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Data Systems & Hardware

Data Systems

Memory Hierarchy
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Hardware Trends

Evolution of Storage Technology
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Solid State Drives
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Goal: Developing Hardware-Aware Data Systems
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Tailor Data Systems
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ACE Bufferpool [IEEE ICDE 23]

CAVE Graph Engine [SIGMOD ’24]
\ SSD-Aware Systems [IEEE ICDE '24] /




Goal: Developing Hardware-Aware Data Systems

o

Tailor Data Systems
for SSD Asymmetry
& Concurrency

e

PIO Model [DaMoN@SIGMOD ’21]
ACE Bufferpool [IEEE ICDE '23]

\&

CAVE Graph Engine [SIGMOD ’24]

~

/




HDD

SSD

%

——

Symmetric cost for Read & Write

O

One I/O at a time

Read/Write Asymmetry ()

el

ﬁ

L,

Concurrency (k)



SSD Concurrency

Channel 1

oot NS
ChannelN i1 —— Chip2 +++ ChipN
Die 1 Die N

Planel ... cooe ...

Block 1 [ Pagel |

=

L,

Parallelism at different levels (channel, chip, die, plane block, page)

| PaéeN |

Block N




Writes in SSD
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Writes in SSD
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Writing in a free page isn’t costly!
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Writes in SSD
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Writes in SSD
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Not all updates are costly!



Writes in SSD
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What if there is no space?

Garbage Collection!

Writes in SSD
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Writes in SSD

What if there is no space?
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Read/Write Asymmetry in SSD

What if there is no space? . . G o R || Free
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Garbage Collection!
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Higher average update cost (due to GC) = Read/Write asymmetry
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Quantifying Asymmetry & Concurrency
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Quantifying Asymmetry & Concurrency
> 4K Random Read -<4K Random Write

Device _ 3
PCle SSD - P4510 (1TB) 600 71x10° 8K Random Read ~<8K Random Write
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DaMoN@SIGMOD 2021

Guidelines for System Design in SSDs
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T @7

know thy device »Ioit@and treat read and asymmetry (a)

read (with care) write differently controls performance

concurrency write
concurrency




Goal: Developing Hardware-Aware Data Systems
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|EEE ICDE 2023

Bufferpool is Tightly Connected to Storage

Application

Bufferpool

+«— Free frame

Disk page
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Bufferpool Manager

Application

Bufferpool

Page request < Free frame

Disk page

DB o o) / +— Dirty page
@ : SSD I Main Memory
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|EEE ICDE 2023

Bufferpool Manager

Application

Bufferpool

+«— Free frame

If page is not in BP, Disk page

fetch from disk

+«— Dirty page

Main Memory




|EEE ICDE 2023

Bufferpool Manager

Application

Bufferpool

Disk page




|EEE ICDE 2023

Traditional Bufferpool Manager

Application

Bufferpool

Page request

Disk page

DB |© o / < Dirty page
S S D If BP is full, one page is selected for eviction
o o based on page replacement policy




|EEE ICDE 2023

Traditional Bufferpool Manager

Application

Bufferpool

Disk page

DB 1O (o) / «<— Dirty page
@ : S S D I If the page is dirty, it is written back to disk
(o) (o)




|EEE ICDE 2023

Traditional Bufferpool Manager

Application Page request comes

Bufferpool

Disk page

08 |2 o / «—— Dirty page
S S D Requested page is fetched in its place
o o (exchanging one write for a read)




|EEE ICDE 2023

The Challenges

With write asymmetry, exchanging

one write for one read is NOT ideal. *2

Without exploiting concurrency,

device remains vastly underutilized.



|EEE ICDE 2023

{ Bufferpool Manager ]
NNNN --..___ Optional

,_________::::‘_15_________________.

