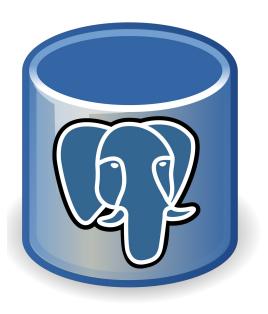


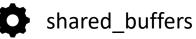
Robust DB Tuning with ENDURE

Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, Manos Athanassoulis

Database Knobs

명 요 DiSC



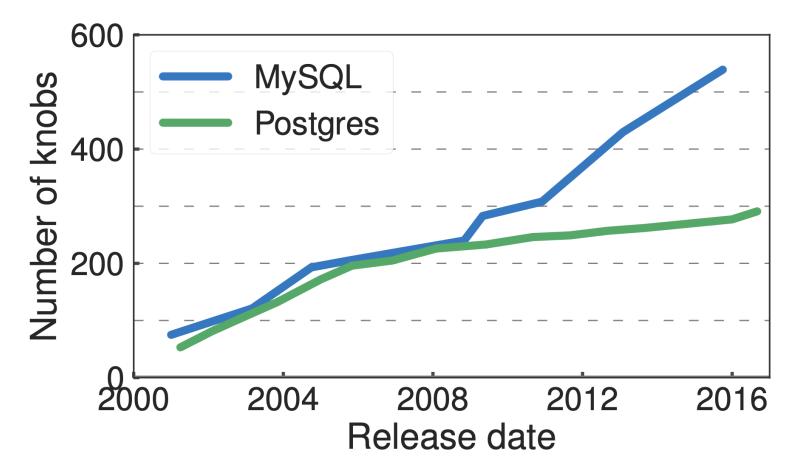


200+ settings

Determines performance

Database Complexity

Bb da Iab **OSiO**



Van Aken D. et. al., "Automatic Database Management System Tuning Through Large-scale Machine Learning". SIGMOD 2017

Complexity Sucks for Reproducibility

Databricks Sets Official Data Warehousing Performance Record

ि Disc

by **Reynold Xin** and **Mostafa Mokhtar** Posted in **COMPANY BLOG | Novembe**

Today, we are proud to announce that Dat 100TB TPC-DS, the gold standard perform Databricks SQL outperformed the previo benchmark news, this result has been fori

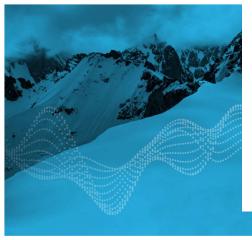
Benoit Dagevill **Thierry Cruanes**

SUBSCRIBE

These results were corroborated by resea which frequently runs TPC-DS on popular benchmarked Databricks and Snowflake 💙 and 12x better in terms of price perform warehouses such as Snowflake become p 🗓 production. \sim

NOV 12. 2021

Industry Benchmarks and Compet Thought Leadership > Executive Platform



Snowflake Claims Similar Price/Performance to Databricks, but Not So Fast!

by Mostafa Mokhtar, Arsalan Tavakoli-Shiraji, Reynold Xin and Matei Zaharia Posted in COMPANY BLOG | November 15, 2021

On Nov 2, 2021, we announced that we set the official world record for the fastest data warehouse with our Databricks SQL lakehouse platform. These results were audited and reported by the official Transaction Processing Performance Council (TPC) in a 37-page document available online at tpc.org. We also shared a third-party benchmark by the Barcelona Supercomputing Center (BSC) outlining that Databricks SQL is significantly faster and more cost effective than Snowflake.

A lot has happened since then: many congratulations, some questions, and some sour grapes. We take this opportunity to reiterate that we stand by our blog post and the results: Databricks SQL provides superior performance and price performance over Snowflake, even on data warehousing workloads (TPC-DS).

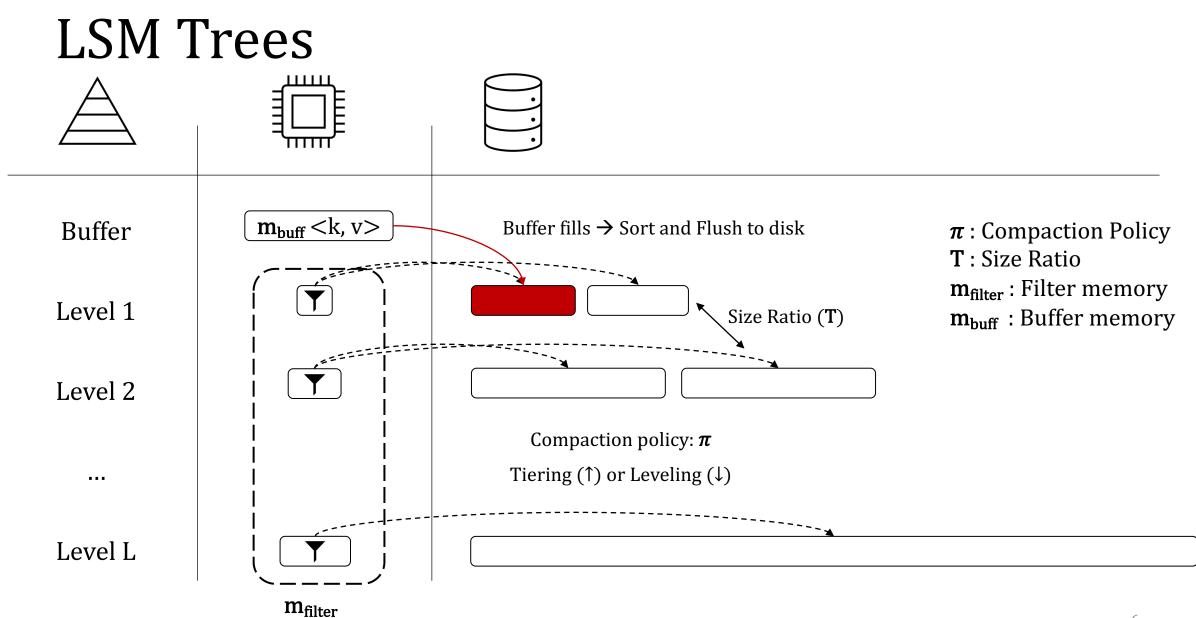
When we founded Snowflake, we set out to build an innovative platform. We had the opportunity to take into account what had worked well and what hadn't in prior architectures and implementations. We saw how we could leverage the cloud to rethink the limits of what was possible. We also focused on ease of use and building a system that "just worked." We knew there were many opportunities to improve upon prior implementations and innovate to lead on performance and scale, simplicity of administration, and data-driven collaboration.

