
Adaptive-Adaptive Indexing
Zachary Gou
Roman G. Velez-Alicea

Table of Contents:
1) Foundations of Database Cracking
2) A Novel Approach - Adaptive-Adaptive Indexing
3) Feature: Generalized Index Refinement
4) Feature: Adaptive Reorganization Effort
5) Feature: Handling of Skewed Key Distributions
6) Experimental Setup
7) Experimental Results
8) Conclusion
9) Future Work

So Far…

Better Solutions?

Database Researchers HATE Him!

Doctor’s discovery revealed the secret to have the perfect
index ordering with no tradeoffs! Watch this shocking
video and learn how to do all queries in constant time
using this one sneaky index trick! Free of initialization
overhead!

Foundations: What is Database Cracking?

● Unlike traditional database indexing, which requires
prior knowledge about the queries and the data
distribution to create and maintain indexes,
database cracking adjusts and optimizes indexes
on-the-fly as queries are executed.

● With database cracking, we use the queries as hints
to how the data has to be ordered.

● This is different from non-discriminative indices
such as B-Trees and Hashtables.

Foundations: Quick Walkthrough
We take the paper
example. Given
queries Q1 and Q2
we perform the
following…

Foundations: Quick Walkthrough
Make a copy of
Column of A, the
Cracker column,
which is used to take
advantage of insertion
order for reconstr.

Execute and Crack
based on Q1.

Foundations: Quick Walkthrough
Execute and Crack
based on Q2.

Piece 1 and 3
needs splitting.
Piece 2 is free
(Zero-Cost for
Column Slice).

Piece 5 is free.

Why Doesn’t Everyone Use Trad. Database
Cracking?

Why Doesn’t Everyone Use Trad. Database Cracking?

● Composed of unoptimized and optimized partitions
(sorting), the payoff is over time as more queries are
made. Convergence issue. Solved by hybrid
algorithms (adaptive merging + database cracking).

● CPU bound and not I-O Bounded, wasted CPU cycles
on scanning. Optimized by branch-free cracking,
SIMD instructions (more work per instruction),
Vectorization, etc.

● Rate of performance per query depends on query
pattern or order. A counting up sequential workload
can have non-useful partitions. Solved by Stochastic
Database Cracking.

Comparison to Non I/O-bounded
Database Cracking

Why doesn’t everyone use Trad. Database Cracking?

● What about cracking parallelization? The support of
concurrency is crucial for performance on modern
multi-core hardware. Therefore, the cracking
algorithms must be extended to scale well with the
available computing cores.

● If project attributes are a lot, then tuple
reconstruction may be the bottleneck. Database
cracking leads to an unclustered index, to which
extra lookups are needed to fetch the projected
attributes.

Comparison of Cracking against
various number of attributes

Observations: What do Cracking Algorithms Have in Common?

Commonality: Difference:

Simple data partitioning. Distribution of indexing effort across every
query sequence.

Introducing: Adaptive Adaptive Indexing

Simple
Index

Non-discri
minative

Index

Adaptive
Index

Adaptive
Adaptive

Index

What's Common of All those Cracking Algorithms?

● At the heart of every cracking algorithm is simply just data partitioning.

● Given a sequence of queries (Q0, Q1,
…, Qn), it matters how the indexing
effort is distributed across the
sequence of Queries!

● With enough partitioning, we can
converge to the ideal data organization for
the most optimal quieres!

A Novel Approach – Adaptive-Adaptive Indexing

● Based observations of different cracking algorithms, the authors of Adaptive
Adaptive Index (Schuhknecht et al.) sought to create a generalized adaptive
indexing algorithm that adapts itself to the characteristics of specialized
methods.

Features of the Adaptive-Adaptive Indexing
Algorithm

1- Generalized Way of Index Refinement

2- Adaptive Reorganization Effort

3- Ability to Identify and Defuse Skewed Key
Distributions

Feature: Generalized Index Refinement

Partition-in-k:
● Each form of reorganization can be neatly represented via function that

produces k disjoint partitions.
● Given a function f(k), we can have granular influence over convergence speed,

variance, distribution of the indexing effort.
● We need an algorithm to set the fan-out so we can easily adapt to various

adaptive indexing algorithms.

