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Complexity Sucks for Reproducibility

Databricks Sets Official Data Warehousing
Performance Record

@ @ by Reynold Xin and Mostafa Mokhtar
SR ¢ Posted in COMPANY BLOG | Novembet

Today, we are proud to announce that Dat
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Snowflake Claims Similar
Price/Performance to Databricks, but Not
So Fast!

@ @ @ by Mostafa Mokhtar, Arsalan Tavakoli-Shiraji, Reynold Xin and Matei Zaharia
3R Posted in COMPANY BLOG | November 15, 2021

On Nov 2, 2021, we announced that we set the official world record for the fastest data
warehouse with our Databricks SOL lakehouse platform. These results were audited and
reported by the official Transaction Processing Performance Council (TPC)in a 37-page
document available online at tpc.org. We also shared a third-party benchmark by the
Barcelona Supercomputing Center (BSC) outlining that Databricks SQL is significantly
faster and more cost effective than Snowflake.

A'lot has happened since then: many congratulations, some questions, and some sour
grapes. We take this opportunity to reiterate that we stand by our blog post and the
results: Databricks SQL provides superior performance and price performance over
Snowflake, even on data warehousing workloads (TPC-DS).

When we founded Snowflake, we set out to build an innovative platform. We had the opportunity to take into

account what had worked well and what hadn’t in prior architectures and implementations. We saw how we could

leverage the cloud to rethink the limits of what was possible. We also focused on ease of use and building a system

that “just worked.” We knew there were many opportunities to improve upon prior implementations and innovate to

lead on performance and scale, simplicity of administration, and data-driven collaboration.



Age of Log-Structured Merge-Trees
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How do we go about tuning these knobs?

Dictates performance!




LSM Trees
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LLSM Trees — A Point Read
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How do we define a workload?
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Query Types

Workload : (zg, 21, q, W)

Empty Reads : z, Non-Empty Reads : z,
) ]
[ ) ]
G (S
Range Reads: q Writes : w
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] [ [ \\q
]

Cool! How do we go about tuning?




The LSM-Tuning Problem

w : Workload (zj, z;, q, W)

® : LSM Tree Design  (Myy, ¢, Myiter, I, )
C : Cost

®* = argming C(w, ®)
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Point Reads
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[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM
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International Conference on Management of Data (SIGMOD '17).
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Range-Reads and Writes

Sequential
read based on

Range Reads: q selectivity

11/0 per
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Writes only flush
once buffer is full

[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM

. , 11
International Conference on Management of Data (SIGMOD '17).



The LSM-Tuning Problem

w : Workload (zj, z;, q, W)

® : LSM Tree Design  (Myy, ¢, Mejiter, T, )
C : Cost (I/0)

®* = argming C(w, ®)

Define our cost function

C(w, ®) = WTe(®) = 20 - Zo(®) + 21 - Z1(®) + ¢ - Q(D) +w - W (D)
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Tuning Problems

'‘Best’ Configuration

(I

Workload 2

wy : Workload (z, 21, q, w)

Cost (1/0s)

Cost

Workload 1

Cost (1/0s)

Optimal tuning depends on workload

100%100% >

Workload uncertainty leads to

sub-optimal tuning
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Outline

ENDURE: Robustly Tuning LSM Trees

The ENDURE Pipeline

ENDURE Evaluation
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The LSM-Tuning Problem

w : Workload (zy, z{, q, W)
® : LSM Tree Design  (Mypy 5, Mriier, T, )
C : Cost (I/0)

®* = argming C(w, ) Nominal
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Robust Tuning

wy : Workload (z, z1, q, w)

®* = argming C(W, ®)

s.t., w e Uv’f,

Cost (I/0s)

Optimal configuration for
expected workload

Robust configuration for the
A workload neighborhood

Writes (w)

++++ Nominal
XX Robust

Cost (I/0s)

0%

Workload 1 Workload 2
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Uncertainty Neighborhood

Workload Characteristic Neighborhood of workloads (p) via the KL-divergence

100% Iy (W, w) = 2 w; - log(;)
i=1 '

