Efficient Indexing in Main Memory:
Adaptive Radix Tree (ART)

Overcoming Index Structure Performance Bottlenecks

Changxuan Fan Boyang Liu Chunhao Bi

Current Problem

Main memory capacities
have grown, enabling most
databases to fit into RAM.
Binary search trees:
inefficient due to hardware
advancements.

Hash tables: fast but only
support point queries.

Performance

100000
10000
1000
100

10

1

1980 1985 1990 1995 2000 2005 2010

Year

Figure 1. Processor - Memory Performance Imbalance [2]

Unlike a binary search tree,

nodes in the trie do not store

. . thei iated key.
Prefix Tree (Trig) . herssocewdiex - (]

the trie defines the key with
which it is associated.

T | TP 3
(s) characters are implicitly .
/\ defined by link index I [m[[@@mml
(e) (h)
AN S
@)2((1) (e)o \ ~
- I - PYaanannnnannninnnnnnnnnnnnn)ifananannannarannnnnnnnnnnnn]ffifannnnnnnannninnnnnannnnnni)
® 1\E 1
I \ [] each node has
()1 /s an array of links

and a value

Radix Tree (Background)

1 romane

2 romanus [:]
Unlike Prefix Tree, each 3 romulus &
node that is the only child is 4 rubens
merged with its parent. 5 ruber

6 rubicon

7 ® o

3 toasting
4 slow
5 slowly

1 test rubi cundus/
2 toaster an
lulus /::j

%
.
Q Search for ‘toasting’

ART (adaptive radix tree)

e ART, offers efficient indexing, surpassing traditional structures
and supporting insertions/deletions.

e ART maintains sorted order, enabling additional operations like
range scan and prefix lookup.

()
()
/ \
()) () J
y . ! AR EERER ‘AR

Fig. 4. [Illustration of a radix tree using array nodes (left) and our adaptive radix tree ART (right).

Radix trees vs. comparison-based trees:

Height depends on key length, not
on the number of elements. K =

° . . .
No rebalancing operations required. perfect BST

® Keys stored in lexicographic order. -5,
[}
® Inner nodes map partial keys, leaf -OCJ
(o}

nodes store values. =

® Complexity comparison: O(k log n) k/8 =

vs. O(k).

I 1 || ||

tree size in # keys (log scale)

Adaptive Nodes

e Desirable large span vs. excessive space consumption:
e Trade-off illustrated with different span values.
e Adaptive Radix Tree (ART) introduces adaptivity in node
sizes.
e Adaptive node illustration:
e Maintains tree structure while adjusting node sizes.
e Efficient support for incremental updates:
e Small number of node types with different fanouts.
e Replacement of nodes based on capacity and underfull
conditions.

Inner Node

Node16 key child pointer

e Inner nodes map partial 0[2]3]- pss P L Ty i
keys to child pointers. ANV NVANEE/\

e Four data structures with . L N—
different capacities used R e]
internally. N A A A

Node256 hild pointer
0 il 2 3 4 5 6 255
| | | |
Y Y Y Y
/a\ FANIVAY A\
Fig. 5. Data structures for inner nodes. In each case the partial keys 0, 2,
3, and 255 are mapped to the subtrees a, b, c, and d, respectively.

Leaf Node

Structure of Leaf Nodes:

® Discussion on storing values associated .~ path compression :
) merge one-way node $ |azy
with keys, ___________ into child node B 1 ‘

O expansion
remove path '
to single leaf

® Different methods for storing values:
e Single-value leaves
e Multi-value leaves
e Combined pointer/value

.
.
.
"

slots Fig. 6. [Illustration of lazy expansion and path compression.

Now it's time to create an ART from a naive
radix tree!

Let's first compress the tree!

Optimization - Node Collapse

..................
..........................
........

.t .
. .

.
.
W

Lazy Expansion : _
- Inner nodes are only created if REET Ictoxhlidinods _Serw
they are required to
distinguish at least two leaf ;
nodes ‘ Pt
2. Path Compression

- Removes all inner nodes that
have only a single child Fig. 6. [Illustration of lazy expansion and path compression.

lazy ;
O expansion

remove path
to single leaf

Lazy Expansion

_¥o
~¥°

Path Compression

We've done the compression, what's next?

Let’s search first!