Reorganization Method Partition-in-k Representation

Crack-in-Two

64-bit Key Sort

Feature: Generalized Index Refinement - Radix Partitioning
This implementation uses a specialized
radix-based partitioning offering higher
partitioning throughput than comparison-based
methods.

Query Type Radix Partitioning Method Features

Very First Query Out-of-Place Temporary storage:
software-managed buffers,
non-temporal stores,
optimized micro-layout.

Subsequent Queries In-Place Sorting within original data
structure, ‘cuckoo-style’, no
additional memory.

Feature: Adaptive Reorganization Effort - First Query
Matters

● As mentioned before, both perform
out-of-place partitioning (cracking column
& radix-based column).

● Classical Database Cracking simply
conducts k = 2 or k = 3 partition.

● Need to capitalize on k-partition advantage
(k > 3). How can we do this efficiently on
initialization?

?

Feature: Adaptive Reorganization Effort - First Query
Matters

● Using Out-of-Place Radix Partitioning,
leveraging software managed buffers and
non-temporal streaming stores, we can
reduce the partitioning costs.

● We want to take advantage of the TLB
cache! Fan-outs > 32 partitions (assuming
huge pages), can’t cache all address
translations for each data entry in the
input.

● Since most of the data is going to the
same partition anyways, why don’t we have
an intermediary buffer and then flush them
to a mem address all at once.

Feature: Adaptive Reorganization Effort - First Query
Matters

● When flushing large amounts of data, we
want to prevent cache pollution as the
cache line may be large.

● Leverage the SIMD to bypass CPU caches.
For a single buffer line, we need two calls
to the AVX intrinsic
“__mm256__stream_si256” in this example.

● Works well as these calls triggers a
hardware write-combine.

Feature: Adaptive Reorganization Effort - First Query
Matters

● Why does this even matter?
What is the point of talking on all these
optimizations that seem small?

● The key is on our first query, we can create
a larger number (or dynamic as its control
by b_min) than cracking with negligible
overhead and reducing the average
partition size drastically!

● Only about a 1.5x slow-down from 0 - 512
fan-out size compared to cracking
initializations. We can fit these in caches
nicely (like L3) (Data dependent).

Feature: Adaptive Reorganization Effort - What about
Subsequent Queries?

● Sounds all good!
However, what about the Qn query?

● We use In-place Radix Partitioning.
> Generate the histogram
> Then perform inplace sorting (not
complete sorting) with a replacement
algorithm.

● Take a value lets say x0 in partition 0 that
doesn’t belong and place it in the partition
that it does. Then in that partition look for
wrong values and do the same. Stop when
x0 is filled. Rinse and repeat the cycle.

10 1 2

< 5

…

P0

100 3 -> 10 101

10

Pn

 …

3

>= 6

Temp

Temp

Scan

Feature: Adaptive Reorganization Effort - What about
Subsequent Queries?

● Is this better (i.e cheaper) than two times
in-place crack-in-two reorganizing?

● Unfortunately, No :(

● So why do we sacrifice performance in this
in-place radix partitioning? What is the
point if two times in-place crack-in-two
reorganizing is better?

My reaction when expecting radix
partitioning to beat cracking.

Feature: Adaptive Reorganization Effort - What about
Subsequent Queries?

● The key is that the overhead costs are
negligible when the input sizes are small.
That means it cost doesn’t matter when
more partitioning happens!

● This hints that:
With a decrease in partition size, increase
of fan-out k. At a sufficiently small size,
finish the partition sorting cost is
negligible.

● Remember earlier? A query context sorted
index is what is being converge to (in this
case, we are not paying upfront sorting
costs).

Feature: Adaptive Reorganization Effort - So what's the
policy?

● Haven’t told you how to determine partition
size for Partition-in-k.
So How?

● With the following big bad Math equation:

You thought in Systems you could get away from math >:D

Feature: Adaptive Reorganization Effort - So what's the
policy?

● Let s be the size of the partition to
reorganize.

● Let q be the query sequence
number.

● Outputs fanout-bits or the actual
partitioning of the input.

Feature: Adaptive Reorganization Effort - So what's the
policy?

b_first -> The k fanout for the first
query.