Eviction Policy . Read-ahead Policy

. . . ' When to prefetch?
Which page to evict/write? L Prefetpch on miss :
- LRU _ | . !
T j géFO . Which pages? .
_ Clock e . — Sequential i
— Second Chance i - History-based i
'''''''''''''''''''''''''''''''''''''''  How many pages? :
- CFLRU - CFLRU/C Flash- ' _1 or x pages i
- LRU-WSR - CFLRU/E friendly i !
- CCF-LRU - DL-CFLRU/E| | policies . How to prefetch? :
. —Concurrently i




|EEE ICDE 2023

[ Bufferpool Manager }
Replacement Algorithm
“~~-.__ Optional
- LRU - FIFO
~ NRU - 20 T T T T T
_Clock - ARC . Read-ahead Policy
|~ cecornd Chazes ) When to prefetch?

- CFLRU - CFLRU/C Flash- - Prefetch on miss
- LRU-WSR - CFLRU/E friendly .

0
- CCF-LRU - DL-CFLRU/E| | policies el pages.

How many pages?

- Sequential i

‘///////////////\\\\\\\\\\\\\\\\* i - History-based

Eviction Policy Write-back Policy _1 or x pages
How many page(s) to evict? How many pages to write? How to prefetch?
- 1 page -1 page . —Concurrently |

- n pages (exploit k)
- n pages . .
Which pages to write-back?

—dirty pages following
replacement policy

When & how to write-back?

- background &
concurrently

Which page(s) to evict?
- follow page

replacement policy

41



|EEE ICDE 2023

Asymmetry/Concurrency-Aware
(ACE) Bufferpool Manager
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ACE Bufferpool Manager

.‘O’.

Use device’s properties

E R
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U, IEEE ICDE 2023

"\ /° ACE Bufferpool Manager

ACE Bufferpool

evict multiple pages

—

prefetch write back k&, v' Can be integrated with any
multiple pages dirty pages

replacement algorithm
v' Any prefetching technique

k. can be used




ACE

Better device utilization \/

High performance \/

Low deployment cost /

Ease of integration \/

Consider
Concurrency

Do not consider
Concurrency

|EEE ICDE 2023

Bufferpool Manager

SSD Controller\ ! ACE
Optimization i
>< 1
; CFLRU/C
' CFLRU/E ) !
. \DL-CFLRUJE ;
Addressmg> -
Clock Second
Sweep Chance
Do not address Address a via Address a via

Asymmetry (a)

write-avoidance write-amortization



An Example

mru lru

\ /

B |6{2|3|/5/7/4|9

Let’s assume: k,, = 3, LRU is the replacement
policy & red indicates dirty page

Write request of page 8 comes

|EEE ICDE 2023



|EEE ICDE 2023

An Example (£, = 3)

Candidate for eviction

|

B |6{2|3/5/7/4|9

write page 8

Since candidate page is

clean, we simply evict 9
After eviction:

Write request of page 1 comes
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An Example (£, = 3)

write page 1

LRU

Candidate

T~
B (8/6/2|3/5|74

After eviction:

B |1




|EEE ICDE 2023

An Example (£, = 3)

write page 1

LRU LRU+ACE (w/0 PF)
Candidate
~
B (8/6[2|3|5|7|4 8623|574

After eviction:

B (1|8|6(2|3|5]|7




An Example (k,, = 3)

write page 1

LRU LRU+ACE (w/o PF)
Candidate
~
B (8/6[2|3|5|7|4 8623|574

After eviction:

B (1|8|6(2|3|5]|7

4,5,2 concurrently written
4 evicted

|EEE ICDE 2023
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An Example (£, = 3)

write page 1

LRU LRU+ACE (w/o PF)
B (8/6[2|3|5|7|4 8/612(3|5|7
After eviction: After eviction:

-
B |1]8]6]2]3]5]7 1] [ ( j}

more clean pages
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An Example (£, = 3)

write page 1

LRU LRU+ACE (w/o PF) LRU+ACE (w/PF)
Candidate
™~
B (8/6[2|3|5|7|4 8/612(3|5(7|4 81612|3|5|7|4
After eviction: After eviction:

B (1|8|6(2|3|5]|7 118162357




|EEE ICDE 2023

An Example (k,, =3, n, = 2)

write page 1

LRU LRU+ACE (w/o PF) LRU+ACE (w/PF)
eviction window
\
B |8 6|2|3|5|74 8/6(2(3|5|74 816|123 |5|74
After eviction: After eviction:
B 1(8(6|2|3|5|7 118(6|2|3|5|7

