
Class 15

Data Systems on Modern Hardware:
Multi-cores, Solid-State Drives, and Non-Volatile Memories

Tarikul Islam Papon

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

Compute, Memory, and Storage Hierarchy

Traditional von-Neuman computer architecture

(i) assumes CPU is fast enough (for our applications)

(ii) assumes memory can keep-up with CPU and can hold all data

CPU

Memory
is this the case?

for (i): applications increasingly complex, higher CPU demand
is the CPU going to be always fast enough?

Moore’s law

Often expressed as:
 “X doubles every 18-24 months”
 where X is:

 “performance”
 CPU clock speed
 the number of transistors per chip

based on William Gropp’s slides

which one is it?

but …

exponential
growth!

Can (a single) CPU cope with increasing application complexity?

No, because CPUs (cores) are not getting faster!!!

.. but they are getting more and more (higher parallelism)

Research Challenges
how to handle them?

how to parallel program?

Compute, Memory, and Storage Hierarchy

Traditional von-Neuman computer architecture

(i) assumes CPU is fast enough (for our applications)

(ii) assumes memory can keep-up with CPU and can hold all data

CPU

Memory
is this the case?

for (ii): is memory faster than CPU (to deliver data in time)?
does it have enough capacity?

not always!

Which one is faster?

Memory Wall

As the gap grows, we need a deep memory hierarchy

A single level of main memory is not enough

We need a memory hierarchy

What is the memory hierarchy ?

A bit of Class Logistics Before That…

• (Project) Mid-Semester Report due on Mar 22 Mar 29

• Technical Questions 2, 3, 4, and 5 due on Mar 25, 27, Apr 1 and 10

• Review 4 due on Apr 3

HDD / Shingled HDD

SSD (Flash)

Main Memory

L3

L2

L1

~2ms

Bigger
Cheaper
Slower

Faster
Smaller
More
expensive

~100μs

~100ns

~3ns

<1ns

~10ns

Access Granularity

HDD / Shingled HDD

SSD (Flash)

Main Memory

L3

L2

L1

~2ms

~100μs

~100ns

~3ns

<1ns

~10ns

4

page size
~4KB

block size
(cacheline) 64B

Bigger
Cheaper
Slower

Faster
Smaller
More
expensive

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: Load 5 pages

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 5

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 5

Send for consumption

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 5 Load 5 pages

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 10

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 10 Load 5 pages

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 15

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 15 Load 5 pages

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#:
20

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#:
20

Send for consumption

What if we had an oracle (index)?

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#:

Index

IO cost: Use an index to select 10%

HDD

Main Memory

5-page buffer

IO#:

Index

Load the index

IO cost: Use an index to select 10%

HDD

Main Memory

5-page buffer

IO#: 1

Index

IO cost: Use an index to select 10%

HDD

Main Memory

5-page buffer

IO#: 1

Index

Load useful pages

IO cost: Use an index to select 10%

HDD

Main Memory

5-page buffer

IO#: 3

Index

What if useful data is in all pages?

Scan or Index ?

HDD

Main Memory

5-page buffer

IO#:

Index

Scan or Index ?

HDD

Main Memory

5-page buffer

IO#: 20 with scan

Index

IO#: 21 with index

Same analysis for any two memory levels!!

L2 / L3 / Main Memory / HDD

L1 / L2 / L3 / Main Memory

5-page buffer

IO#:

Cache Hierarchy

HDD / Shingled HDD

SSD (Flash)

Main Memory

L3

L2

L1

~2ms

~100μs

~100ns

~3ns

<1ns

~10ns

Bigger
Cheaper
Slower

Faster
Smaller
More
expensive

Cache Hierarchy

L3

L2

L1

What is a core?

What is a socket?

Cache Hierarchy
Shared Cache: L3 (or LLC: Last Level Cache)

L3 is physically distributed in multiple sockets

L2 is physically distributed in every core of every socket

Each core has its own private L1 & L2 cache
 All levels need to be coherent*

L3

L2

L1 L1 L1 L1

0 1 2 3

L2 L2 L2

what does coherent mean?

A core reads faster when data are in its L1

If it does not fit, it will go to L2, and then in L3

Can we control where data is placed?

We would like to avoid going to L2 and L3 altogether

But, at least we want to avoid to remote L2 and L3

And remember: this is only one socket.
We have multiple sockets!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

L2 L2 L2 L2

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
hit!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
miss!

Cache
hit!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
miss!

Cache
hit!

Cache
miss!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
miss!

LLC
miss!

Cache
miss!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
miss!

NUMA
access!

Cache
miss!

Why knowing the cache hierarchy matters
int arraySize;
for (arraySize = 1024/sizeof(int) ; arraySize <= 2*1024*1024*1024/sizeof(int) ; arraySize*=2)
// Create an array of size 1KB to 4GB and run a large arbitrary number of operations
{

int steps = 64 * 1024 * 1024; // Arbitrary number of steps
int* array = (int*) malloc(sizeof(int)*arraySize); // Allocate the array
int lengthMod = arraySize - 1;

// Time this loop for every arraySize
int i;
for (i = 0; i < steps; i++)
{

array[(i * 16) & lengthMod]++;
// (x & lengthMod) is equal to (x % arraySize)

}
}

256KB

16MB

This machine has:
256KB L2 per core
16MB L3 per socket

NUMA!

Storage Hierarchy

Why not just stay in memory?

memory

flash

HDD

Cost!

what else?

Storage Hierarchy
Why not stay in memory?

Rephrase: what is missing from memory hierarchy?