Feature: Adaptive Reorganization Effort - So what's the
policy?

If the partition size, s, is bigger than
t_adapt
===>
then we return the minimum fanout bit
as the partition is way too large for less
partitions.

Feature: Adaptive Reorganization Effort - So what's the
policy?

If the partition size, s, is smaller than
t_adapt, and bigger than t_sort
===>
then we adaptively set the number of
bits based on the equation above. The
smaller the partition size, the higher
returned number of fanout bits.

Feature: Adaptive Reorganization Effort - So what's the
policy?

If the partition size, s, is smaller than
t_adapt, and smaller than t_sort
===>
we then just sort that partition!
Return maximum number of fan-out
bits, trigger sorting. Remember before,
given a small enough input, the sorting
will be very cheap!

Feature: Adaptive Reorganization Effort - So what's the
policy?

● This results in a smooth function. This can lead to
possible optimizations on parameters to find the right
descent. (Machine Learning?)

Feature: Ability to Identify and Defuse Skewed Key
Distributions

By default, radix partitioning creates balanced partitions only if the key distribution is
uniform. The problem is, uniformity is not always present!

Proposed Solution: Defuse the problems cause by the presence of skew in the very
first query.

● Implementation Features:
○ Detect skew without overhead
○ In the presence of skew, recursively split partitions that are much

larger than the average to enforce balanced processing of
subsequent queries.

● Configuration:
○ Seven configuration parameters – convergence speed, variance

reduction, resistance toward skew, etc.

Feature: Why Is Skew An Issue?

● Key Issue:
○ Skewed key distributions lead to generation of

non-uniform partition sizes.
○ Non-uniform partition sizes can severely limit the

gain in index quality of a partitioning step.
● Extreme Example:

○ Zipf distribution
■ Most frequent key occurs twice as often as

the second most frequent key.
● Partition Balancing with Skew:

○ Requires use of equi-depth histograms to balance
the partitions.

Figure: Example of Zipf distribution

Feature: Defusing Skew

Equi-Depth Histograms: Statistical tools which
summarize the distribution of data across a given
attribute - partitions data in buckets such that each
bin contains approximately the same number of
records.

How do we do it?

Feature: Equi-Depth Out-of-Place Radix Partitioning
Algorithm

Function: An algorithm that leverages
equi-depth histograms designed to handle
skewed data distributions from the initial query.

Procedure

Phase Action

1 Initial Assumption and
Histogram Construction

2 - Iterative Comparison and
Marking Skew

- Partitioning with Respect
to Histogram

3 In-Place Partitioning of
Skewed Partitions Figure: Defusing of input skew

Feature: Equi-Depth Out-of-Place Partitioning - Phase 1

Phase 1 Procedure:

1) Initial Assumption
a) Uniformly distributed keys in

the input column
.

2) Construct Histogram .
a) First phase of the out-of-place

partition-in-k algorithm
b) ‘bfirst’ bits for partitioning

3) Iterate –
a)

4) Identify and mark partitions that
exceed this threshold as skewed.

Feature: Equi-Depth Out-of-Place Partitioning - Phase 2

Phase 2 Procedure:

1) Partition with Respect to the
Histogram
a) Out-of-place partition-in-k
b) Copy tuples into corresponding

partitions
c) New histograms built for

skewed partitions, using
minimum number of bits ‘bmin’.

d) Piggyback histogram
generation for next partition
phase into current step

Skewed partitions

Feature: Equi-Depth Out-of-Place Partitioning - Phase 3

Phase 3 Procedure:

1) In-Place Partitioning of Skewed
Partitions
a) Iterate over all skewed

partitions
b) Partition in-place according to

‘bmin’ many bits

Feature: Configuration Knobs
● The adaptiveness is that we can take our

parameters to influence the degree of
partitioning. Optimal parameters leads to
optimal query response times.

● How do we figure it out optimal params.?

● Trial and Error (Manual Config.)

● Smarter Trial and Error => Simulated
Annealing (Following Boltzmann
distributions due to using a Boltzmann
probability)

Food for Thought: Thinking Outside of Configuration
Knobs
● Possible even better. Remember our Guest

Lecturer Andy Huynh’s research? Perhaps
we can transform into an optimization
problem.

