
Selection Pushdown in Column
Stores using Bit Manipulation
Instructions

Rohit Vemparala - U50993392

Speed-up query execution and improve
performance in columnar data stores - propose
techniques and empirically evaluate using
micro-benchmarks and TPC-H benchmark

COLUMN STORES

Data is organized and stored in columns
- values in each column are stored
contiguously

In contrast to row-oriented stores which
store data in a row contiguously

Name Age City

John Smith 30 New York

Jane Doe 25 Chicago

Bob Johnson 35 Miami

ROW DATA-STORE

Row1: [“John Smith”, 30, “New York”]

Row2: ["Jane Doe", 25, "Chicago"]

Row3: [“Bob Johnson”, 35, “Miami”]

COLUMN DATA-STORE

Name: [“John Smith”, “Jane Doe”, “Bob Johnson”]

Age: [30, 25, 35]

City: [“New York”, “Chicago”, “Miami”]

Why use column
stores?

Data compression - Store data more
compactly due to similar/repeating
values in columns - aggressive encoding
schemes - dictionary encoding

Query performance - Only read/process
necessary columns - reduces I/O,
improves performance

Scalability - Easily add new columns to
existing data, individually compress,
index each column - better storage
utilization

OPTIMIZATIONS

Data Compression

Use fewer bits than original representation to store
data.

Encoding Scheme - A way to store values efficiently,
in-order to compress them

Popular scheme - dictionary encoding

Dictionary Encoding - Each distinct value in column
mapped to a unique short-code

Usually store these in a bit-packed manner

Dictionary Encoding
A loss-less compression technique that
stores each unique value of a column in
memory and associate each record with
its corresponding unique value.

Example

To the swinging and the ringing of the bells,

bells, bells-of the bells, bells, bells, bells

Bells, bells, bells- To the rhyming and the

chiming of the bells!

Word Reference Binary

To 0 0000

the 1 0001

swinging 2 0010

and 3 0011

ringing 4 0100

of 5 0101

bells 6 0110

Bells 7 0111

rhyming 8 1000

chiming 9 1001

, 10 1010

- 11 1011

! 12 1100

Encoded

0 1 2 3 1 4 5 1

6 10 6 10 6 11 5 1 6 10 6 10

6 10 6 10 7 10 6 10 6 11 0 1

8 3 1 9 1 3 5 1 6 12

Original

To the swinging and the ringing of the

bells, bells, bells-of the bells, bells,

bells, bells Bells, bells, bells- To the

rhyming and the chiming of the bells!

Bit-packing
Smart way of storing data - make your data-representation fit your data

Example

Boolean array Bit array/Bitmask/Bit map/Bit set

Bit Packing + Dictionary Encoding

● Reduces storage cost
● Increased query processing latency due to decoding

Making this process more efficient - SIMD Vectorization (Single Instruction/Multiple Data)

00000001 00000000 00000001

TRUE FALSE TRUE

00000101

TRUE FALSE TRUE

Accelerating Decoding Process - SIMD vectorization

Parquet adopts this method

Still decoding takes up majority of query execution time

Fundamental limitation - Produced decoded value much bigger than encoded
value (obviously) - limiting degree of data parallelism

To alleviate this - avoid decoding all together - predicate pushdown

Predicate Pushdown
A query optimization technique to filter
data at the data source

Predicates - Conditions or filters

eg. WHERE clause

Benefits

● Reduced Data Transmission
● Decreased Processing Times
● Enhanced Performance

1. Query Query with predicates sent to database engine

2. Retrieval Database engine queries the datasource which returns all data

3. Filtering Filters applied to discard unnecessary rows

4. Result Filtered rows returned as result for query

1. Query Query with predicates sent to database engine

2. Pushdown Database engine pushes down predicates to datasource

3. Filtering Data evaluated with predicates and only relevant data fetched

4. Result Filtered rows returned as result for query

Typical execution

Predicate Pushdown

Predicate Pushdown + Encoding

Evaluate converted predicate on encoded value directly - pushing down predicate
evaluation - avoid costly decoding

Even if high performance - still rely on 2 key assumptions -

1. Encoding is order preserving
2. Simple predicates (i,e basic comparison) - can be converted to equivalent

encoded form

Neither hold true in practice - eg. Parquet uses dictionary encoding - not
order-preserving - eliminates possibility of using this technique in Parquet

Also - complex predicates - string matching, user-defined functions, cross-table
predicates - not supported

SOLUTION OVERVIEW

PARQUET-SELECT Library

BIT MANIPULATION INSTRUCTIONS

SELECTION PUSHDOWN

SELECT OPERATOR

BIT MANIPULATION INSTRUCTION SET

Extension for X86 architecture for Intel, AMD

Improve the speed of bit manipulation and common bitwise operators using
dedicated hardware instructions. They are non-SIMD and operate only on
general-purpose registers.

