
Pump Up the Volume: Processing Large Data on
GPUs with Fast Interconnects

Teona Bagashvili, Tongfan Wei

Why should we process data on GPU?

1080

1920

60 FPS

What is the goal?

Scale GPU-accelerated data management to arbitrary data volumes!

 Issues?

Transfer Bandwidth

Coarse-grained Cooperation

Involving more processors doesn't always mean
faster execution!

PCI-e slots on motherboard

PCI-e x1

PCI-e x16

Overview of GPU interconnects

How can we improve?

Fast interconnects
NVLink 2.0, Infinity Fabric, CXL

High bandwidth (124 GiB/s total)
System-wide cache-coherence

Data-dependent memory access
Fine-grained CPU+GPU cooperation

Contributions

Hardware analysis

Data transfer strategy

Join operator

Cooperative co-processing approach

Push vs Pull based data transfer

Data transfer methods

Host

GPU

 DRAM

CPU

 Pageable Data Transfer

 Pinned Memory

Host

GPU

 DRAM

DMA

 Pinned Data Transfer

 Pageable Memory

Physical location of the data matters!

Pageable
memory

Pinned
memory

Host

GPU

 DRAM

DMA

 Staged Data Transfer

Host

GPU

 DRAM

CPU

 Dynamic Data Transfer

 Pageable Memory

Dynamically pinned

Contributions

Hardware analysis

Data transfer strategy

Join operator

Cooperative co-processing approach

Environment

CPU Specifications:
IBM POWER9

Configuration: Dual-socket
Clock Speed: 3.3 GHz
Cores: 32 (2 × 16)
Memory: 256 GB

Intel Xeon Gold 6126 ("Skylake-SP")
Configuration: Dual-socket
Clock Speed: 2.6 GHz
Cores: 24 (2 × 12)
Memory: 1.5 TB

GPU Specifications:
Nvidia Tesla V100-SXM2
Nvidia V100-PCIE ("Volta")

 Memory: 16 GB for each GPU

Access Paths

Contributions

Hardware analysis

Data transfer strategy

Join operator

Cooperative co-processing approach

Why the old method is not so good

 Loading base relations from CPU memory requires high bandwidth, scaling the
hash table beyond GPU memory requires low latency

sharing the hash table between multiple processors requires cache-coherence

Our new Join operator

 The no-partitioning hash join algorithm is a parallel version of the canonical hash
join

2 phases

1: build phase, takes inner relation R

2:probe phase, takes outer relation S

executing the hash join in parallel on a system with 𝑝 cores

Time complexity: 𝑂(1/𝑝(|𝑅| + |𝑆|)).

Scale up build phase

store the hash table in CPU memory for bigger memory capacity

Scale up probe phase

Simple baseline join first

Then we remove the probe-side cardinality

limit by comparing the baseline to the

 Zero-Copy pull-based join

Finally, we replace the Zero-Copy transfer method with the Coherence transfer
method in the Zero-Copy join

Optimizing the Hash Table Placement

Replace by hybrid hash table by greedy

Using the visual memory

It has zero additional cost

It can easily be integrated into existing databases

Contributions

Hardware analysis

Data transfer strategy

Join operator

Cooperative co-processing approach

Cooperative co-processing approach

Make full use of CPU+GPU system

3 parts

Task schedule

Optimize hashtable placement strategy

Optimize on multiple GPUs

Task schedule
A task scheduler ensures that all processors

deliver their highest possible throughput.

We adapt the traditional cpu based scheduler,

make all processors can scheduling.

Optimize hashtable placement strategy

Processors are fastest when accessing

their local memories.

So we want to optimize multi processor placement

 strategy so they can access closest data.

We also consider a special case of small build-side relations separately, so we can
optimize hashtable locally.

Optimize on multiple GPUs

for large hash tables, multi-GPU systems can distribute the hash table over multiple
GPUs, as GPUs are latency insensitive.

We use multiple GPUs instead of CPU+GPU to avoid computational skew, free
CPU memory bandwidth and utilize the full bi-directional bandwidth of fast
interconnects

Experiments: Setup and Configuration

Experiments: GPU Transfer Methods

HashTable Locality

Selection and Aggregation Scaling

Probe-side Scaling

Build-side Relation

Build-to-probeRatios

Join Selectivity

CPU/GPU Co-processing Scale-up

 Related works

Transfer Bottleneck
Previous Solutions: GPU databases (GDB, Ocelot, CoGaDB) and machine
learning frameworks (SystemML, DAnA) stream data from CPU to
co-processor.

Transfer Optimization
caching in co-processor memory, employing data compression

Transfer Avoidance
An on-chip interconnect

Out-of-core GPU Data Structures
GPU-efficient data structures like hash tables, B-trees, and binary trees.

Conclusion

- NVLink 2.0 boosts large-scale data processing in databases by resolving GPU
memory constraints and slow data transfer rates.

- The fast interconnect system facilitates swift and efficient data exchange
between CPU and GPU, enhancing the processing of larger datasets.

- Empirical results show marked performance enhancements in critical database
operations, particularly hash joins, with the adoption of NVLink 2.0.

- NVLink 2.0's advancements make GPUs increasingly viable for managing
extensive data volumes in modern database management systems.

 Thank You