● Can we define a cost function (which is
query response time) and then define
neighborhood uncertainty, following a
iterative method such as Stochastic
Gradient Descent (SGD)?

Can this be turned into a Convex Optimization
problem? Probably not, perhaps its another case

of non-convex optimization.

Meta-Adaptive Index
Now we can

put it all
together!

Meta-Adaptive Index - Pseudocode

Meta-Adaptive Index - Feature 1
1 META_ADAPTIVE_INDEX(table, queries) {
2 // initialize empty index column
3 initializeEmptyIndex()
4 // process first query
5 // out-of-place partition,
6 // handle possible skew, and update index
7 oopPartitionInK(table, f(table.size, 0))
...
17 for(all remaining queries q) {
18 // get query predicates
19 low = queries[q].low;
20 high = queries[q].high;
...
25 if(p[low] is not finished) {
26 ipPartitionInK(p[low], f(p[low].size, q))
27 updateIndex()
28 }
29 // try to refine the smaller partition
30 if(p[high] is not finished) {
31 ipPartitionInK(p[high], f(p[high].size, q))
32 updateIndex()
33 }
...
51 }

Function: Generalize the Way of
Refinement

● This portion highlights the
generalized way of index
refinement through both
out-of-place and
in-place-partitioning.

● Updates the index based on
the initial query and
iteratively refines it with
subsequent queries.

Meta-Adaptive Index - Feature 2

17 for(all remaining queries q) {
18 // get query predicates
19 low = queries[q].low;
20 high = queries[q].high;
...
24 // try to refine the largest partition first
25 if(p[low] is not finished) {
26 ipPartitionInK(p[low], f(p[low].size, q))
27 updateIndex()
28 }
29 // try to refine the smaller partition
30 if(p[high] is not finished) {
31 ipPartitionInK(p[high], f(p[high].size, q))
32 updateIndex()
33 }
...
51 }

Function: Adaptive
Reorganization Effort

● This portion highlights the
adaptive reorganization
effort, where priority is given
to refining the largest
partition first, and moving to
the smaller if needed.

● The effort to adapt is based
on each query’s
requirements and current
state of partitions.

Meta-Adaptive Index - Feature 3

5 // out-of-place partition,
6 // handle possible skew, and update index
7 oopPartitionInK(table, f(table.size, 0))
...
25 if(p[low] is not finished) {
26 ipPartitionInK(p[low], f(p[low].size, q))
27 updateIndex()
28 }
...
30 if(p[high] is not finished) {
31 ipPartitionInK(p[high], f(p[high].size, q))
32 updateIndex()
33 }

Function: Identify and Defuse
Skewed Key Distributions

● This portion highlights the
algorithm’s ability to identify
and address skewed key
distributions through its
partition strategy.

● Initially - OOP partitioning
that allows handling
potential skew.

● Subsequently - IP
partitioning to refine further.

All Subsequent Queries …Initial Query

Meta-Adaptive Index - Diagram View

Baseline Comparisons
The authors tested against:

> Standard Cracking (Standard)

> Stochastic Cracking (Combat against Sequential Query Patterns)

> Hybrid Cracking [HSS & HCS] (Combat against Convergence issues)

> Sort + Binary Search (Extreme Case)

> Linear Scan with no Index (Extreme Case)

Experimental Evaluation: Setup

> Data: 100 million entries, each entry is 8B key and 8B RowID. Total about 1.5 GB.

Generated Key distr.: Uniform, Normal, and Zipf.

> Workload: 1000 Range Queries with 8B upper and lower bounds with selectivity
1%.

Experimental Evaluation: Individual Query Response
Time Test Setup
> The main goal of basically any adaptive index is to keep the pressure on the
individual queries as low as possible.

> Tested with inspection on individual queries. Given the parameters of:

b_first = 10, T_adapt = 64 MB,

b_min = 3, T_sort = 256 KB

b_max = 6 Skew_Tol = 5x

> Focused on RANDOM Query Workload with 1% Selectivity.

Experimental Evaluation: Individual Query Response
Time - Uniform
● Start: Meta-Adaptive Index is

expensive compared to other
baselines.

