

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

CS561 Spring 2024 - Systems Project

Title: Implementation of an LSM-Tree based key-value store

Background: Log-structured merge-tree (LSM-trees) [1, 2, 3] are one of the most
commonly used data structures for persistent storage of key-value entries. LSM-
tree-based storages are in use in several modern key-value stores including
RocksDB at Facebook, LevelDB and BigTable at Google, bLSM and cLSM at Yahoo!,
Cassandra and HBase at Apache, and so on. LSM-trees store data in the disk as
immutable logs (also known as sorted sequence tables (SSTs)), which are
maintained in hierarchical levels of increasing capacity. To bound the number of
logs that a lookup has to probe, LSM-trees merge logs of similar sizes. The two
possible merging strategies are (i) leveling (optimized for lookups) and (ii) tiering
(optimized for updates).

Objective: The objective of the project is to implement an LSM-tree using only a
single process thread. The workflow for this is as the following.

(a) Review the LSM-tree literature to understand the principles and operations

supported in an LSM-tree.
(b) Implement an LSM-tree (vanilla implementation) using only a single process

thread for both merging strategies — leveling and tiering.
(c) Develop by cloning the API available to you at: https://github.com/BU-

DiSC/cs561_templatedb. Note that you are expected to build a more extensive
testing infrastructure.

(d) Provide the source code. The performance of your implementation will be
regularly measured, and the best performer will be announced on the website.

Note: There are two more restrictions when implementing range query and
deletes.
(1) The output of range query should be sorted and you shall not use a large vector

to store intemediate results from all the levels and sort them together to
output, this means that you need to implement the merge process of several
iterators in different runs to avoid unnecessary space amplification.

(2) The range delete implementation should have similar logic to the point
tombstone, as you learned in class. You shall not implement range
query/delete by iterating every element between min and max then issue
point query/deletes.

[1] Chen Luo, Michael J. Carey. LSM-based storage techniques: a survey. VLDB
J. 29(1): 393-418 (2020)

[2] Niv Dayan, Manos Athanassoulis, Stratos Idreos. Monkey: Optimal Navigable
Key-Value Store. SIGMOD Conference 2017: 79-94

[3] Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J. O'Neil. The Log-
Structured Merge-Tree (LSM-Tree). Acta Inf. 33(4): 351-385 (1996)

http://bu-disc.github.io/CS561/
https://github.com/BU-DiSC/cs561_templatedb
https://github.com/BU-DiSC/cs561_templatedb

