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Speed-up query execution and improve 
performance in columnar data stores - propose 
techniques and empirically evaluate using 
micro-benchmarks and TPC-H benchmark



COLUMN STORES



Data is organized and stored in columns 
- values in each column are stored 
contiguously

In contrast to row-oriented stores which 
store data in a row contiguously

Name Age City

John Smith 30 New York

Jane Doe 25 Chicago

Bob Johnson 35 Miami

ROW DATA-STORE

Row1: [“John Smith”, 30, “New York”]

Row2: ["Jane Doe", 25, "Chicago"]

Row3: [“Bob Johnson”, 35, “Miami”]

COLUMN DATA-STORE

Name: [“John Smith”, “Jane Doe”, “Bob Johnson”]

Age: [30, 25, 35]

City: [“New York”, “Chicago”, “Miami”]



Why use column 
stores?

Data compression - Store data more 
compactly due to similar/repeating 
values in columns - aggressive encoding 
schemes - dictionary encoding

Query performance - Only read/process 
necessary columns - reduces I/O, 
improves performance

Scalability - Easily add new columns to 
existing data, individually compress, 
index each column - better storage 
utilization



OPTIMIZATIONS



Data Compression

Use fewer bits than original representation to store 
data. 

Encoding Scheme - A way to store values efficiently, 
in-order to compress them

Popular scheme - dictionary encoding

Dictionary Encoding - Each distinct value in column 
mapped to a unique short-code

Usually store these in a bit-packed manner



Dictionary Encoding
A loss-less compression technique that 
stores each unique value of a column in 
memory and associate each record with 
its corresponding unique value.

Example

To the swinging and the ringing of the bells, 

bells, bells-of the bells, bells, bells, bells 

Bells, bells, bells- To the rhyming and the 

chiming of the bells!

Word Reference Binary

To 0 0000

the 1 0001

swinging 2 0010

and 3 0011

ringing 4 0100

of 5 0101

bells 6 0110

Bells 7 0111

rhyming 8 1000

chiming 9 1001

, 10 1010

- 11 1011

! 12 1100



Encoded

0 1 2 3 1 4 5 1 

6 10 6 10 6 11 5 1 6 10 6 10 

6 10 6 10 7 10 6 10 6 11 0 1 

8 3 1 9 1 3 5 1 6 12

Original

To the swinging and the ringing of the 

bells, bells, bells-of the bells, bells, 

bells, bells Bells, bells, bells- To the 

rhyming and the chiming of the bells!



Bit-packing
Smart way of storing data - make your data-representation fit your data

Example

Boolean array        Bit array/Bitmask/Bit map/Bit set

Bit Packing + Dictionary Encoding

● Reduces storage cost
● Increased query processing latency due to decoding

Making this process more efficient - SIMD Vectorization (Single Instruction/Multiple Data)

00000001 00000000 00000001

TRUE FALSE TRUE

00000101

TRUE FALSE TRUE



Accelerating Decoding Process - SIMD vectorization

Parquet adopts this method

Still decoding takes up majority of query execution time

Fundamental limitation - Produced decoded value much bigger than encoded 
value (obviously) - limiting degree of data parallelism

To alleviate this - avoid decoding all together - predicate pushdown



Predicate Pushdown
A query optimization technique to filter 
data at the data source

Predicates - Conditions or filters

eg. WHERE clause

Benefits

● Reduced Data Transmission
● Decreased Processing Times
● Enhanced Performance



1. Query Query with predicates sent to database engine

2. Retrieval Database engine queries the datasource which returns all data

3. Filtering Filters applied to discard unnecessary rows

4. Result Filtered rows returned as result for query

1. Query Query with predicates sent to database engine

2. Pushdown Database engine pushes down predicates to datasource

3. Filtering Data evaluated with predicates and only relevant data fetched

4. Result Filtered rows returned as result for query

Typical execution

Predicate Pushdown



Predicate Pushdown + Encoding 

Evaluate converted predicate on encoded value directly - pushing down predicate 
evaluation - avoid costly decoding

Even if high performance - still rely on 2 key assumptions - 

1. Encoding is order preserving
2. Simple predicates (i,e  basic comparison) - can be converted to equivalent 

encoded form

Neither hold true in practice - eg. Parquet uses dictionary encoding  - not 
order-preserving - eliminates possibility of using this technique in Parquet

Also - complex predicates - string matching, user-defined functions, cross-table 
predicates - not supported



SOLUTION OVERVIEW

PARQUET-SELECT Library

BIT MANIPULATION INSTRUCTIONS

SELECTION PUSHDOWN

SELECT OPERATOR



BIT MANIPULATION INSTRUCTION SET



Extension for X86 architecture for Intel, AMD

Improve the speed of bit manipulation and common bitwise operators using 
dedicated hardware instructions. They are non-SIMD and operate only on 
general-purpose registers.