Writes (w)

. U%: Uncertainty Neighborhood of Workloads
p :Size of this neighborhood
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Calculating Neighborhood Size

Workload Characteristic Historical workloads
maximum/average uncertainty among

workload pairings

—
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=
R

Writes (w) )

User provided workload uncertainty

p :Size of this neighborhood
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[UV’\’,: Uncertainty Neighborhood of Workloads J
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Solving Robust Problem

[terating over every possible ¢r = argmin wic(®)

workload is expensive

100%

i
=
R

Writes (w)
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Solving Robust Problem

[terating over every possible dp = argmin w'c(®)

. . o
workload is expensive ) p
s.t. weUul

4

min max wic(®)
¢ wely

Rewrite as a min-max

Find the dual of the maximization 4

problem to reduce to a feasible | meo (@) — 1
problem [2] 0150 {'7 tpAtd Z‘ Wi¢1<L( A )}

1=

[2] Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. Robust 20
Solutions of Optimization Problems Affected by Uncertain Probabilities.
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ENDURE Pipeline

Workload Characteristic System Information
Expected performance

Page Size
Memory Budget

$

0%
ENDURE
Solves the
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Writes (w)

Robust Problem
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Testing Suite

ENDURE in Python, implemented in tandem with RocksDB Index (20,21, ¢, W) Type
0 25% 25% 25% 25%_ Uniform O

1 972 1% 1% 1% Unimodal >

Uncertainty benchmark 2o 1%

* 15 expected workloads t % 1% 1% 9%
5 497 497 1% 1%C_Bimodal O

* 10K randomly sampled workloads as a test-set 6  49% 1% 49% 1%

7 49% 1% 1% 49%

8 1% 49% 49% 1%

9 1% 49% 1% 49%

Normalized delta throughput 10 1% 1% 49% 49%
11 33% 33% 33% 1% Trimodal >

12 33% 33% 1% 33%

1/C(w,2) — 1/C(w,®,) 13 33% 1% 33% 33%

AW((I)la q)Z) —

1/C(w,®,) 14 1% 33% 33% 33%

Nominal vs Robust: > 0 is better

1 means 2x speedup
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Impact of Workload Type

Index (20,21, 9, W) Type
25% 25% 25% 25% Uniform
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49% 1% 49% 1%
49% 1% 1% 49%

1% 49% 49% 1%

1% 49% 1% 49%

1% 1% 49% 49%

33% 33% 33% 1% Trimodal
! ! ! 33% 33% 1% 33%

1 | I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 33% 1% 33% 33%
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Unbalanced workloads result in overfitted nominal tunings
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Impact of Workload Type

Index (20,21, 9, W) Type
25% 25% 25% 25% Uniform

o
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97% 1% 1% 1% Unimodal
1% 97% 1% 1%
1% 1% 97% 1%
1% 1% 1% 97%

49% 49% 1% 1% Bimodal
49% 1% 49% 1%
49% 1% 1% 49%

1% 49% 49% 1%

1% 49% 1% 49%

1% 1% 49% 49%
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Unbalanced workloads result in overfitted nominal tunings

Tuning with uncertainty (p > 0.5) provides benefits
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Relationship of Expected and Observed p

W7: (49%, 1%, 1%, 49%)

W11: (33%, 33%, 33%, 1%)

Observed p: distance from executed
workload to expected workload
\ 2

2 1.6 ?
< =)
e 08
2
0.0

Expected p: workload given to tuner

Highest throughput when observed and expected p match

Lowest throughput when p is mismatched
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Impact of Observed vs Expected p

p:0 P :0.25 \
Expected p: given to tuner

_/Robust Tuning | Robust Tuning
II: Leveling II: Leveling
T: 46.3 T: 11.9
= 2\ 1 023 P Observed p: distance from executed
. workload to expected workload
k=
<
0__ -
_1 T T T T T
0 1 2 3 4

