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Database	Knobs
effective_cache_size

work_mem

wal_sync_method

max_prepared_transactions

random_page_cost

checkpoint_segments

maintenance_work_mem

shared_buffers

…

200+ settings

Determines 
performance
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Database	Complexity

Van Aken D. et. al., “Automatic Database Management System Tuning Through 
Large-scale Machine Learning”. SIGMOD 2017 3



Complexity	Sucks	for	Reproducibility
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Age	of	Log-Structured	Merge-Trees
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How	do	we	go	about	tuning	these	knobs?

High	impact	tuning	knobs

Compaction Buffer	size Size	ratio

Dictates	performance!



LSM	Trees

mbuff<k,	v>

Size	Ratio	(T)

mfilter

Buffer	fills	à Sort	and	Flush	to	disk
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Compaction	policy:	𝜋

Tiering	(↑)	or	Leveling	(↓)

Buffer

Level	1

Level	2

…

Level	L

𝜋 :	Compaction	Policy
T	:	Size	Ratio
mfilter :	Filter	memory
mbuff :	Buffer	memory



LSM	Trees	– A	Point	Read

mbuff<k,	v>

[2,	20]

mfilter 7

[6,	40] [52,	96]

[0,	54]

[23,	70]

Buffer

Level	1

Level	2

…

Level	L [58,	124]

READ:	62

How	do	we	define	a	workload?



Query	Types

Empty	Reads	:	z0 Non-Empty	Reads	:	z1

Range	Reads:	q Writes	:	w
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Cool!	How	do	we	go	about	tuning?

Workload	:	(z0,	z1,	q,	w)



The	LSM-Tuning	Problem
𝒘 :	Workload				(z0,	z1,	q,	w)
Φ :	LSM	Tree	Design				(𝑚ABCC , 𝑚CDEFGH , 𝑇, 𝜋)
𝐶 :	Cost

Φ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛J 𝐶(𝒘,Φ)
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Point	Reads
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Empty	Reads	:	z0

Non-Empty	Reads	:	z1

Sum	of	
false	

positives

Probability	query	is	
satisfied	at	level	i

False	positives	
from	levels	above

[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM 
International Conference on Management of Data (SIGMOD '17).



Range-Reads	and	Writes
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1	I/O	per	
Seek	per	
level

Sequential	
read	based	on	
selectivity

Writes	only	flush	
once	buffer	is	full

Average	number	of	merges	a	write	will	participate	in

[1] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings of the 2017 ACM 
International Conference on Management of Data (SIGMOD '17).

Writes	:	w

Range	Reads:	q



The	LSM-Tuning	Problem
𝒘 :	Workload				(z0,	z1,	q,	w)
Φ :	LSM	Tree	Design				(𝑚ABCC , 𝑚CDEFGH , 𝑇, 𝜋)
𝐶 :	Cost	(I/O)

Φ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛J 𝐶(𝒘,Φ)
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Define	our	cost	function



Tuning	Problems
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'Best’	Configuration

Optimal	tuning	depends	on	workload

Workload	uncertainty	leads	to	
sub-optimal tuning

𝐰𝟎 :	Workload				(z0,	z1,	q,	w)



Outline
Introduction

LSM	Trees	Notation

Nominally	Tuning	LSM	Trees

ENDURE:	Robustly	Tuning	LSM	Trees

The	ENDURE	Pipeline

ENDURE	Evaluation
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𝑈Y
Z :	Uncertainty	Neighborhood	of	Workloads

𝜌 :	Size	of	this	neighborhood

The	LSM-Tuning	Problem
𝐰 :	Workload				(z0,	z1,	q,	w)
Φ :	LSM	Tree	Design				(𝑚ABCC , 𝑚CDEFGH , 𝑇, 𝜋)
𝐶 :	Cost	(I/O)

Φ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛J 𝐶(𝒘,Φ)

Φ∗ = argminJ 𝐶 [𝒘,Φ

𝑠. 𝑡., [𝒘 ∈ 𝑈[
Z

Nominal

Robust
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Robust	Tuning
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Optimal	configuration	for	
expected	workload