Even before BMI, bitwise operations were used in database applications - 
implemented in software

Software implementations can be replaced with BMI without reworking algorithms - 
take advantage of speedup provided by hardware implementation



Encoding Instruction Description Equivalent C expression

VEX.LZ.0F38 F2 /r ANDN Logical and not ~x & y

VEX.LZ.0F38 F7 /r BEXTR Bit field extract (with register) (src >> start) & ((1 << len) - 1)

VEX.LZ.0F38 F3 /3 BLSI Extract lowest set isolated bit x & -x

VEX.LZ.0F38 F3 /2 BLSMSK Get mask up to lowest set bit x ^ (x - 1)

VEX.LZ.0F38 F3 /1 BLSR Reset lowest set bit x & (x - 1)

F3 0F BC /r TZCNT
Count the number of trailing zero 

bits

31 + (!x)
  - (((x & -x) & 0x0000FFFF) ? 16 : 0)
  - (((x & -x) & 0x00FF00FF) ? 8 : 0)
  - (((x & -x) & 0x0F0F0F0F) ? 4 : 0)
  - (((x & -x) & 0x33333333) ? 2 : 0)
  - (((x & -x) & 0x55555555) ? 1 : 0)



Encoding Instruction Description

VEX.LZ.0F38 F5 /r BZHI Zero high bits starting with specified bit position [src & (1 << inx)-1];

VEX.LZ.F2.0F38 F6 /r MULX Unsigned multiply without affecting flags, and arbitrary destination registers

VEX.LZ.F2.0F38 F5 /r PDEP Parallel bits deposit

VEX.LZ.F3.0F38 F5 /r PEXT Parallel bits extract

VEX.LZ.F2.0F3A F0 /r ib RORX Rotate right logical without affecting flags

VEX.LZ.F3.0F38 F7 /r SARX Shift arithmetic right without affecting flags

VEX.LZ.F2.0F38 F7 /r SHRX Shift logical right without affecting flags

VEX.LZ.66.0F38 F7 /r SHLX Shift logical left without affecting flags



PEXT

Extracts the bits selected by a select 
mask operand from a source operand 
and copies them to the contiguous 
low-order bits in the destination, with 
the high-order bits set to 0s. 

PDEP

Opposite of PEXT: the contiguous 
low-order bits from the source 
operand are copied to the selected 
bits of destination, indicated by the 
select mask operand, while other bits 
in the destination are set to 0s.



BITSTRING a b c d e f g h

MASK 1 0 1 0 0 1 1 0

PEXT 0 0 0 0 a c f g

PDEP e 0 f 0 0 g h 0



BMI 2 orders of magnitude faster than author’s software implementation

BLSI - Software  implementation much faster than BMI!

PEXT, PDEP - BMI much faster than software implementation



Feature SIMD (Single Instruction, Multiple Data) BMI (Bit Manipulation Instructions)

Purpose Enables parallel processing of multiple 
data elements

Provides operations for low-level bit 
manipulation

Operations Operates on vectors of data elements 
simultaneously

Operates on individual or groups of bits 
within data

Use Cases Multimedia processing, scientific 
computing, etc.

Cryptography, compression algorithms, 
hashing, etc.

Examples Intel's SSE, AVX, ARM's NEON Intel's BMI1, BMI2

Performance Impact Improves performance by parallelizing 
operations Provides efficient bit-level manipulation

Granularity Operates on data elements (e.g., floats, 
integers)

Operates on individual bits or groups of 
bits

SIMD vs BMI



APACHE PARQUET



Open-source columnar storage format - initiated by twitter and cloudera, inspired 
by Dremel

The parquet format is - 

● Supports nested columns
● Binary format
● Encoded
● Compressed
● Storage efficient

https://research.google/pubs/dremel-interactive-analysis-of-web-scale-datasets-2/


Sample Data
Name Phone Address

John 1001 {road: road1, street: street1}

Sten 1002 {road: road1, street: street1}

Jakob 1003 {road: road1, street: street1}

Milne 1004 {road: road1, street: street1}



FAST SELECT OPERATOR



Used for selecting specific values , output them contiguously and remove 
unselected values

n k-bit Input Byte Array n-bit Select Bitmap Output Byte Array

Required Output - v7, v6, v2

Naive solution - Go over each 
bit-packed value, extract ones 
needed - O(n) steps

Issue - Values much smaller than 
available word size (64bits) - 
inefficient utilization



More efficient select operation - something bit-parallel - simultaneously process all 
values packed into 64-bit processor word parallely

BIT PARALLEL ALGORITHM

Formal Definition - . For a given word size 𝑤, an algorithm is a bit-parallel algorithm 
if it processes 𝑛 𝑘-bit values in 𝑂(𝑛𝑘/𝑤) instructions.