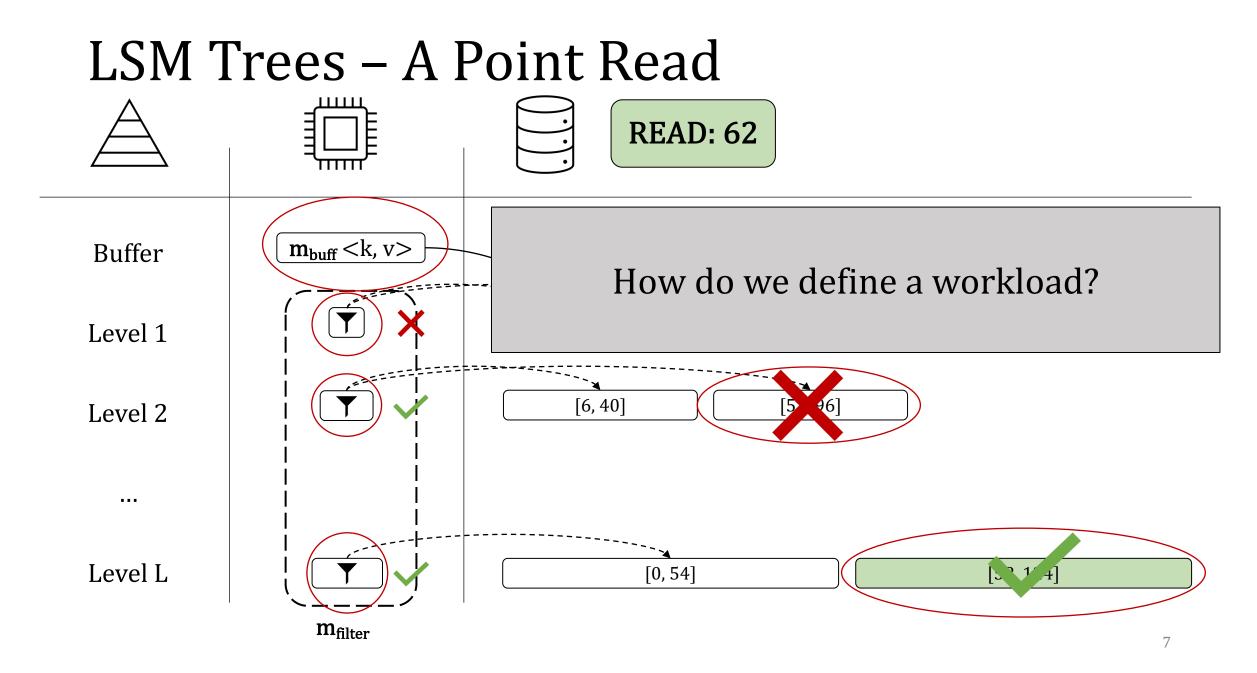
BOSTO

Age of Log-Structured Merge-Trees

ि DiSC

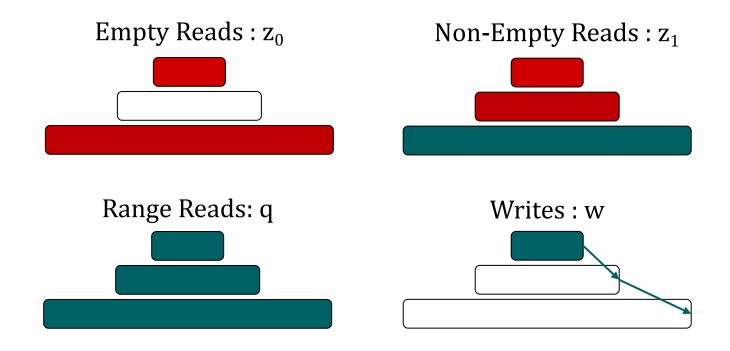
How do we go about tuning these knobs?





