra

“Position” = a smaller range

(a) B-Tree Index

pos -0

pos + pagezise

(b) Learned Index
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Learned Index

How is this model built?

Step1: Make a sorted copy of the underlying data to train the model

Base Data 19 42 31 21 15 12 1

Sorted Array (Keys) 5 7 12 15 19 21 31 34 42




Learned Index

How is this model built?

StepZ2: Construct a cumulative distribution function (CDF) based on the ordered data.

CDF: CDF indicates the proportion of data items that are less than or equal to a given key.

F(z) = P(X < z)

Why CDF? = It is a approximate of a position predicting model




Learned Index

How is this model built?

CDF: F(ZL') = P(X = ZL’) Pos A -1 §
P = F(Key) *N

Key

Index can be thought of as an approximation of the cumulative distribution
function (CDF) of the data




Learned Index

How is this model built?

Step3: Model Selection

— k —
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. Input Hidden Output
Layer Layers Layer Po. 0,01

[0.333, 0.667, 1]

P

[0, 0.333, 0.667]
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Simpler to build ™

Neural network Simpler models like Spline




Learned Index

The learned index model: Practical Learned Index (PLEX)

/ RadixSpIine : A linear spline model

approximates the CDF of the data
PLEX

Hist-Tree: approximates the data distributed as a histogram

Reference:

Stoian, M., Kipf, A., Marcus, R., & Kraska, T. (2021). Towards Practical Learned Indexing. Proceedings of the AIDB
2021: 3rd International Workshop on Applied Al for Database Systems and Applications, Copenhagen, Denmark.
Link:
https://www.researchgate.net/publication/353838541_PLEX_Towards_Practical_Learned_Indexing



Learned Index

The learned index model: Practical Learned Index (PLEX)

101 D50 2 R125 BI5N 198 R218 B310 R340 h42




Learned Index

How is this model built?

Step4: Train the Model, Evaluate and Optimize it

Step5: Establish the model's maximum error bound.

!

To make sure the model is reliable




Learned Index

Learned Index can provide:

1. A mapping from keys to predicted range.
The maximum error that prediction can incur.

Then we can find the position by using binary search

On this range

Q1: Can we find the position not level by level ‘ |

pos - min_err pos + max_er

Q2: How could we know the lookup key
position on unsorted underlying data?



Learned Index

The problemis:

1. We wantto know the position on
unsorted underlying data

1. We still need to use binary search

pos - min_err pos + max_er
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Permutation Vector

Permutation vector provides a mapping from unsorted data to a sorted view.

H

Sorted Array (Keys) 1 |5 |7 |([12 | 15 (19 21 | 31 34 42 Not explicitly stored
G

—
Permutation Vector (TIDs)

Base Data

Offsets o 1 2 3 4 5 6 7 8 9

We can use the permutation vector to locate the actual record position.



Use bit-pack to store Permutation Vector

Assume we have: n (0 ~ n-1) elements

maximum value to represent : n-1

We need 10g2 (’n,) bits at most ~ The logarithm base is 2 because data
storage is based on binary systems

E.g: n=1024
Bitpack: take 10 bits at most

Else: (assume we use32 bits integer): 32 - 10 = 22 bits wasted



Traditional Index vs LSI(using PV)  savesabout 6 * spaces

B+ Tree LSI
Space Store Actual Keys Use PV to map PLEX's
predictions

into the underlying data.

Time(binary search) Sorted array (faster) Unsorted array (slower)

-

All memory accesses to the unsorted base data are
likely out of cache.
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Fingerprint Vector

In equality lookups: s es———)e- Linear Search

!

Max error bound =1

Why not linear search? =o—— [ Traverse the data ]




Fingerprint Vector

Fingerprint e Person
Fingerprint Vector — =iy Real Key
S\
( \

1 |5 | 7 (12 15 (|19 21 (31 34 42

' Murmur3 (Hash function)

Fingerprint Vector 10 01 10 00 11 10 01 OO0 10 01 8/32 bits

8 bits




Fingerprint Vector

12 115 119 21 |31 (34 42

Fingerprint Vector 10 01 10 00 11 10 01 OO0 10 01

Match the fingerprint then check the key
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How to build LSI

Step1: Create a sorted copy of the base data. 4 i

ey,

Step2: Build CDF based on the sorted data

Duplicate makes a “steeper” slope in
the CDF

Step3: Deduplicate but give the data a rank of weight

Step4: Build PLEX model based on CDF
Step5: Build Permutation Vector & Fingerprint Vector

Step6: Delete the copy



Two important parameter to set

Maximum error: make sure the model is reliable

Fingerprint bits: save space or save accuracy?
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Lookup procedure

Sorted Array (Keys) Not explicitly stored
Fingerprint Vector 10 01 10 OO0 11 10 01 00
Permutation Vector (TIDs)

Base Data

Offsets o 1 2 3 4 5 6 7 8 9




What is included

W=

—_—

Brief review of traditional indexing
Introduction to learned index
Learned secondary index

3.1 Permutation vector

3.2 Fingerprint vector

3.3 How to build LSI

. Lookup procedure

Evaluation



Evaluation of Learned Secondary Index (LSI)

e Testing Environment
e Datasets

e Baselines for Comparison



Index Build Times Comparison
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Figure 2: Build time in seconds. The text annotations denote
the error bounds.




Lower-Bound Lookups Performance
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Figure 3: Lower-bound lookups using non-existing keys.
The text annotations denote the error bounds.



Equality Lookups - LSI vs. RobinHash
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Figure 4: Equality lookups on the amzn dataset comparing
LSI to RobinHash.



Binary vs. Linear Search in LSI
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Figure 5: Binary search vs. linear search with varying finger-
print sizes (in brackets).



Space Breakdown of LSI
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Figure 6: Size of the permutation vector. Information-
theoretic lower bound vs. our bit-packed representation.



Impact of Model Choice on LSI Performance
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Figure 7: Using PLEX vs. CHT as models in LSI for lower-
bound lookups. The text annotations denote the error
bounds.