Even before BMI, bitwise operations were used in database applications -
implemented in software

Software implementations can be replaced with BMI without reworking algorithms -
take advantage of speedup provided by hardware implementation

Encoding Instruction Description Equivalent C expression

VEX.LZ.0F38 F2 /r ANDN Logical and not ~x & y

VEX.LZ.0F38 F7 /r BEXTR Bit field extract (with register) (src >> start) & ((1 << len) - 1)

VEX.LZ.0F38 F3 /3 BLSI Extract lowest set isolated bit x & -x

VEX.LZ.0F38 F3 /2 BLSMSK Get mask up to lowest set bit x ^ (x - 1)

VEX.LZ.0F38 F3 /1 BLSR Reset lowest set bit x & (x - 1)

F3 0F BC /r TZCNT
Count the number of trailing zero

bits

31 + (!x)
 - (((x & -x) & 0x0000FFFF) ? 16 : 0)
 - (((x & -x) & 0x00FF00FF) ? 8 : 0)
 - (((x & -x) & 0x0F0F0F0F) ? 4 : 0)
 - (((x & -x) & 0x33333333) ? 2 : 0)
 - (((x & -x) & 0x55555555) ? 1 : 0)

Encoding Instruction Description

VEX.LZ.0F38 F5 /r BZHI Zero high bits starting with specified bit position [src & (1 << inx)-1];

VEX.LZ.F2.0F38 F6 /r MULX Unsigned multiply without affecting flags, and arbitrary destination registers

VEX.LZ.F2.0F38 F5 /r PDEP Parallel bits deposit

VEX.LZ.F3.0F38 F5 /r PEXT Parallel bits extract

VEX.LZ.F2.0F3A F0 /r ib RORX Rotate right logical without affecting flags

VEX.LZ.F3.0F38 F7 /r SARX Shift arithmetic right without affecting flags

VEX.LZ.F2.0F38 F7 /r SHRX Shift logical right without affecting flags

VEX.LZ.66.0F38 F7 /r SHLX Shift logical left without affecting flags

PEXT

Extracts the bits selected by a select
mask operand from a source operand
and copies them to the contiguous
low-order bits in the destination, with
the high-order bits set to 0s.

PDEP

Opposite of PEXT: the contiguous
low-order bits from the source
operand are copied to the selected
bits of destination, indicated by the
select mask operand, while other bits
in the destination are set to 0s.

BITSTRING a b c d e f g h

MASK 1 0 1 0 0 1 1 0

PEXT 0 0 0 0 a c f g

PDEP e 0 f 0 0 g h 0

BMI 2 orders of magnitude faster than author’s software implementation

BLSI - Software implementation much faster than BMI!

PEXT, PDEP - BMI much faster than software implementation

Feature SIMD (Single Instruction, Multiple Data) BMI (Bit Manipulation Instructions)

Purpose Enables parallel processing of multiple
data elements

Provides operations for low-level bit
manipulation

Operations Operates on vectors of data elements
simultaneously

Operates on individual or groups of bits
within data

Use Cases Multimedia processing, scientific
computing, etc.

Cryptography, compression algorithms,
hashing, etc.

Examples Intel's SSE, AVX, ARM's NEON Intel's BMI1, BMI2

Performance Impact Improves performance by parallelizing
operations Provides efficient bit-level manipulation

Granularity Operates on data elements (e.g., floats,
integers)

Operates on individual bits or groups of
bits

SIMD vs BMI

APACHE PARQUET

Open-source columnar storage format - initiated by twitter and cloudera, inspired
by Dremel

The parquet format is -

● Supports nested columns
● Binary format
● Encoded
● Compressed
● Storage efficient

https://research.google/pubs/dremel-interactive-analysis-of-web-scale-datasets-2/

Sample Data
Name Phone Address

John 1001 {road: road1, street: street1}

Sten 1002 {road: road1, street: street1}

Jakob 1003 {road: road1, street: street1}

Milne 1004 {road: road1, street: street1}

FAST SELECT OPERATOR

Used for selecting specific values , output them contiguously and remove
unselected values

n k-bit Input Byte Array n-bit Select Bitmap Output Byte Array

Required Output - v7, v6, v2

Naive solution - Go over each
bit-packed value, extract ones
needed - O(n) steps

Issue - Values much smaller than
available word size (64bits) -
inefficient utilization

More efficient select operation - something bit-parallel - simultaneously process all
values packed into 64-bit processor word parallely

BIT PARALLEL ALGORITHM

Formal Definition - . For a given word size 𝑤, an algorithm is a bit-parallel algorithm
if it processes 𝑛 𝑘-bit values in 𝑂(𝑛𝑘/𝑤) instructions.