Robust	configuration	for	the	
workload	neighborhood

𝐰𝟎 :	Workload				(z0,	z1,	q,	w)
Φ∗ = argmin% 𝐶 J𝒘,Φ

𝑠. 𝑡., J𝒘 ∈ 𝑈&
'



Uncertainty	Neighborhood
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𝐼() J𝑤,𝑤 =S
*+,

-

J𝑤* ⋅ log(
J𝑤*
𝑤*
)

Neighborhood	of	workloads	(𝜌)	via	the	KL-divergence

𝑈C
D :	Uncertainty	Neighborhood	of	Workloads

𝜌 :	Size	of	this	neighborhood

𝑈.
'

Workload	Characteristic

𝑈.
'



Calculating	Neighborhood	Size

Historical	workloads
maximum/average	uncertainty	among	
workload	pairings

User	provided	workload	uncertainty
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Workload	Characteristic

𝑈.
'

𝑈C
D :	Uncertainty	Neighborhood	of	Workloads

𝜌 :	Size	of	this	neighborhood



Solving	Robust	Problem

19

Iterating	over	every	possible	
workload	is	expensive



Solving	Robust	Problem
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Iterating	over	every	possible	
workload	is	expensive

Rewrite	as	a	min-max

Find	the	dual	of	the	maximization	
problem	to	reduce	to	a	feasible	
problem	[2]

[2] Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. Robust 
Solutions of Optimization Problems Affected by Uncertain Probabilities.



ENDURE	Pipeline
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Workload	Characteristic System	Information
Page	Size
Memory	Budget

ENDURE
Solves	the	

Robust	Problem

Expected	performance

RocksDB Configuration



Testing	Suite
ENDURE	in	Python,	implemented	in	tandem	with	RocksDB

Uncertainty	benchmark
• 15	expected	workloads
• 10K	randomly	sampled	workloads	as	a	test-set

Normalized	delta	throughput

Nominal	vs	Robust:	>	0	is	better
1	means	2x	speedup
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Impact	of	Workload	Type
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Unbalanced workloads	result	in	overfitted	nominal	tunings

Given	to	ENDURE



Impact	of	Workload	Type

Unbalanced workloads	result	in	overfitted	nominal	tunings

Tuning	with	uncertainty	(𝜌 >	0.5)	provides	benefits
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Relationship	of	Expected	and	Observed	𝜌
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Highest	throughput	when	observed	and	expected	𝜌 match

Lowest	throughput	when	𝜌 is	mismatched

Expected 𝜌:	workload	given	to	tuner

Observed	𝜌:	distance	from	executed	
workload	to	expected	workload		



Impact	of	Observed	vs	Expected	𝜌
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Expected 𝜌:	given	to	tuner

Observed	𝜌:	distance	from	executed	
workload	to	expected	workload		



Impact	of	Observed	vs	Expected	𝜌
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• Higher	expected	𝜌 accounts	for	more	uncertainty,	
• Potential	speed	up	of	4x
• Higher	expected	𝜌 → anticipates	writes	→ shallow	tree



𝜌 and	Performance	Gain	Distribution

𝑤,, = (33% , 33%, 33%, 1%)
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Expected 𝜌:	given	to	tuner

Throughput



𝜌 and	Performance	Gain	Distribution

𝑤,, = (33% , 33%, 33%, 1%)
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Peak	of	the	distribution	moves	towards	higher	throughput	as	we	consider	higher	uncertainty



Workload	Sequence	on	RocksDB
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oRocksDB instance	setup	with	10	million	unique	key-value	pairs	of	size	1KB

oEach	observation	period	is	200K	queries,	with	5	observations	per	session	6	
million	queries	to	the	DB

oWrites	are	unique,	range	queries	average	1-2	pages	per	level



Workload	Sequence
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Workload	Sequence
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120%	⬆

Small	subset	of	results!	Take	a	look	at	the	paper	for	a	more	detailed	analysis



Thanks!
Workload	uncertainty	creates	suboptimal	tunings

ENDURE:	robust	tuning	using	neighborhood	of	workloads

Deployed	ENDURE	on	RocksDB

disc.bu.edu/
www.ndhuynh.com/

@nd_huynh
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http://www.ndhuynh.com/