● Pays off over time.
● Robust and Stable performance

below 10ms.

Experimental Evaluation: Individual Query Response
Time - Normal
● Start: Meta-Adaptive Index is

almost equivalent to other
baselines, slightly slower.

● High variance of response times
for other methods (concentration)

● Robust and Stable performance
below 20ms.

Experimental Evaluation: Individual Query Response
Time - Zipf
● Worse case for radix based

partitioning. Much slower (4x) to
other baselines in the beginning.

● Skewed distribution impacts first
query.

● Robust and Stable performance
below 30ms.

Experimental Evaluation: Accumulated Query
Response Time - Uniform
● The automatic configuration is

slightly better for all workloads
except of PERIODIC.

● Largest b_first

Experimental Evaluation: Accumulated Query
Response Time - Normal
● The accumulated query time

difference between manual and
automatic are very small.

● DC (Red) slightly better than
HCS. DD1R the same.

Experimental Evaluation: Accumulated Query
Response Time - Zipf
● Biggest difference between

manual config and automatic
config

● Small b_first

Conclusions

● The authors unified the large amount of specialized adaptive indexes that aim
at improving a specific problem at a time in a single general method. This was
achieved this by identifying the fact that partitioning is at the core of any
adaptive indexing algorithm.

● A meta-index is proposed that can emulate a large set of specialized in-
dexes, which we were able to show by inspecting the indexing signatures.

● The meta-adaptive index serves as a valid alternative for a large number of
specialized indexes and is able to improve in terms of robustness, runtime,
and convergence speed over the state-of- the-art methods.

● Used automatic methods such as Simulated annealing to push the
performance of the meta-adaptive index to the limits.

Future Work and Suggestions

● Write-Heavy Workloads
○ Investigate the performance of adaptive-adaptive indexing under write-heavy scenarios,

develop strategies to mitigate potential overhead from frequent index updates.
● Enhanced Skew Handling

○ Investigate ways to extend skew detection and mitigation beyond initial partitioning strategies
to improve index performance.

● Real-World Benchmarks
○ Test the indexing algorithm on real-world applications, particularly those with mixed and

unpredictable workloads, to validate and refine the approach.

Sources
F. M. Schuhknecht, A. Jindal, and J. Dittrich, “The uncracked pieces in database cracking,” PVLDB, vol. 7, no. 2, pp.
97–108, 2013.

Felix Martin Schuhknecht, Alekh Jindal and Jens Dittrich, “An experi- mental evaluation and analysis of database
cracking,” VLDBJ, 2015.

S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,” CIDR, pp. 68–78, 2007.

F. Halim, S. Idreos, P. Karras, and R. H. C. Yap, “Stochastic database cracking: Towards robust adaptive indexing in
main-memory column- stores,” PVLDB, vol. 5, no. 6, pp. 502–513, 2012.

S. Idreos, S. Manegold, H. Kuno, and G. Graefe, “Merging what’s cracked, cracking what’s merged: Adaptive indexing
in main-memory column-stores,” PVLDB, vol. 4, no. 9, pp. 585–597, 2011.

S. Idreos, M. Kersten, and S. Manegold, “Self-organizing tuple recon- struction in column-stores,” in SIGMOD 2009, pp.
297–308.

Sources

H.Pirk,E.Petraki,S.Idreos,S.Manegold,andM.L.Kersten,“Database cracking: fancy scan, not poor man’s sort!” in DaMoN,
Snowbird, UT, USA, June 23, 2014, pp. 4:1–4:8.

V. Alvarez, F. M. Schuhknecht, J. Dittrich, and S. Richter, “Main memory adaptive indexing for multi-core systems,” in
DaMoN 2014, Snowbird, UT, USA, June 23, 2014, pp. 3:1–3:10.

G. Graefe, F. Halim, S. Idreos et al., “Concurrency control for adaptive indexing,” PVLDB, vol. 5, no. 7, pp. 656–667,
2012.

Goetz Graefe, Felix Halim, Stratos Idreos et al, “Transactional support for adaptive indexing,” VLDBJ, vol. 23, no. 2, pp.
303–328, 2014.

Thank You!
Any Questions?