Two cases -

Case 1: Word size is multiple of bit width - Simplified Algorithm (3.2)

Case 2: Word size is not a multiple of bit width - General Algorithm (3.3)

Goal

Bit width (k) power of 2 ∋ no value placed across word boundaries

1 bit values - Extract all bits that correspond to 1s in bitmap from values - exactly what PEXT does!

k bit values - Slightly general case - slight modification - instead of using select bitmap directly - need
extended bitmap which has k bits - duplicate each bit in select bitmap k times

BITSTRING a b c d e f g h

MASK 1 0 1 0 0 1 1 0

PEXT 0 0 0 0 a c f g

Simplified Algorithm

Select 3 4-bit values from 8 4-bit
values

Step 1 - Input select map to
extended bitmap - the authors use
only 3 instructions - 2 PDEP, one
subtraction along with a mask from
0(k-1)1 where k power of 2

Step 2 - Use PEXT to get relevant
values (v7, v6, v2)

Input
bitmap 1 1 0 0 0 1 0 0

Extended
bitmap 1111 1111 0000 0000 0000 1111 0000 0000

Extend simplified algorithm - supports
arbitrary bit width k

Challenge - Values can span across
word boundaries - deal with these with
minimal overhead

Previously used Algorithm 1 still valid -
with slight modifications

No additional overhead when compared
to simplified algorithm!

General Algorithm

Algorithm is bit-parallel - run constant
number of instructions on each
processor word

SELECTION PUSHDOWN

AIM - Accelerate arbitrary scans making the best use of select operator discussed
previously!

Scan operator - Return value of projection columns in query (i.e. SELECT) from
records that match filters (i.e. WHERE clause)

Key Insight - Predicate Pushdown + Encoding/Compression + Select operator

Pushdown select operator to select encoded values directly

Technical Challenge - Fast Select operator on encoded values + move selected
values from encoded vector values simultaneously

Based on simple observation - query usually involves multiple predicates across
multiple columns - while evaluating predicates bypass records that fail prior
predicates - short-circuit

Seems obvious, why is it not used by others?

Previous work intentionally ignore fact that some values were potentially filtered by
other predicates as the cost of select operator outweighs potential cost savings in
predicate evaluation

However, due to fast select operator - viable to filter at predicate level upfront

Key points is a framework that takes advantage of BMI based select operator for
projecting and filtering along with technical challenges associated with this
approach - which can also be addressed with BMI

The Idea
Each filter operation - produces select bitmap - 1 bit/record to indicate if record
satisfies all previous filters or not.

Select bitmap - fed into next filter/projection operation - decrease data at each step

SELECT c FROM R WHERE a < 10 AND b < 4

1. Filter on a - no bitmap
2. Filter on b - bitmapa

3. Projection on c - bitmapa

4. Final result - selectedc

Steps

Select

Use fast select
operator to remove
irrelevant values
from the target
column. Pushing
down the select
operator results in a
reduced number of
values that need to
be passed to the
subsequent
operators.

Unpack

Convert encoded values
to native representation
in primitive data types
with SIMD based
implementation. For
project operations, we
can now return the
unpacked results and
skip the remaining two
operators/steps

Evaluate

For filter operations,
evaluate all decoded
values with the filter
predicate - generate a
bitmap to indicate
whether each value
satisfies the predicate
(allows arbitrary
predicates). Selected
values are now in
primitive data types -
SIMD vectorization

Transform

Evaluate operator bitmap
may not be directly used as a
select bitmap for the next
operation as it has as many
bits as the selected records,
rather than all records. The
transform operator is
designed to convert such a
bitmap into an
appropriate select bitmap
that can be used for the
subsequent operation(s) -
efficient way with BMI

Filter Ordering
So far - assumed filters
evaluated in same order as in
the query

SELECT c FROM R WHERE a
< 10 AND b < 4 - First a then b

Query optimization - what
order to consider filters in -
consider both bit width and
filter selectivity

Cost model and a greedy model to determine best
order for filter evaluation

Assumptions: Filter predicates independent of
each other, selectivity of each is known prior - via
selectivity estimation techniques

https://www.vldb.org/conf/1997/P486.PDF

Cost Model

𝑘 - bit width

𝑤 -processor word size

𝑠 - selectivity where 𝑠 ∈ [0, 1].

sequence of 𝑛 filters, 𝑓1 ... 𝑓𝑛.