= T - Y T R N R

Search

digit 1

'search (node, key, depth) digit 2
if node==NULL

return NULL N R
if isLeaf (node)

if leafMatches (node, key, depth)

return node (}

return NULL

if checkPrefix (node, key,depth) !=node.prefixlLen Ey/ T \gY E T

Y
return NULL
depth=depth+node.prefixLen ANT leaf nodes
next=findChild (node, keyl[depth]) i)) i
return search (next, key, depth+l)

digit 3

Fig. 1. Adaptively sized nodes in our radix tree.

Search algorithm.

Fig. 7.

Search for “ANY” [;]

Search for “ANY” Q

Search for “ANY” Q

Search for “ANY” Q

POINTER

This is a Node4

Compare each key one by one

What if we have more than 4 values?
Node4 store only 4 values!

We use Nodel6!

16 KEYS

16 POINTERS

= = = = = = = =
D T Y EEm LR

Thisis a Nodel6b

Still compare each key one by one?

POINTER

=2

Y
ANT

A
ANY

y y

AND

16 KEYS 16 POINTERS

= = = = = = = =
mmm mmm

D T Y

Nodel6

Y Y Y
AND ANT ANY

What's the difference between Node4 and
Nodel6? Only size?

SIMD - Single instruction, multiple data

(a) Scalar Operation (b) SIMD Operation

e Supported by

+ Bl = 8
most modern % of = A, B,
computers al - A L e
e Compute Al + e - el A, B,
multiple data) A, B,
. A+ L] -
with one run
_ ml28i mm cmpeq epi8(ml28i a, ml28i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or unsigned 8-bit integers in b for equality.
RO R1 ... |R15
(a0 == b0) ? Oxff : 0x0| (al == bl) ? Oxff : 0x0|..| (al5 == bl5) 2 Oxff : 0x0

16 KEYS 16 POINTERS

= = = = = = = =
LA

o B A B
» | l |

D T Y
Y
OIOIO

We can compare keys in parallel!

(Or use binary search if not supported)

More keys? Can't compare 48 keys in parallel!

256 KEYS 48 POINTERS

e

A D

]

=< N\
]

N

o

m
- =

Thisis a Node48

At most 48 out of 256 keys have index, rest are
EMPTY!!

& |7 a7

256 KEYS 48 POINTERS

e

A D

& |7 a7

]

=< N\
]

N

o

m
- =

Why 256 keys?

Because each key 1 byte = 8 bits = 256 values

256 POINTERS

1 -G
e

Thisis a Node256

Every key can have a pointer

Search

child pointer

Node lookup Node16 kv il it

)

0 1 2 15 !
Lof2]s]~pss | |

|
¥
Node4 - traverse ANV

N od e 1 6 Node48 chidindex child pointer
] T ‘_..--25'5{"‘:'__1)_...: """" : --.....-.----_' 4
- parallel(or binary search) I g P P S R

A
Node 48 A A A

- return node[index[byte]]
Node256 -
- return node[key] y
Time Complexity? Almost O(1)! AN AN I

Fig. 5. Data structures for inner nodes. In each case the partial keys 0, 2,
3, and 255 are mapped to the subtrees a, b, ¢, and d, respectively.

Insert

Add Leaf

2. POStﬂX Insert 'water at the root Insert 'slower" while keeping 'slow'

7 P
E@ L T = Q

3. Prefix

4. Split

WO N

Insert 'team' while splitting 'test' and creating a
new edge label 'st'

5. Node grow

Insert 'test' which is a prefix of 'tester'

Delete

Symmetrical to insertion.

e The leaf is removed from an inner node, which is
shrunk if necessary. (Path Compression)

e If anode now has only one child, it is replaced by its

child(Lazy Expansion).

Bulk loading

Using the first byte of each key the key/value pairs are radix
partitioned into 256 partitions and an inner node of the
appropriate type is created.

Before returning that inner node, its children are created by
recursively applying the bulk loading procedure for each
partition using the next byte of each key.

How does ART reduce space consumption?

Reduce space consumption

TABLE I

Optimization (Lazy EXpanSion SUMMARY OF THE NODE TYPES (16 BYTE HEADER, 64 BIT POINTERS).
+ Path CompreSS|On) Type | Children | Space (bytes)
. Node4 2-4 164+444-8=52
e Adaptive Nodes (Grow from 4 Nodel16 516 | 16+16+16-8 = 160
Node48 17-48 | 16 + 256 + 48 - 8 = 656
to 16 to 48 to 256) Node256 | 49-256 16 + 256 - 8 = 2064
e Space per key is bounded TABLE II

WORST-CASE SPACE CONSUMPTION PER KEY (IN BYTES) FOR DIFFERENT
RADIX TREE VARIANTS WITH 64 BIT POINTERS.