Query Types

Workload : (z_0, z_1, q, w)



Cool! How do we go about tuning?

The LSM-Tuning Problem

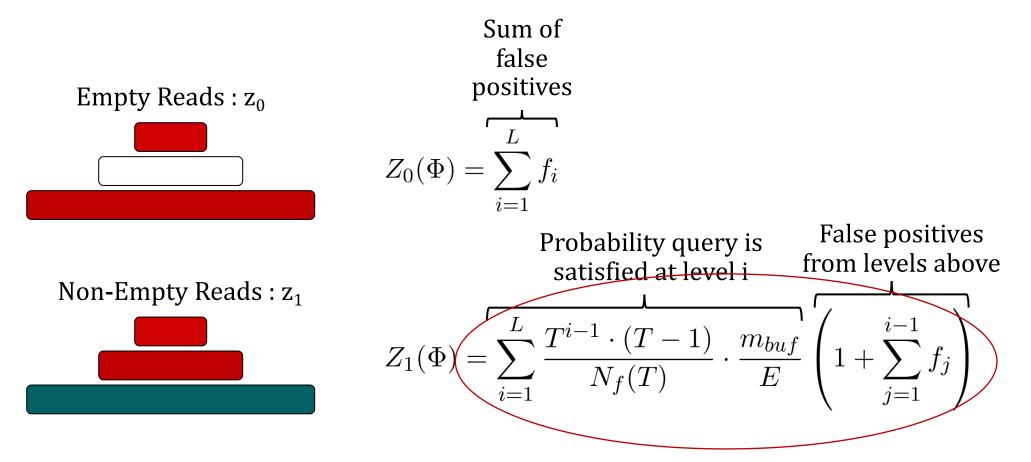
lab Sada DSiO

w : Workload (z₀, z₁, q, w) Φ : LSM Tree Design (m_{buff}, m_{filter}, T, \pi)
C : Cost

 $\Phi^* = argmin_{\Phi} C(\boldsymbol{w}, \Phi)$

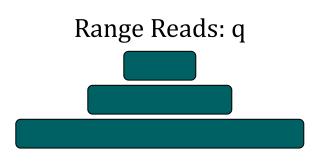
lab DisC

Point Reads

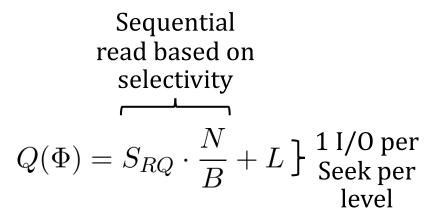


[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD '17).

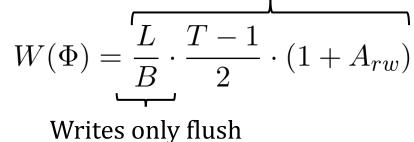
Range-Reads and Writes



踪 요 DiSC



Average number of merges a write will participate in



once buffer is full

[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD '17).

The LSM-Tuning Problem

w: Workload (z₀, z₁, q, w) $\Phi: LSM Tree Design (m_{buff}, m_{filter}, T, \pi)$ C: Cost (I/O)

$$\Phi^* = argmin_{\Phi} C(\boldsymbol{w}, \Phi)$$

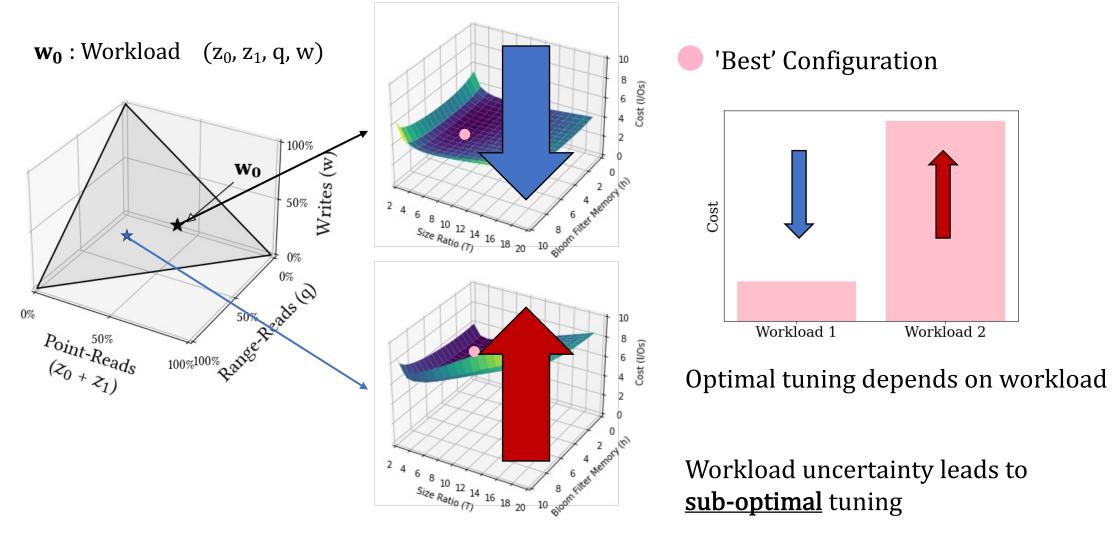
Define our cost function

명 역 DiSC

$$C(\hat{\mathbf{w}}, \Phi) = \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{c}(\Phi) = z_0 \cdot Z_0(\Phi) + z_1 \cdot Z_1(\Phi) + q \cdot Q(\Phi) + w \cdot W(\Phi)$$