Objective - Minimize cost of running
filters

= cost(select) + cost(unpack+evaluate)
+ cost(transform) [Except first filter f1]
∝ki/w

Bit Parallel Algorithm Formal Definition - For a
given word size 𝑤, an algorithm is a bit-parallel
algorithm if it processes 𝑛 𝑘-bit values in 𝑂(𝑛𝑘/𝑤)
instructions.

Unpack + Evaluate - Run on subset of values
selected by filter - number = total values * product
of selectivity of previous filters

Transform - Ignore as only one PDEP instruction

First filter - No select, just unpack and evaluate

Minimize Cost
Observations

1. For sequences starting with the same filter, the term remains unchanged and
does not impact the overall cost, regardless of the order of the rest of the filters

2. To minimize the second term , , we should sort all filters in ascending order
of selectivity, assuming the first filter has been determined.

It is evident that a simple greedy approach can find the optimal order

1. Select an arbitrary filter as the first filter
2. Optimal order of the remaining filters can be found by sorting them in the ascending

order of their selectivity, whose cost can be calculated by using Equation 1
3. Compare all 𝑛 possible choices for the first filter and find the one with the lowest overall

cost.

This approach drastically reduces our search space from 𝑂(𝑛!) to 𝑂(𝑛) candidate sequences,
and the obtained order is optimal under the aforementioned assumptions. Relaxing these
assumptions is an interesting direction for future work

Extending Filter predicate assumption
Previously, filter predicate (WHERE clause) was assumed to be a conjunction of filters. It
can be extended to other scenarios like conjunctions, disjunctions, negations, or an
arbitrary boolean combination of them.

DISJUNCTION - Convert to a combination of conjunctions and negations by applying De
Morgan’s laws: 𝑎 ∨𝑏 = ¬(¬𝑎 ∧ ¬𝑏).

SELECT c FROM R WHERE (a < 10 OR b < 4)

NEGATION - Boolean flag (negate), as an additional input parameter to the filter operation.
If true, flip the bitmap produced by the evaluate operator keeping rest of operators
unchanged

negate(negate[a < 10] AND negate[b < 4])

This approach supports disjunctions and negations with negligible overhead.

SELECTION PUSHDOWN IN PARQUET

Adapt previously discussed generic techniques to Parquet

Definition levels specify how many optional
fields in the path for the column are defined.

Repetition levels specify at what repeated
field in the path has the value repeated.

The Issue
The challenge arises from the way that Parquet encodes the structure information
to represent optional, nested, or repeated fields

Parquet never explicitly stores null values, all repeated values are stored
contiguously in the same array.

The number of levels or values in the column may not be the same as the number
of records - fast select operation cannot be directly applied to Parquet.

PARQUET-SELECT

Authors built a library Parquet-Select with the full implementation of the various
techniques we discussed so far - BMI, predicate pushdown, fast select etc.

Supports Arbitrary filters - Each filter - UD Lambda function that can implement
even complex predicates such as complex string matching, UDFs, cross-table
predicates etc.

1. SELECT *FROM products WHERE product_name LIKE '%keyword%' OR
product_description LIKE '%keyword%';

2. SELECT product_id, product_name, calculate_discount(product_price) AS
discounted_price FROM products;

3. SELECT o.order_id, o.order_date, c.customer_name, c.email FROM orders o
JOIN customers c ON o.customer_id = c.customer_id WHERE c.customer_id =
123;

EVALUATION

Processor 2.6GHz AMD EPYC 7413 and Intel Xeon
Gold 6140

Memory 256GB DDR4

Storage NVMe SSD - 3.5GB/s

OS 64-bit Windows Server 2022 Datacenter

Parquet-Select vs open-source C++ version of Arrow/Parquet2 (v 8.0.0).
● Parquet implements the SIMD-based unpack algorithm for decoding.
● Authors implemented the filter and selection operations on decoded column

values using SIMD instructions and optimized these operations
● All experiments were run using a single thread

Compare Parquet-Select and Parquet on a project operation with a given select
bitmap - evaluate effects of bit width of the column values and selectivity of the
select bitmap.