(worst case 1 key per Node4)
| k=32 | k=0

ART 43 52
GPT 256 oo
LRT 2048 o0
KISS | >4096 NA.

VWhat about range queries?’

We sort the keys!
But in what order?

Binary-Comparable Keys

Strings have lexicographic order (a<b<c)

e Signed integers have sign bit 0,1, where 1 is negative and 0 is
positive, which is not lexicographically sorted

e Required transformations before storing in ART

e Sorted keys enabling efficient ordered range scans and

lookups for minimum, maximum, top-N, etc

How to represent -1 using 4 bit?
(0001 for 1, 0100 for 4)

Binary-Comparable Keys

Example: Two's Complement

1 - 0001 or 0000 0001 @ @ @ @
-1 - 1111 0r 1111 1111
-7 -6 1 2

For example, to calculate the decimal number =6 in binary from the number 6:

e Step 1: +6 in decimal is 07710 in binary; the leftmost significant bit (the first 0) is the sign (just 110 in binary would be -2 in

decimal). Bits: 1 0 1 0
e Step 2: flip all bits in 0770, giving 7001. Decimal bitvalue: | =8 4 2 1

¢ Step 3: add the place value 1 to the flipped number 71001, giving 10710. Binary calculation: | =(1x23) | (0x22) | (1x21) | (0x20)
Decimal calculation: 1x2 0

Binary-Comparable Keys

Sorted keys makes data in sorted order.
All operations that rely on this order can be supported

Replace comparison-based trees with radix trees

Replace comparison-based sorting algorithms like quicksort or
mergesort with the radix sort algorithm

Evaluation

° Hardware Specifications

Component Specification
CPU Intel Core 17 3930K
Cores 6
Threads 12
Clock Rate 3.2 GHz
Turbo Frequency 3.8 GHz
Cache 12 MB shared, last-level
RAM 32 GB quad-channel DDR3-1600
Operating System Linux 3.2 (64 bit)
Compiler GCC 4.6

Contestants

Adaptive Radix Tree (ART)

Generalized Prefix Tree (GPT) —— radix tree

Cache-Sensitive B+-tree (CSB) —— optimized for main memory
k-ary Search Tree (kary) —— read-only

Fast Architecture Sensitive Tree (FAST) —— read-only

Hash Table (HT)
Red-Black Tree (RB)

Evaluation

Search Performance
Caching Effects
Updates

End-to-End Evaluation

Similar -> Cache effects

Search Performance

65K

©
=]
1

M lookups/second
8 3
1 1

0=

! dense

| sparse

; B
[T | I |
b J |

T T T T T T T
ART GPT RB CSB kary FAST HT

M lookups/second

16M

20 = ,T
!dense l

15 = ~ sparse |
10 [lin |
| \

| ||

0 -

ART GPT RB CSB kary FAST HT

M lookups/second

256M
10.0 =
! dense
7.5 = ' sparse
il
5.0 = ‘
\
2.5 = ‘l I ‘
0.0 J — .
T
ART RB kary FAST H

Fig. 10. Single-threaded lookup throughput in an index with 65K, 16M, and 256M keys.

(GPT and CSB crashed)

TABLE III
PERFORMANCE COUNTERS PER LOOKUP.

Search Performance o

461 191
110 26
0.0 0.25
25 24

ART (d./s.) FAST HT|ART (d./s.) FAST HT
Cycles 40/105 94 44 188/352
Instructions 85/127 75 26 88/99
Misp. Branches 0.0/0.85 0.0 0.26 0.0/0.84
L3 Hits 0.65/1.9 45 22 2.6/3.0
L3 Misses 0.0/0.0 00 0.0 1.2/2.6

e Cycles: Processor cycles taken per lookup operation;
a. fewer cycles indicate higher efficiency.
e Instructions: Number of instructions executed per lookup;
a. fewer instructions suggest a more efficient algorithm.
e Mispredicted Branches: Counts the times the processor's branch prediction is wrong;
a. fewer mispredictions lead to better performance.
e L3 Cache Hits: How often the searched data is found in the L3 cache during lookups;
a. more hits typically mean better performance.
e L3 Cache Misses: Instances where the data is not found in the L3 cache, indicating a need to access
slower main memory;
a. fewer misses are ideal.