Tuning Problems

Bb Bb DSiO



Outline

lab **S**SIC

Introduction

LSM Trees Notation

Nominally Tuning LSM Trees

ENDURE: Robustly Tuning LSM Trees

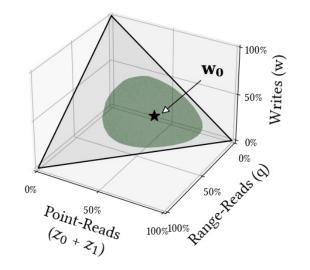
The ENDURE Pipeline

ENDURE Evaluation

The LSM-Tuning Problem

BS de DiSC

w : Workload (z_0, z_1, q, w) Φ : LSM Tree Design $(m_{buff}, m_{filter}, T, \pi)$ C: Cost(I/O)



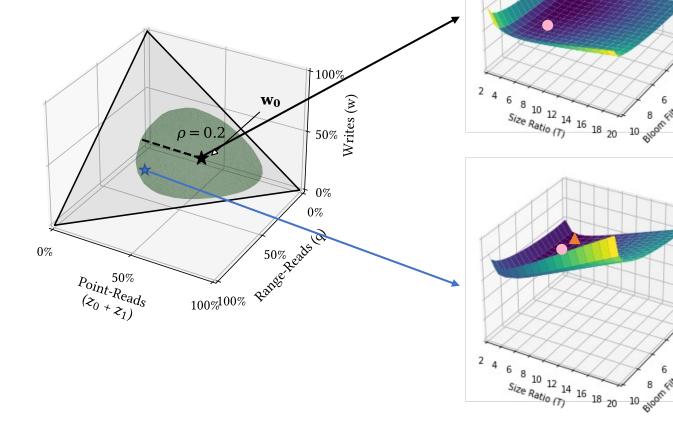
$\Phi^* = argmin_{\Phi} C(\boldsymbol{w}, \Phi)$	Nominal
$U_{\rm w}^{ ho}$: Uncertainty Neighborhood of Workloads $ ho~$: Size of this neighborhood	Robust
$\Phi^* = \operatorname{argmin}_{\Phi} \mathcal{C}(\widehat{w}, \Phi)$	

s.t.,
$$\widehat{\boldsymbol{w}} \in U_w^\rho$$

Robust Tuning

Bb Bb DSiO

 $\mathbf{w_0}$: Workload (z_0 , z_1 , q, w)



 $\Phi^* = \operatorname{argmin}_{\Phi} \mathcal{C}(\widehat{w}, \Phi)$ s.t., $\widehat{w} \in U_w^{\rho}$

Cost (I/Os)

6

4

8

6 4

2

2 Memory (m)

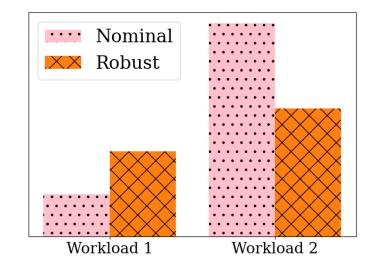
Filter

Cost (I/Os)

Files Menory (D)

Optimal configuration for expected workload

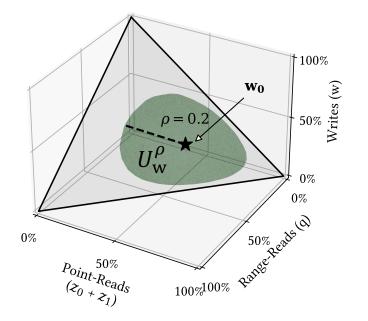
Robust configuration for the workload neighborhood



Uncertainty Neighborhood

Workload Characteristic

踪 요 DiSC



Neighborhood of workloads (ρ) via the KL-divergence

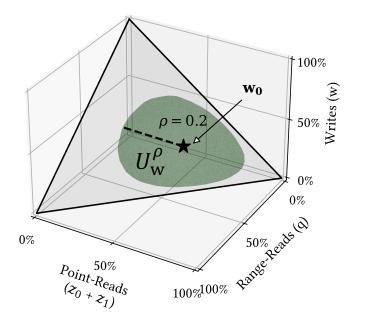
$$I_{KL}(\widehat{w}, w) = \sum_{i=1}^{m} \widehat{w}_i \cdot \log(\frac{\widehat{w}_i}{w_i})$$

 $U_{\rm w}^{
ho}$: Uncertainty Neighborhood of Workloads ho : Size of this neighborhood

Calculating Neighborhood Size

Workload Characteristic

BS de DiSC



Historical workloads

maximum/average uncertainty among workload pairings

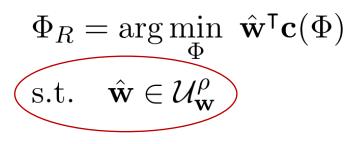
User provided workload uncertainty

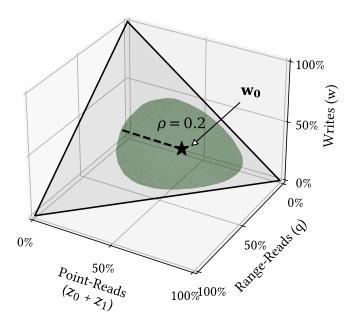
 U_{W}^{ρ} : Uncertainty Neighborhood of Workloads ho~: Size of this neighborhood