Two cases - 

Case 1: Word size is multiple of bit width - Simplified Algorithm (3.2)

Case 2: Word size is not a multiple of bit width - General Algorithm (3.3)

Goal



Bit width (k) power of 2 ∋ no value placed across word boundaries

1 bit values - Extract all bits that correspond to 1s in bitmap from values - exactly what PEXT does!

k bit values - Slightly general case - slight modification - instead of using select bitmap directly - need 
extended bitmap which has k bits - duplicate each bit in select bitmap k times

BITSTRING a b c d e f g h

MASK 1 0 1 0 0 1 1 0

PEXT 0 0 0 0 a c f g

Simplified Algorithm



Select 3 4-bit values from 8 4-bit 
values

Step 1 - Input select map to 
extended bitmap - the authors use 
only 3 instructions - 2 PDEP, one 
subtraction along with a mask from 
0(k-1)1 where k power of 2

Step 2 - Use PEXT to get relevant 
values (v7, v6, v2)

Input 
bitmap 1 1 0 0 0 1 0 0

Extended 
bitmap 1111 1111 0000 0000 0000 1111 0000 0000



Extend simplified algorithm - supports 
arbitrary bit width k

Challenge - Values can span across 
word boundaries - deal with these with 
minimal overhead

Previously used Algorithm 1 still valid - 
with slight modifications

No additional overhead when compared 
to simplified algorithm!

General Algorithm

Algorithm is bit-parallel - run constant 
number of instructions on each 
processor word





SELECTION PUSHDOWN



AIM - Accelerate arbitrary scans making the best use of select operator discussed 
previously!

Scan operator - Return value of projection columns in query (i.e. SELECT) from 
records that match filters (i.e. WHERE clause)

Key Insight - Predicate Pushdown + Encoding/Compression + Select operator

Pushdown select operator to select encoded values directly

Technical Challenge - Fast Select operator on encoded values + move selected 
values from encoded vector values simultaneously

Based on simple observation - query usually involves multiple predicates across 
multiple columns - while evaluating predicates bypass records that fail prior 
predicates - short-circuit 



Seems obvious, why is it not used by others?

Previous work intentionally ignore fact that some values were potentially filtered by 
other predicates as the cost of select operator outweighs potential cost savings in 
predicate evaluation

However, due to fast select operator - viable to filter at predicate level upfront

Key points is a framework that takes advantage of BMI based select operator for 
projecting and filtering along with technical challenges associated with this 
approach - which can also be addressed with BMI



The Idea
Each filter operation - produces select bitmap - 1 bit/record to indicate if record 
satisfies all previous filters or not.

Select bitmap - fed into next filter/projection operation - decrease data at each step

SELECT c FROM R WHERE a < 10 AND b < 4

1. Filter on a - no bitmap
2. Filter on b - bitmapa

3. Projection on c - bitmapa

4. Final result - selectedc



Steps

Select

Use fast select 
operator to remove 
irrelevant values 
from the target 
column. Pushing 
down the select 
operator results in a 
reduced number of 
values that need to 
be passed to the 
subsequent 
operators.

Unpack

Convert encoded values 
to native representation 
in primitive data types 
with SIMD based 
implementation. For 
project operations, we 
can now return the 
unpacked results and 
skip the remaining two 
operators/steps

Evaluate

For filter operations, 
evaluate all decoded 
values with the filter 
predicate - generate a 
bitmap to indicate 
whether each value 
satisfies the predicate 
(allows arbitrary 
predicates). Selected 
values are now in 
primitive data types - 
SIMD vectorization 

Transform

Evaluate operator bitmap 
may not be directly used as a 
select bitmap for the next 
operation as it has as many 
bits as the selected records,
rather than all records. The 
transform operator is 
designed to convert such a 
bitmap into an
appropriate select bitmap 
that can be used for the 
subsequent operation(s) - 
efficient way with BMI



Filter Ordering
So far - assumed filters 
evaluated in same order as in 
the query

SELECT c FROM R WHERE a 
< 10 AND b < 4 - First a then b

Query optimization - what 
order to consider filters in - 
consider both bit width and 
filter selectivity

Cost model and a greedy model to determine best 
order for filter evaluation

Assumptions: Filter predicates independent of 
each other, selectivity of each is known prior - via 
selectivity estimation techniques

https://www.vldb.org/conf/1997/P486.PDF


Cost Model

𝑘 - bit width

𝑤 -processor word size

𝑠 - selectivity where 𝑠 ∈ [0, 1].

sequence of 𝑛 filters, 𝑓1 ... 𝑓𝑛. 