24 24

Search Performance

From one query, one thread,

to using multiple unsynchronized threads

Interleave multiple tree traversals using software pipelining

16M

M lookups/second
= & S
1 1 1

o
1

0=

o
mil

. dense

 sparse

T T T T T T T
ART GPT RB CSB kary FAST HT

200 =

- i
o [$)]
o o
1 1

M lookups/second
3
1

o
1

1!

<‘ . dense

~ sparse

Fig. 11. Multi-threaded lookup throughput in an index with 16M keys (12

I
ART

I
FAST

HT

threads, software pipelining with 8 queries per thread).

Caching Effects

DRAM (dynamic random access memory)

DRAM latency amounts to hundreds of CPU cycles in today’s CPU

Cache Effects — skew

Skew: the imbalance in the frequency of access or
distribution of the keys in a dataset

Cache misses decreases as the skew increases

Fast requires more comparisons and offset calculations

- ART

c

8 75 =

o}

&

2 50 =

=

=5 HT

O 25 =

= M

" O Lo FAST

T T T T T
0.25 0.50 0.75 1.00 1.25

Zipf parameter s (skew)

Fig. 12. Impact of skew on search performance (16M keys).

Cache Effects — cache size

20 =
. . U
Consider competing memory accesses S 15 -
[0
2
HT is mostly unaffected S104 AR
% A_-A-’A—A/A/MA
: L 54 FAST,
ART can adapt flexibly =
0 -

T T T T T I T
192KB 384KB 768KB 1.5MB 3MB 6MB 12MB

effective cache size (log scale)

Fig. 13. Impact of cache size on search performance (16M keys).

Updates

-g = .dense
3 ' sparse
For ART, trade off between |
o
. . 2 5= | — B
1. Time consuming for data structure o | l . I | I |
adaptations L N - B N
1 1 I I 1 |
2. Time saving from the space saving ART ART GPT RB CSB HT

(bulk) (bulk)

Ordered data benefits ordered search method,
(only HT excluded) Fig. 14. Insertion of 16M keys into an empty index structure.

delta mechanism

Merge FAST and red-black tree periodically

0(n) merging step

Updates

g ART
3
@ 19
(2]
@
S 10 = HT
©
8 5-
o FAST +A
= - A A
1 1 1 1 | |
0% 25% 50% 75% 100%
update percentage
Fig. 15. Mix of lookups, insertions, and deletions (16M keys).

End-to-End Evaluation

System: HyPer
Compare different data structures
Implement diverse related operations

uses TPC-C, a standard OLTP benchmark

HyPer

supports both transactional (OLTP) and analytical (OLAP) workloads
Performance relies critically on indexes (no overhead for buffer management, locking, or latching)

OLTP: Online Transaction Processing
OLAP: Online Analytical Processing

End-to-End Evaluation

System: HyPer
Compare different data structures
Implement diverse related operations (read, range scan, prefix lookup, minimum, etc)

uses TPC-C, a standard OLTP benchmark

TPC-P transactions

TPC-C requires prefix-based range T 200,000 = —A——u——\-—éﬁl;-—v.—.
scans for some indexes, so cannot 8
use hash tables for all indexes. g 150,000 =

@2 HT + RB

.© 100,000 =

S

% 50,000 = ‘RB_

T T T T
10M 20M 30M 40M

TPC-C transactions

T
50M

Space Consumption

MAJOR TPC-C INDEXES AND SPACE CONSUMPTION PER KEY USING ART.

Index 3: relatively long strings

Indexes 1, 2, 4, and 5: dense integers #|Relation | Cardinality | Attribute Types Space
I |item 100,000 | int 8.1
2 |customer 150,000 |int,int,int 8.3
3 |customer 150,000 | int,int,varchar(16),varchar(16),TID| 32.6
4 | stock 500,000 | int,int 8.1
5 |order 22,177,650 | int,int,int 8.1
6 |order 22,177,650 | int,int,int,int, TID 249
7 |orderline [221,712,415 | int,int,int,int 16.8

Final Results

N
o
1

Lazy expansion helps with index 3, 6, which have TID

w
o
1

e TID leads to sparser distribution of keys
e With the lazy expansion, TID can be truncated

tree height
3
1

g
o
1

Path compression helps with all indexes

.

o
1
)

T T T | T
3 4 5 6 7

default
- +lazy expansion
. +path compression

Conclusions

Lazy expansion and path compression
ART is faster than most of state-of-the-art main-memory data structures.
ART is faster than the read-only FAST.

Only Hash Table is competitive, but HT is unsorted.

Future works

e synchronizing concurrent updates
e design a space-efficient radix tree which has nodes of equal size

hanks