Solving Robust Problem

Iterating over every possible workload is expensive

망요 이정 Disc





Solving Robust Problem

Iterating over every possible workload is expensive

Rewrite as a min-max

BS C

Find the dual of the maximization problem to reduce to a feasible problem [2]

$$\Phi_{R} = \arg\min_{\Phi} \ \hat{\mathbf{w}}^{\mathsf{T}} \mathbf{c}(\Phi)$$

s.t. $\hat{\mathbf{w}} \in \mathcal{U}_{\mathbf{w}}^{\rho}$
$$\mathbf{w} \in \mathcal{U}_{\mathbf{w}}^{\rho} \quad \mathbf{w}^{\mathsf{T}} \mathbf{c}(\Phi)$$

$$\mathbf{w} \in \mathcal{U}_{\mathbf{w}}^{\rho} \quad \mathbf{w}^{\mathsf{T}} \mathbf{c}(\Phi)$$

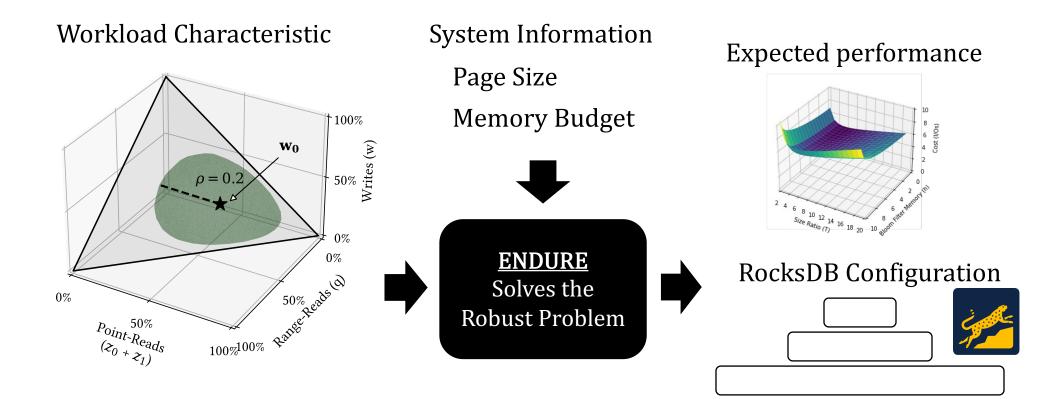
$$\mathbf{w} \in \mathcal{U}_{\mathbf{w}}^{\rho} \quad \mathbf{w}^{\mathsf{T}} \mathbf{c}(\Phi)$$

$$\mathbf{w} \in \mathcal{U}_{\mathbf{w}}^{\rho} \quad \mathbf{w}^{\mathsf{T}} \mathbf{c}(\Phi)$$

[2] Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. Robust Solutions of Optimization Problems Affected by Uncertain Probabilities.

ENDURE Pipeline

Bb Bb DSiO



Testing Suite

망요 DiSC

ENDURE in Python, implemented in tandem with RocksDB

Uncertainty benchmark

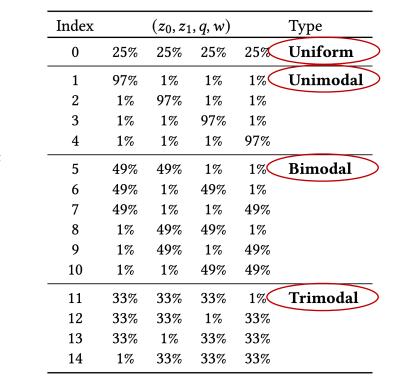
- 15 expected workloads
- 10K randomly sampled workloads as a test-set

Normalized delta throughput

$$\Delta_{\mathbf{w}}(\Phi_1, \Phi_2) = \frac{1/C(\mathbf{w}, \Phi_2) - 1/C(\mathbf{w}, \Phi_1)}{1/C(\mathbf{w}, \Phi_1)}$$