Durability (data survives between restarts)

Capacity (enough capacity for data-intensive applications)

Storage Hierarchy

HDD

SSD (Flash)

Main Memory

Shingled Disks

Tape

Storage Hierarchy

HDD

SSD (Flash)

Main Memory

Shingled Disks

Tape

Hard Disk Drives
Secondary durable storage that support both random and sequential access

Data organized on pages/blocks (across tracks)

Multiple tracks create an (imaginary) cylinder

Disk access time:
 seek latency + rotational delay + transfer time
 (0.5-2ms) + (0.5-3ms) + <0.1ms/4KB

Sequential >> random access (~10x)

Goal: avoid random access

Seek time + Rotational delay + Transfer time
Seek time: the head goes to the right track

Short seeks are dominated by “settle” time
(D is on the order of hundreds or more)

Rotational delay: The platter rotates to the right sector.
What is the min/max/avg rotational delay for 10000RPM disk?

 min: 0, max: 60s/10000=6ms, avg: 3ms

Transfer time: <0.1ms / page → more than 100MB/s

Sequential vs. Random Access
Bandwidth for Sequential Access (assuming 0.1ms/4KB):

 0.04ms for 4KB → 100MB/s

Bandwidth for Random Access (4KB):

0.5ms (seek time) + 3ms (rotational delay) + 0.04ms = 3.54ms

4KB/3.54ms → 1.16MB/s

Flash
Secondary durable storage that support both random and sequential access

Data organized on pages (similar to disks) which are further grouped to erase blocks

Main advantage over disks: random read is now much more efficient

BUT: Not as fast random writes!

Goal: avoid random writes

The internals of flash

interconnected flash chips

no mechanical limitations

maintain the block API
compatible with disks layout

internal parallelism
for both read/write

complex software driver

Flash access time
… depends on:

device organization (internal parallelism)

software efficiency (driver)

bandwidth of flash packages

the Flash Translation Layer (FTL), a complex device driver (firmware) which
tunes performance and device lifetime

High Performance
Expensive Memory

Low Performance
Cheap Memory

Flash vs HDD
HDD

✓ Large - cheap capacity

✗ Inefficient random reads

Flash

✗ Small - expensive capacity

✓ Very efficient random reads

✗ Read/Write Asymmetry

Storage Hierarchy

HDD

Flash

Main Memory

Shingled Disks

Tape

Tapes
Data size grows exponentially!

Cheaper capacity:

 Increase density (bits/in2)
 Simpler devices

Tapes:

 Magnetic medium that allows
 only sequential access
 (yes like an old-school tape)!

Very difficult to differentiate between tracks
“settle” time becomes

Increasing disk density
Writing a track affects neighboring tracks
Create different readers/writers
Interleave writes tracks

Memory & Storage Walls

63

Memory Wall

64

Memory Wall

65every byte counts

Storage Wall

HDD
ü capacity
ü sequential access
× random access
× latency plateaus

66

Evolution of hard disks

67

2

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1950 1960 1970 1980 1990 2000 2010 2020

RPM Latency (ms)
$/GB GB/in
Full Read

15K RPM

1.2K RPM
7.2K-10K RPM

250 ms

4 ms 4-8 ms

$15.3M/GB

$0.08/GB
0.1 GB/in2

800 GB/in2

8 s

2 h

8000x
Denser capacity

260x

Speed
Price Density

Latency

Full read

disks become larger but – relatively – slower

Storage Wall

HDD
ü capacity
ü sequential access
× random access
× latency plateaus

SSD (Single Level Cell)
ü random reads
ü low latency
× capacity
× endurance
× read/write asymmetry

SSD (Multi Level Cell)
ü capacity
× endurance (worse)

68

“Tape is Dead, Disk is Tape, Flash is Disk”

• Storage without
mechanical limitations

Several technologies
• Flash
• Phase Change Memory (IBM)
• Memristor (HP)

69flash vs. hard disks?

[Jim Gray 2007]

Flash vs. HDD

70

0.01

0.1

1

10

100

1000

10000

100000

Performance Price Endurance Idle power Max power

100
IO/S

100K
IO/S

0.1
$/GB

2
$/GB

∞
10K

writes

5.5
Watts

8.5
Watts

0.85
Watts

1.21
Watts

flash = opportunityread, update, storage tradeoffs

Storage Wall

HDD
ü capacity
ü sequential access
× random access
× latency plateaus

SSD (Single Level Cell)
ü random reads
ü low latency
× capacity
× endurance
× read/write asymmetry

SSD (Multi Level Cell)
ü capacity
× endurance (worse)

HDD (Shingled Magnetic Rec.)
ü capacity
× read/write asymmetry

71every byte counts

Technology Trends & Research Challenges

(1) From fast single cores to increased parallelism

(2) From slow storage to efficient random reads

(3) From infinite endurance to limited endurance

(4) From symmetric to asymmetric read/write performance

Technology Trends & Research Challenges

How to exploit increasing parallelism (in compute and storage)?

How to redesign systems for efficient random reads?
 e.g., no need to aggressively minimize index height!

How to reduce write amplification (physical writes per logical write)?

How to write algorithms for asymmetric storage?

74

4000

50

17

17 17 17

1

10

100

1000

10000

HDD SSD NVMe

La
te

nc
y

(μ
s)

Device Latency (H/W)

OS & FS Latency (S/W)

Even faster devices are available (NVMe)
How to use them when the software stack is too slow?

Class 15

Data Systems on Modern Hardware:
Multi-cores, Solid-State Drives, and Non-Volatile Memories

Tarikul Islam Papon

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