Ik (W, wi1) Ixp (W, wig)
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Impact of Observed vs Expected p

p:0 P :0.25 p:1
34 Robust Tuning | Robust Tuning | Robust Tuning
II: Leveling II: Leveling II: Leveling e
T: 46.3 T: 11.9 T: 8.2 <
~ 94 h: 44 1 h: 23 4 h: 1.0 .
&
& w11 = (33%, 33%, 33%, 1%)
Z
© 14 .
2
<
O__ e RS S o = = e e i —————————

-1 T T T
0 1 2

Ixp (W, wiq)

Ixp (W, wig)

Ik (W, wit)

* Higher expected p accounts for more uncertainty,

* Potential speed up of 4x

* Higher expected p — anticipates writes = shallow tree

Ik (W, wyy)

27
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p and Performance Gain Distribution

:0 :0.25
0.4 P //_\ P \

Robust ! Robust \ _
= II: Leveling 11: Leveling Expected p: given to tuner
'z 037 T: 46.3 '§ L JT: 119
8 h: 44 : h: 2.3
20.2- Nominal .
= I1: Leveling
3 01 - T: 47.0 ]

& h: 4.4
- Throughput
0.0 - T T
0 1 0 1 /

1/Cw, D) 1/Cw, D)
W11 = (33% ) 33%, 33%, 1%)
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p and Performance Gain Distribution

:0 :0.25 01 12
0.4 P I P . P P
Robust > Robust / | obust / —»  \Robust
= 1: Leveling i 11: Leveling | : Leveling : Leveling
'3 0.37 T: 463 i} L T 119 : 8.2 i : 5.5
A h: 4.4 ! h: 2.3 h: 1.0 h: 1.0
20.2 1 Nominal . . .
a 1: Leveling
8 ] T: 47.0 ] I ] ]
= 01 h: 4.4
0.0 - T - T T T - — 1
0 1 0 1 0 1 0 1
1/Cw, @) 1/Cw, @) 1/C(w, @) 1/C(w, @)

W11 = (33% ) 33%, 33%, 1%)

Peak of the distribution moves towards higher throughput as we consider higher uncertainty
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Workload Sequence on RocksDB

—
Model 1I/O Nominal Robust : 2. 2 (49%, 1%, 1%, 49%)
20 —%— h: 82, T 8.4 —— h: 1.0, T: 4.7 A, v (32%, 47%, 22%, 0%

> 11: Tiering 1I: Leveling
Q
= 10
o
—
g 0-
(ﬁ 1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
= (30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)

RocksDB instance setup with 10 million unique key-value pairs of size 1KB

Each observation period is 200K queries, with 5 observations per session 6
million queries to the DB

Writes are unique, range queries average 1-2 pages per level
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Workload Sequence

Model 1I/O Nominal Robust W7 (49%, 1%, 1%, 49%)
20 —%— h: 8.?, T 8.4 —0— h: 1.0, T: 4.7 W (32%, 47%, 22%, 0%)
> 11: Tiering 1: Leveling
]
3 10 A
@)
3
a 0
S
= 10 System I/O p:231
Ixp (W, w) : 2.31
5 -
0 -
1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
(30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)
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Workload Sequence

Small subset of results! Take a look at the paper for a more detailed analysis

I/

107 System I/O

p:2.31
I (W, W) : 2.31

System Latency Throughput

120% T( | 26xops

5.7 kQPS

Latency (ms) per Query

T T T T T T
1. Reads 2. Range 3. Empty Reads 4. Non-Empty Reads 5. Reads 6. Reads
(30%, 58%, 12%, 0%) (7%, 10%, 84%, 0%) (86%, 9%, 4%, 0%) (8%, 86%, 6%, 0%) (30%, 58%, 12%, 0%) (30%, 58%, 12%, 0%)
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Thanks!

Workload uncertainty creates suboptimal tunings

ENDURE: robust tuning using neighborhood of workloads

Deployed ENDURE on RocksDB

disc.bu.edu/ |E2
www.ndhuynh.com/
y@nd_huynh
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