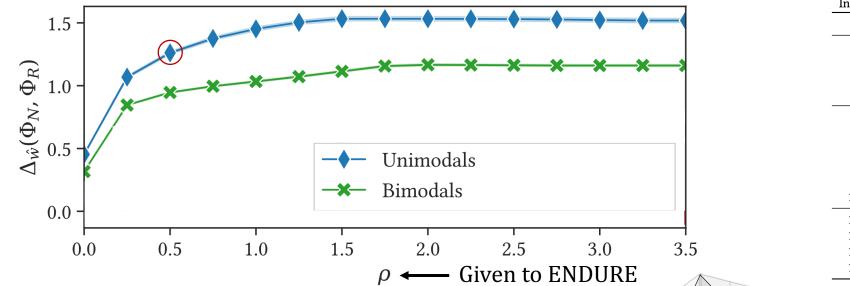
Nominal vs Robust: > 0 is better

1 means 2x speedup



Impact of Workload Type

Bb Bb DSiO



<u>**Unbalanced**</u> workloads result in overfitted nominal tunings

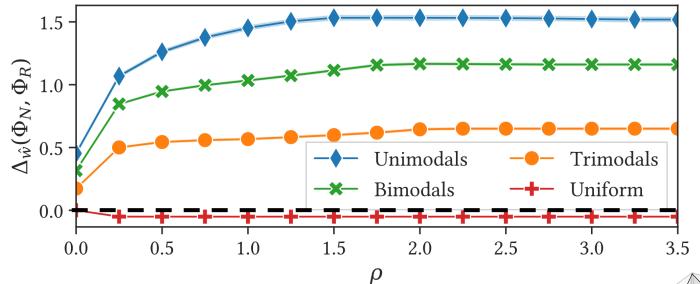
- 1					
Index	(z_0, z_1, q, w)				Туре
0	25%	25%	25%	25%	Uniform
1	97%	1%	1%	1%	Unimodal
2	1%	97%	1%	1%	
3	1%	1%	97%	1%	
4	1%	1%	1%	97%	
5	49%	49%	1%	1%	Bimodal
6	49%	1%	49%	1%	
7	49%	1%	1%	49%	
8	1%	49%	49%	1%	
9	1%	49%	1%	49%	
10	1%	1%	49%	49%	
11	33%	33%	33%	1%	Trimodal
12	33%	33%	1%	33%	
13	33%	1%	33%	33%	
14	1%	33%	33%	33%	

50% it

 $P_{oint-Reads}$ $(z_0 \neq z_1)$

Impact of Workload Type

Bb Bb DSiO



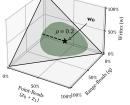
0	25%	25%	25%	25%	Uniform
1	97%	1%	1%	1%	Unimodal
2	1%	97%	1%	1%	
3	1%	1%	97%	1%	
4	1%	1%	1%	97%	
5	49%	49%	1%	1%	Bimodal
6	49%	1%	49%	1%	
7	49%	1%	1%	49%	
8	1%	49%	49%	1%	
9	1%	49%	1%	49%	
10	1%	1%	49%	49%	
11	33%	33%	33%	1%	Trimodal
12	33%	33%	1%	33%	
13	33%	1%	33%	33%	
14	1%	33%	33%	33%	

 (z_0, z_1, q, w)

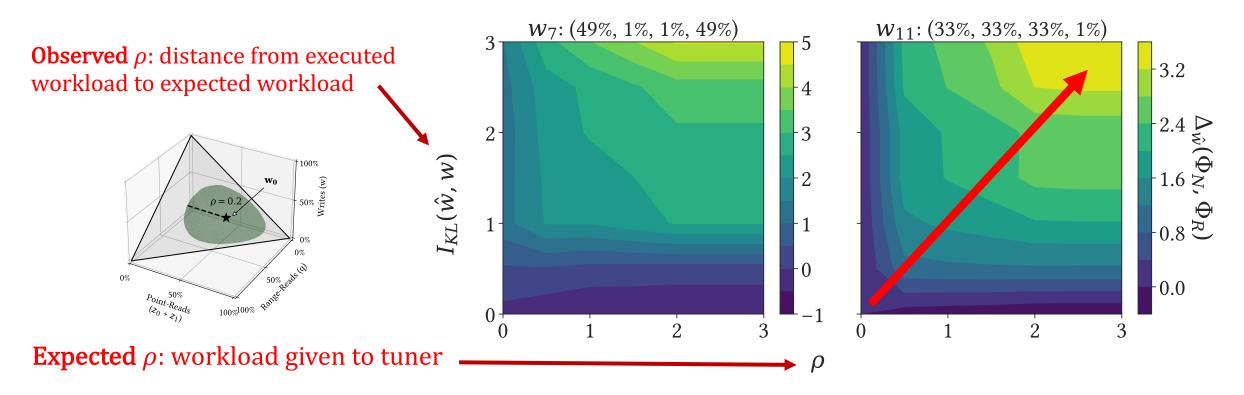
Type

Index

<u>Unbalanced</u> workloads result in overfitted nominal tunings Tuning with uncertainty ($\rho > 0.5$) provides benefits



Relationship of Expected and Observed ρ



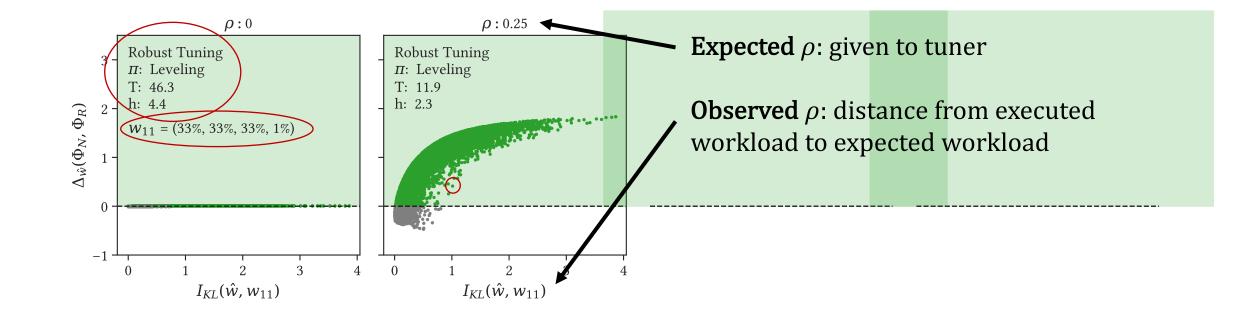
Highest throughput when observed and expected ρ match