Objective - Minimize cost of running 
filters 

= cost(select) + cost(unpack+evaluate) 
+ cost(transform) [Except first filter f1] 
∝ki/w

Bit Parallel Algorithm Formal Definition - For a 
given word size 𝑤, an algorithm is a bit-parallel 
algorithm if it processes 𝑛 𝑘-bit values in 𝑂(𝑛𝑘/𝑤) 
instructions.

Unpack + Evaluate - Run on subset of values 
selected by filter - number = total values * product 
of selectivity of previous filters

Transform - Ignore as only one PDEP instruction

First filter - No select, just unpack and evaluate



Minimize Cost
Observations

1. For sequences starting with the same filter, the term   remains unchanged and 
does not impact the overall cost, regardless of the order of the rest of the filters

2. To minimize the second term  , , we should sort all filters in ascending order 
of selectivity, assuming the first filter has been determined.

It is evident that a simple greedy approach can find the optimal order

1. Select an arbitrary filter as the first filter
2. Optimal order of the remaining filters can be found by sorting them in the ascending 

order of their selectivity, whose cost can be calculated by using Equation 1
3. Compare all 𝑛 possible choices for the first filter and find the one with the lowest overall 

cost. 

This approach drastically reduces our search space from 𝑂(𝑛!) to 𝑂(𝑛) candidate sequences, 
and the obtained order is optimal under the aforementioned assumptions. Relaxing these 
assumptions is an interesting direction for future work



Extending Filter predicate assumption
Previously, filter predicate (WHERE clause) was assumed to be a conjunction of filters. It 
can be extended to other scenarios like conjunctions, disjunctions, negations, or an 
arbitrary boolean combination of them.

DISJUNCTION - Convert to a combination of conjunctions and negations by applying De 
Morgan’s laws: 𝑎 ∨𝑏 = ¬(¬𝑎 ∧ ¬𝑏). 

SELECT c FROM R WHERE (a < 10 OR b < 4)

NEGATION - Boolean flag (negate), as an additional input parameter to the filter operation. 
If true, flip the bitmap produced by the evaluate operator keeping rest of operators 
unchanged

negate(negate[a < 10] AND negate[b < 4])

This approach supports disjunctions and negations with negligible overhead.



SELECTION PUSHDOWN IN PARQUET



Adapt previously discussed generic techniques to Parquet

Definition levels specify how many optional 
fields in the path for the column are defined. 

Repetition levels specify at what repeated 
field in the path has the value repeated.



The Issue
The challenge arises from the way that Parquet encodes the structure information 
to represent optional, nested, or repeated fields 

Parquet never explicitly stores null values, all repeated values are stored 
contiguously in the same array.

The number of levels or values in the column may not be the same as the number 
of records - fast select operation cannot be directly applied to Parquet. 



PARQUET-SELECT



Authors built a library Parquet-Select with the full implementation of the various 
techniques we discussed so far - BMI, predicate pushdown, fast select etc.

Supports Arbitrary filters - Each filter - UD Lambda function that can implement 
even complex predicates such as complex string matching, UDFs, cross-table 
predicates etc.

1. SELECT *FROM products WHERE product_name LIKE '%keyword%' OR 
product_description LIKE '%keyword%';

2. SELECT product_id, product_name, calculate_discount(product_price) AS 
discounted_price FROM products;

3. SELECT o.order_id, o.order_date, c.customer_name, c.email FROM orders o 
JOIN customers c ON o.customer_id = c.customer_id WHERE c.customer_id = 
123;



EVALUATION



Processor  2.6GHz AMD EPYC 7413 and Intel Xeon 
Gold 6140

Memory 256GB DDR4 

Storage NVMe SSD - 3.5GB/s

OS 64-bit Windows Server 2022 Datacenter

Parquet-Select vs open-source C++ version of Arrow/Parquet2 (v 8.0.0).
● Parquet implements the SIMD-based unpack algorithm for decoding. 
● Authors implemented the filter and selection operations on decoded column 

values using SIMD instructions and optimized these operations 
● All experiments were run using a single thread



Compare Parquet-Select and Parquet on a project operation with a given select 
bitmap - evaluate effects of bit width of the column values and selectivity of the 
select bitmap. 