4,5,2 concurrently written
4,7 evicted
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An Example (k, =3, n,= 2)

write page 1

LRU LRU+ACE (w/o PF) LRU+ACE (w/PF)
B (8/6[2|3|5|7|4 8623|574 8/6(2(3|5
After eviction: After eviction: After eviction:

B (1|8|6(2|3|5]|7 118162357 1 9

|

prefetched
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Experimental Evaluation

Clock Sweep |
LRU :
CFLRU — vs their ACE counterparts
PostgreSQL LRU-WSR - _
11.5
Device a kr ky Workload:

Optane SSD 1.1 6 5
PCle SSD 2.8 80 8
SATASSD 15 25 9 TPC-C benchmark

Virtual SSD 20 11 19

synthesized traces




700
600
%500
2400
L 300
qv)
— 200

100

|EEE ICDE 2023

ACE Improves Runtime

SOA B ACEw/oPF 1 ACE w/ PF &0

| IZM I 123% 126%
Clock LRU CFLRU LRUW
Mixed Skewed Trace

(r/w: 50/50, locality 90/10)

Device: PCle SSD
a=2.8,k,=8

ACE improves runtime by 22-26%

Negligible increase in buffer miss (<0.009%)

Benefit comes at no cost
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e em -
297 | M 30% i

Clock LRU CFLRU LRU

Mixed Skewed Trace
(r/w: 50/50, locality 90/10)

|EEE ICDE 2023

Higher Gain for Write-Heavy Workload

Device: PCle SSD
a=2.8,k,=8

Write-intensive workloads have

higher benefit (up to 32%)



Speedup

1.6 -

1.2 A

|EEE ICDE 2023

Impact of R/W Ratio & Asymmetry

+PCle SSD <Virtual SSD
<SATA SSD *QOptane SSD
X
0 ‘“2,8,1( more writes, more speedup
S "8
o . © A=, higher asymmetry, higher speedup
=1,:If:9 > good benefit even for low asymmetry

T T T T T T T T T T X
0:100 10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20 90:10 100:0

Read/Write Ratio
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Impact of #Concurrent 1/Os

*ACE-Clock <ACE-LRU Device: PCle SSD
1.4 <ACE-CFLRU +ACE-LRUW
a=2.8,k,=8
1.3
Q
=
o
o
=3 1.2 -
Highest speedup when
1.1 - optimal concurrency is used

Mixed Skewed Trace
(r/w: 50/50, locality 90/10)



Speedup

1.5

0.5

|EEE ICDE 2023

Experimental Evaluation (TPC-C)

Read-Write ] Read-Only 1 Write-Heavy HEEE

A

Payment
OrderStatus
StockLevel

Mix
New Order

ACE-LRU
ACE Achieves 1.3x for mixed TPC-C




ACE Bufferpool

ACE works with any page replacement policy

Any prefetching technique can be used

With low engineering effort, any DBMS

bufferpool can benefit from this approach



Goal: Developing Hardware-Aware Data Systems
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Tailor Data Systems
for SSD Asymmetry
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CAVE Graph Engine [SIGMOD "24]
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Rise of Large Graphs

Graphs are everywhere!

Transportation

Machine Learnin
Network &

Social Network Physical Science

Real-world graphs often have more than a billion nodes



Processing Large Graphs

Single-node Single-node
in-memory systems out-of-core systems

Distributed Systems



Out of Core Systems

T

Improve memory
& disk locality

Dle( o

Reduce random I/O

Data partitioning

Designed for HDDs



Our Goal

Optimize for storage-based workload

Focus on traversal operations

Utilize efficient SSD concurrency by parallelizing independent |/Os

Maintain core algorithm properties

Concurrency-Aware Graph (V, E) Manager

CAVE



CAVE Architecture

_ Block Structure
0 File on SSD 0 4B - o8
\% 3 VB EB
Threads Global lock Cache Pool Metadata M L3 1 [ B
1 Ref counter Cache block VB0 reserved space
—> (5= 0 CBO bt
3 3 EBO degree eb_addr degree eb_addr
aJped I
° i EB1
A 2 degree eb_addr degree eb_addr
EB2
KRG CB2
EB3 el el e2 e3
blocks s \i" 2 EB4
map el020 1021 e1022 e1023