Lowest throughput when ρ is mismatched

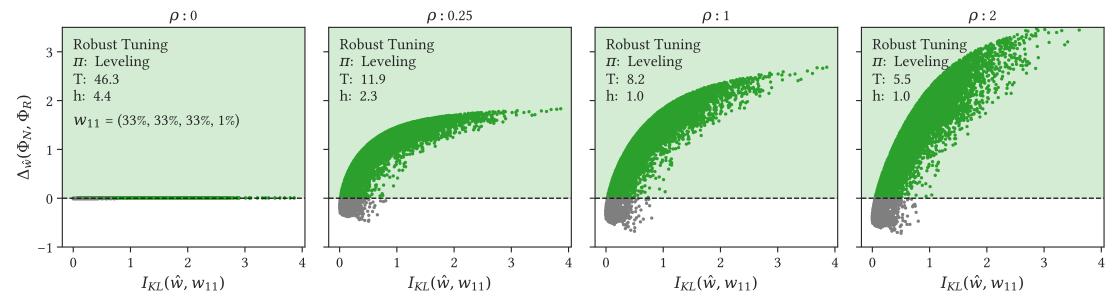
명 역 DiSC

Impact of Observed vs Expected ρ

망요 이정 Disc



Impact of Observed vs Expected ρ



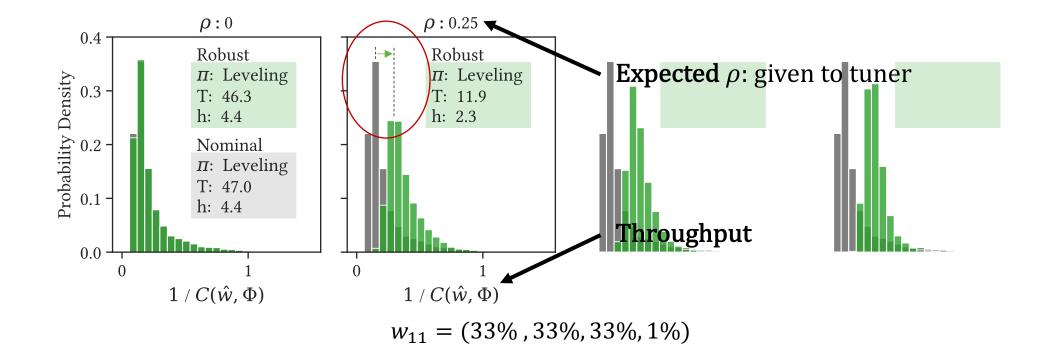
- Higher expected ρ accounts for more uncertainty,
- Potential speed up of 4x