Parquet file with a single column
● 128 million 64-bit - Integer values.
● 2𝑘 distinct values in the column
● 𝑘 - bit width of the values encoded with dictionary encoding

This is varied in the experiment

Selection Performance

Important Results
1. Parquet-Select slightly better than Parquet when s = 1/1 - selection on bit-packed

values read slightly less than selection on decoded values - even with SIMD
vectorization - unpacking still bottleneck

2. PS - Higher performance gains on decrease bit-width - due to high data parallelism
in processing bits by fast-select operator

Upto 10X speedup

Evaluate 2 approaches with scan queries using micro-benchmark

Experiment parameters
● 20 columns (a1 ∼ a20)
● 128 million rows
● Selectivity of each filter = 25%
● Overall selectivity - varies as number of filters is varied

Evaluation parameters - how performance is affected by
1. Number of filters
2. Number of projections
3. Bit width of column values
4. Data types

Micro-benchmark Evaluation

SELECT MAX(a10), MAX(a11), ... FROM R
WHERE a1 < C1 AND a2 < C2 AND ...

TPC-H BENCHMARK

Test Parquet-Select with realistic workload - TPC-H

The TPC-H is a decision support benchmark. It consists of a suite of business
oriented ad-hoc queries and concurrent data modifications. The queries and the
data populating the database have been chosen to have broad industry-wide
relevance.

It comes with various data set sizes to test different scaling factors -
● TPCH_SF1: Consists of the base row size (several million elements).
● TPCH_SF10: Consists of the base row size x 10 - used in the paper
● TPCH_SF100: Consists of the base row size x 100 (several hundred million

elements).
● TPCH_SF1000: Consists of the base row size x 1000 (several billion

elements).

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf

Forecasting Revenue Change Query (Q6) - a scan query
This query quantifies the amount of revenue increase that would have resulted
from eliminating certain company wide discounts in a given percentage range in a
given year. Asking this type of "what if" query can be used to look
for ways to increase revenues.
The overall selectivity of the query is 1.9%
Filters - 3

Projection - 2
Columns l_extendedprice and l_discount.

TPC-H Q6

Columns/Property l_shipdate l_discount l_quantity

Encoding bits 12 4 6

Selectivity 15.2% 27.3% 46.0%

Filters in order <sdq> faster than others by 30%
Why? - Because l_shipdate filter has more selectivity (by 15.2%) when compared to
other filters
Also size of data in s is the largest - less beneficial to evaluate it later

Extend evaluation using Apache Spark - two approaches
1) Spark + Parquet - Standard and deeply integrated way to query Parquet files

using Spark
2) Spark + Parquet-Select - Enable predicate pushdown in Spark by leveraging

Parquet-Select

TPC-H Benchmark Evaluation

Parquet Files

Parquet-
Select

P-S
Connector

Predicate
Pushdown

Spark
Datasource V2
API

Using PS in Spark

Queries Used for TPC-H Evaluation
Selectivity for each query

ENCODING AND COMPRESSION

Run-Length Encoding
Apart from bit-pack encoding, other encoding schemes like Run-Length Encoding
(RLE) are used for testing their efficiency with selection pushdown for
RLE-encoded data.

RLE - A simple lossless data-compression where runs of data (sequences in
which the same data value occurs in many consecutive data elements) are stored
as a single data value and count, rather than as the original run

Example
WWWWWWWWWWWW B WWWWWWWWWWWW BBB

12W 1B 12W 3B

Effect of using RLE
Parquet-Select achieves up to
9X speedup over Parquet - as it
decodes and selects values in a
single pass, while Parquet
requires two separate passes to
complete these steps

Selection pushdown is
generally more efficient for
RLE-encoded values than for
bit-packed values.

Interleaving bit-packing and RLE

Better to use either the one or the other -
don’t interleave RLE and bit-packing

Page-level Compression
In Parquet, encoded values are organized
into data pages, which can
be further compressed optionally using a
variety of compression schemes.

Here - impact of page-level compression
on the performance is done - comparison
between Parquet and Parquet-Select using
TPC-H Q6

Compression schemes - LZ4 and Snappy -
both reduced the size of the Lineitem
Parquet file by approximately 30%

ANY QUESTIONS?