EB5



Concurrent Graph Algorithms

Parallel Breadth-First Search
Parallel pseudo Depth-First Search
Parallel Weakly Connected Components

Parallel PageRank

Parallel Random Walk



Parallel BFS

@ processed nodes @ processing in progress () yettobe processed

Each iteration involves

1. processing a list of vertices aka the frontier

. accessing the neighbors of each vertex

2
3. updating vertex values
4

. determining which vertices should be

visited in the next iteration /




Parallel BFS

@ processed nodes @ processing in progress () yettobe processed

Each iteration involves

1. processing a list of vertices aka the frontier

2. accessing the neighbors of each vertex
3. updating vertex values
4

. determining which vertices should be @

visited in the next iteration




Parallel pseudo DFS

‘ processed nodes ‘ processing in progress ‘ yet to be processed




Parallel pseudo DFS

‘ processed nodes ‘ processing in progress ‘ yet to be processed




Parallel pseudo DFS

‘ processed nodes ‘ processing in progress ‘ yet to be processed




Parallel pseudo DFS

‘ processed nodes ‘ processing in progress ‘ yet to be processed

06000 600
‘00 [00] [e00)

#3




Experimental Evaluation

6 datasets

Dataset Description #Nodes #Edges Diameter Size
FS Friendster Social Network 65M 1.8B 32 32 GB
™ Twitter Social Network 53M 2B 18 28 GB
RN RoadNet Network of PA 1M 1.5M 786 47 MB
L] LiveJournal Social Network 5M 69M 16 1 GB
YT YouTube Social Network 1.1M 3M 20 39 MB
SD Synthetic data 50M 1.25B 6 20 GB

3 devices
Optane SSD (k, = 6) Approaches Used:

PCle SSD (k, = 80)

GraphChi, GridGraph, Mosaic, CAVE, CAVE_blocked
SATA SSD (k. = 2)5)



CAVE’s Preprocessing is Efficient

Svstem Preprocessing Time (s) Data File Size (GB)
y Dataset: FS Dataset: TW  Dataset: FS Dataset: TW

GraphChi 819 784 8.3 8.4
GridGraph 55 86 84 75
Mosaic 469 370 27 17
CAVE 52 49 14 13




CAVE Performs Efficient PBFS

—— GraphChi —=— GridGraph —v— Mosaic —<— CAVE - CAVE_blocked

| A\A/A\&\A/A—A/A

=
o
1 | |r\)

Runtime (s)

101 [ | [ [ | [ | [
013 025 05 1 2 4 8 16
(0.4%) Cache size (GB) (50%)

Dataset: FS



CAVE Performs Efficient PBFS

—— GraphChi —=— GridGraph —v— Mosaic —<— CAVE - CAVE_blocked

1 V— \w Aw A\ N N -~/

w
— 1024
q) -
-
=
(-
>
ad

101

013025 05 1 2 4 8 16
(0.4%) Cache size (GB) (50%)
Dataset: FS



t PBFS

IClEN

CAVE Performs Eff

CAVE_blocked

- {)---

—7— Mosaic —<— CAVE

—=— GridGraph

—— GraphChi

GraphCh
7] GridGraph

XXX
XXX

%
X

RIXTS
RRRRS
SRRLS
0% %%

o

K

58
[
1%e%%
K
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43

e e
K e RIS
20000000000 0000 00 00 0 e e %6 %% 0000656 %% 0% %% o%

1900200200020 20090 %00 %90 %% 2920 % %% e %%

o
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LSS S S S
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K 00000000000
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00000000 000000000000000000000000000000000000
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CAVE’s Speedup