踪 요 DiSC

• Higher expected $\rho \rightarrow$ anticipates writes \rightarrow shallow tree

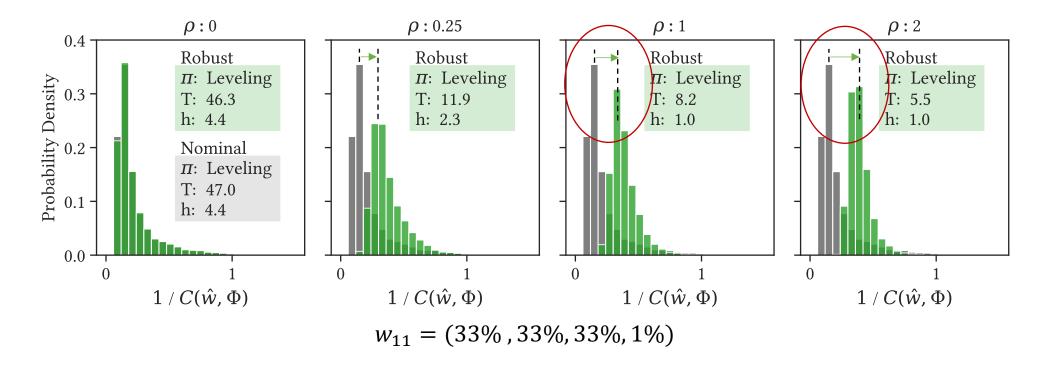
ρ and Performance Gain Distribution

Bab DisC



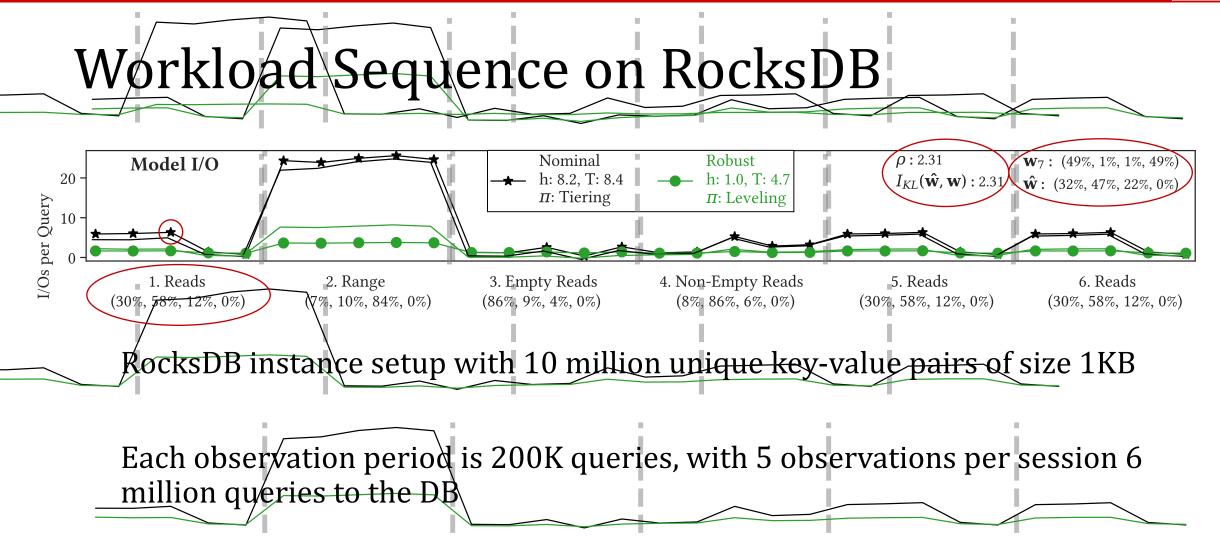
ρ and Performance Gain Distribution

망요 이정 Disc



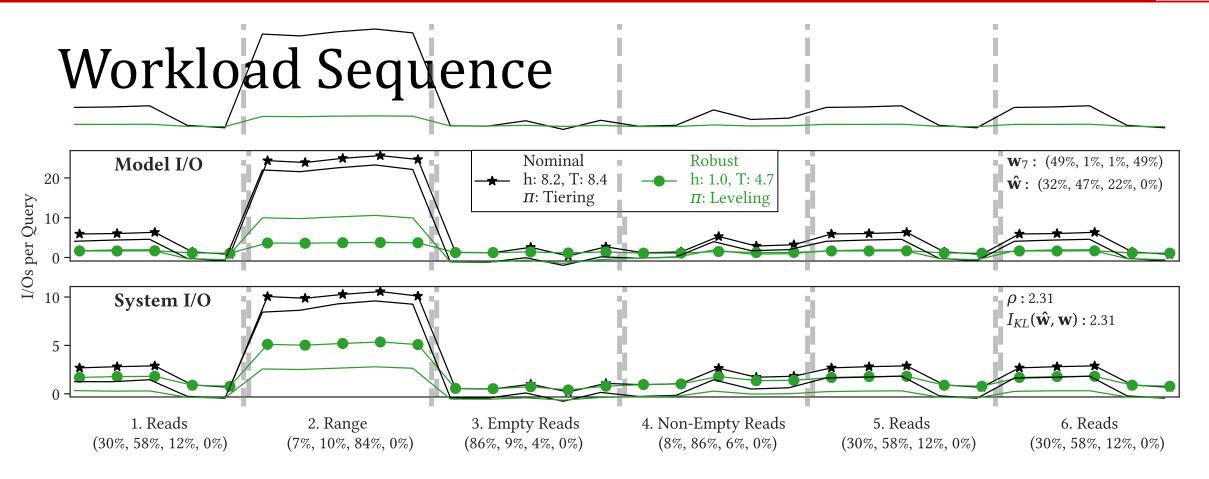
Peak of the distribution moves towards higher throughput as we consider higher uncertainty

29



Writes are unique, range queries average 1-2 pages per level

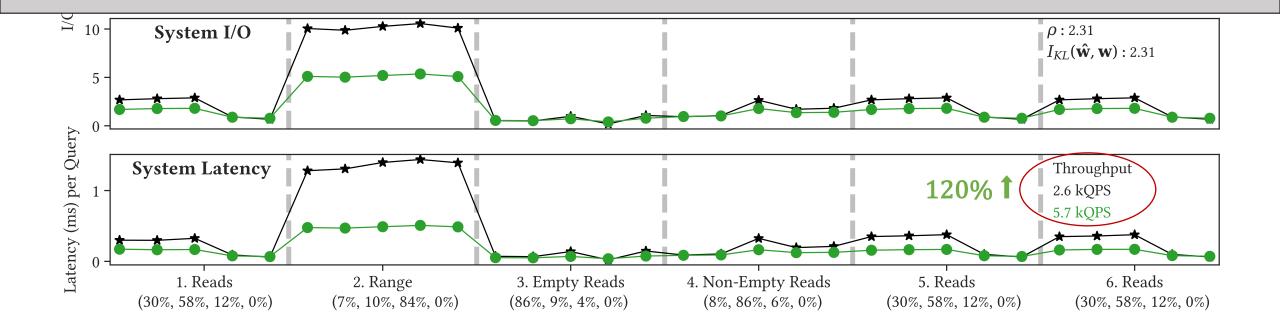
명 역 DiSC



Workload Sequence

망요 이정 Disc

Small subset of results! Take a look at the paper for a more detailed analysis



Thanks!

BS de DiSC

Workload uncertainty creates suboptimal tunings

ENDURE: robust tuning using neighborhood of workloads

Deployed ENDURE on RocksDB