Parquet file with a single column
● 128 million 64-bit - Integer values.
● 2𝑘 distinct values in the column
● 𝑘 - bit width of the values encoded with dictionary encoding

This is varied in the experiment

Selection Performance



Important Results
1. Parquet-Select slightly better than Parquet when s = 1/1 - selection on bit-packed 

values read slightly less than selection on decoded values - even with SIMD 
vectorization - unpacking still bottleneck

2. PS - Higher performance gains on decrease bit-width - due to high data parallelism 
in processing bits by fast-select operator

Upto 10X speedup



Evaluate 2 approaches with scan queries using micro-benchmark

Experiment parameters
● 20 columns (a1 ∼ a20)
● 128 million rows
● Selectivity of each filter = 25%
● Overall selectivity - varies as number of filters is varied

Evaluation parameters - how performance is affected by
1. Number of filters
2. Number of projections
3. Bit width of column values
4. Data types

Micro-benchmark Evaluation

SELECT MAX(a10), MAX(a11), ... FROM R 
WHERE a1 < C1 AND a2 < C2 AND ...





TPC-H BENCHMARK



Test Parquet-Select with realistic workload - TPC-H

The TPC-H is a decision support benchmark. It consists of a suite of business 
oriented ad-hoc queries and concurrent data modifications. The queries and the 
data populating the database have been chosen to have broad industry-wide 
relevance.

It comes with various data set sizes to test different scaling factors - 
● TPCH_SF1: Consists of the base row size (several million elements).
● TPCH_SF10: Consists of the base row size x 10 - used in the paper
● TPCH_SF100: Consists of the base row size x 100 (several hundred million 

elements).
● TPCH_SF1000: Consists of the base row size x 1000 (several billion 

elements).

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf


Forecasting Revenue Change Query (Q6) - a scan query
This query quantifies the amount of revenue increase that would have resulted 
from eliminating certain company wide discounts in a given percentage range in a 
given year. Asking this type of "what if" query can be used to look
for ways to increase revenues.
The overall selectivity of the query is 1.9%
Filters - 3

Projection - 2
Columns l_extendedprice and l_discount. 

TPC-H Q6

Columns/Property l_shipdate l_discount l_quantity

Encoding bits 12 4 6

Selectivity 15.2% 27.3% 46.0%





Filters in order <sdq> faster than others by 30%
Why? - Because l_shipdate filter has more selectivity (by 15.2%) when compared to 
other filters
Also size of data in s is the largest - less beneficial to evaluate it later



Extend evaluation using Apache Spark - two approaches
1) Spark + Parquet - Standard and deeply integrated way to query Parquet files 

using Spark
2) Spark + Parquet-Select - Enable predicate pushdown in Spark by leveraging 

Parquet-Select

TPC-H Benchmark Evaluation



Parquet Files

Parquet-
Select

P-S 
Connector

Predicate 
Pushdown

Spark 
Datasource V2 
API

Using PS in Spark



Queries Used for TPC-H Evaluation
Selectivity for each query



ENCODING AND COMPRESSION



Run-Length Encoding
Apart from bit-pack encoding, other encoding schemes like Run-Length Encoding 
(RLE) are used for testing their efficiency with selection pushdown for 
RLE-encoded data.

RLE - A simple lossless data-compression where runs of data (sequences in 
which the same data value occurs in many consecutive data elements) are stored 
as a single data value and count, rather than as the original run

Example
WWWWWWWWWWWW B WWWWWWWWWWWW BBB

12W 1B 12W 3B



Effect of using RLE
Parquet-Select achieves up to 
9X speedup over Parquet - as it 
decodes and selects values in a 
single pass, while Parquet 
requires two separate passes to 
complete these steps

Selection pushdown is 
generally more efficient for 
RLE-encoded values than for 
bit-packed values.

Interleaving bit-packing and RLE

Better to use either the one or the other - 
don’t interleave RLE and bit-packing



Page-level Compression
In Parquet, encoded values are organized 
into data pages, which can
be further compressed optionally using a 
variety of compression schemes. 

Here - impact of page-level compression 
on the performance is done  - comparison 
between Parquet and Parquet-Select using 
TPC-H Q6 

Compression schemes - LZ4 and Snappy - 
both reduced the size of the Lineitem 
Parquet file by approximately 30%





ANY QUESTIONS?