RIS

R IR

QRN QRIRIKIKS
0620%0%0% %0 %%0% %6 %%6%4% %" (%% %%6%0%6 %% 20956 % %%

QJ. m‘\\ /) \\\ /) \\\ \\\ 7 \\\
N \

4040404404040404o4040404044040404440404
003 0S50 RILRRK
R R SIRRSIREIERKEKS
R R
IRatototetetetetotetetetetotetetatetototetetetototetetetototetetetotote e tetotote

e oo

o
K

16
(50%)

FS

T
1

Dataset

Cache size (GB)

0.13 0.25 0.5

(0.4%)

N
o
—

(S) awnuny

101

Both CAVE implementations outperforms GridGraph, Mosaic and GraphChi



CAVE Utilizes Concurrent |/O

Dataset: FS
PDFS SATA SSD (k. = 2)5)
2500 PCle SSD (kr = 80)
@ —o— CAVE-DFS (Optane)
o 1500
.g Device gets saturated at optimal concurrency
c 1000
)
a'd
500-
O,

1 2 4 8 16 32 64 128
# Concurrent I/O



Goal: Developing Hardware-Aware Data Systems

o

Learned CPU Embedding [ Silhouette [mlforsys@NeuRIPS '23] J

C

4 (" Relational Memory [EDBT '23 + A
Minimize Data Demo: VLDB 23]

e HreE)y Relational Fabric [IEEE ICDE '23]

MEIEY (nErErE ) 7 \_RelFeb ext. [Under Revision@TKDE] )

)

Timely Deletion in

@)
LETHE [SIGMOD 20+ ACM TODS 23]
LSM Storage Layout

Delete-Compliance [IEEE DEBULL '22]

C____© (

o

/Need for an I/O Model [CIDR "21] )
PIO Model [DaMoN@SIGMOD '21]
ACE Bufferpool [IEEE ICDE 23]
& Concurrency ) | CAVE Graph Engine [SIGMOD ’24]

\ SSD-Aware Systems [IEEE ICDE '24] /

)

Tailor Data Systems
for SSD Asymmetry




Future Work

Data Migration in
Hierarchical Storage using <:l
Reinforcement Learning

- How can a/k help the agent?

- How to handle deduplication?

- How to ensure data consistency?



Future Work

Data Migration in
Hierarchical Storage using <:l
Reinforcement Learning

- How can a/k help the agent?

- How to handle deduplication?

- How to ensure data consistency?

FPGA

i
- How to handle updates?

Effortless
Locality via
Relational Fabric

- How to do compression?

- Impact on DB architecture

- Leverage computational SSDs
to build ‘Relational Storage’



Future Work

- How can ML models contribute to query optimization?
- Learned indexes & Learned database tuning

- ML techniques to optimize energy consumption in data centers T
Machine Learning for

>
¢ Data Systems —
- How to handle updates?
Data Migration in G Effor.tIeS.S - How to do compression?
Hierarchical Storage using E> Locality via - Impact on DB architecture
Reinforcement Learning Relational Fabric - Leverage computational SSDs

to build ‘Relational Storage’

FPGA

ZJLS:

- How can a/k help the agent?

- How to handle deduplication?

- How to ensure data consistency?



Future Work

- How can ML models contribute to query optimization?
- Learned indexes & Learned database tuning

- ML techniques to optimize energy consumption in data centers T
Machine Learning for

>
¢ Data Systems —
- How to handle updates?
Data Migration in G Effor.tIeS.S - How to do compression?
Hierarchical Storage using E> Locality via - Impact on DB architecture
Reinforcement Learning & Relational Fabric - Leverage computational SSDs

to build ‘Relational Storage’

FPGA

ZJLS:

- How can a/k help the agent?

CXL-Optimized
Disaggregated
Database System

- How to handle deduplication?

- How to ensure data consistency?

- Can we ensure scalable transactions & reliability in disaggregated databases?
- How to manage storage and memory efficiently via automatic resource provisioning?
- How to ensure compatibility across generations?



Thank You!

Tarikul Islam Papon

BOSTON
PhD Researcher UNIVERSITY

cs-people.bu.edu/papon/
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