
class 7

Row-stores vs. Column-stores

Dr. Subhadeep Sarkar

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

with slides based on Dan Abadi’s

https://bu-disc.github.io/CS561/

A few reminders
A) Project 1 is out – start working on it now!

B) Submissions due on 02/20 in groups of 2-3.

C) Class projects to be announced next week (form groups).

D) First review due on 02/14.

E) First student presentation 02/14 (discussion + Q&A).

Performance Metrics

throughput latency

why care about both?

Performance Metrics

device lifetime

I/O CPU

stalls bandwidth
utilization

memory
miss/hit

cache
miss/hit

throughput latency

Row-stores vs. Col-Stores: How Different Are They Really?

Are column-stores really novel?

If we profile their performance, what is the breakdown? Why?

The paper tries to clarify which part of the “column stores” hype was
marketing and which was fundamental

Row-Stores

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)

Student (sid: string, name: string, login:
string, year_birth: integer, gpa: real)

Row-Stores: slotted page

header

row1 row2

row3

free space

Row-Stores: slotted page
#rows, row offsets, free space offsets,

#fixed length attributes, #var length attributes

row1 row2

row3

free space

Row-Stores

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

each page contains entire rows (all their columns)

rows are contiguous
(with possible free space at the end)

file

pages

✅ Easy to add a new record

pros and cons?

❌ Might access unnecessary data

select max(B) from R where A>5 and C<10

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

one row at a time

Row-stores: query processing

Early materialization
what’s that?

Column-Stores

A B C D
each page contains columns!

row1
row2

pros and cons?

✅ Read only relevant data

❌ Tuple writes require multiple accesses

why so?

select max(B) from R where A>5 and C<10

Column-stores: query processing

A B C D
C

max

IDs

B

IDs

A

Late materialization

What’s the goal of the paper?
Prior to this paper there several studies showing

column-stores outperforming row-stores (~5x better performance in TPCH)

Key question:
(a) are the benefits inherent to the new column-store design, or
(b) a row-store with a “more columnar” physical design can achieve the same?
In other words: can you “simulate a col-store in a row-store?”

Let’s revisit the main question of the paper

Compare row-stores and column-stores

Paper’s Methodology

Compare row-store vs. row-store and col-store vs. col-store.

How?

1. Simulate a column-store inside a row-store
2. Remove col-store features one-by-one

How to simulate a col-store with a row-store?
Vertical Partitioning

“physically partition the data per column”

Index-only Plans
“use only indexes in query plans that contain only relevant columns”

Materialized Views
“temporary tables that contain exactly the answer to a query”

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Vertical Partitioning

A B C D

row1
row2

Problem?

Details on Vertical Partitioning

TID Column Data

1

2

3

TID Column Data

1

2

3

Tuple
Header

TID Column Data

1

2

3

Note that a “real column-store” would only store the raw values as an array.

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Index-only plans

A

C

Problem?

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Index-only plans

A

C

Slow joins

Expensive random access

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Materialized Views

B C

B C

Problem?

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

Materialized Views

B C

B C

Extra storage

Need to know workload apriori

State-of-the-art Col-Store features

Late Materialization
“stich the column together as late as possible”

Block iteration
“execute the same columnar operation over a block of values”

Compression
“column-specific compression, due to the nature of data”

Invisible joins

select max(B) from R where A>5 and C<10

Late Materialization

A B C D

IDs

C

max

IDs

BA

“the full tuple (or the necessary subset) is not materialized until it is needed”

max

whole column?

column at a time

block/vector at a time

select max(B) from R where A>5 and C<10

“Column-at-a-time”

IDs

C

IDs

BA

IDs

C
max

IDs

B

A

whole column?

A C

B

select max(B) from R where A>5 and C<10

Block Iteration

column at a time

block/vector at a time

What is easier to compress?

#1, John, 2/4/88, Boston

#2, Joe, 2/1/87, New York

#3, Lina, 7/7/93, Boston

#4, Anna, 4/1/92, Chicago

#5, Tim, 3/9/91, Seattle

#6, Rose, 9/3/96, Boston

#1
#2
#3
#4
#5
#6

John
Joe
Lina

Anna
Tim
Rose

2/4/88
2/1/87
7/7/93
4/1/92
3/9/91
9/3/96

Boston
New York

Boston
Chicago
Seattle
Boston

exploit patterns, duplicates, small differences

Compression

Q1
Q1
Q1
...
Q2
Q2
...

Q1, 1, 300
Q2, 301, 500
Q3, 501, 550
Q4, 551, 800

Run-length Encoding

Alternative: Dictionary Compression
Ø Replace variable size with

minimal fixed length e.g., integer

Reduces I/O

Can operate directly on compressed data

Benefits of col-store compression

Are the same benefits applicable for row-store compression?
Reduces I/O à yes, but with lower ratio
No! Requires decompression before processing

How?

Invisible Joins

Benchmarking

When comparing database systems we need a common “language”

Benchmarks from the Transaction Performance Council
TPC-B, TPC-C, TPC-H, TPC-DS etc

Also, a benchmark for data warehousing:
Star Schema Benchmark

Star-Schema Benchmark

select sum(lo_extendedprice*lo_discount) as revenue
from lineorder, date
where lo_orderdate = d_datekey and

d_year = 1993 and
lo_discount between 1 and 3 and
lo_quantity < 25;

select sum(lo_revenue), d_year, p_brand1
from lineorder, date, part, supplier
where lo_orderdate = d_datekey and

lo_partkey = p_partkey and
lo_suppkey = s_suppkey and
p_category = 'MFGR#12' and
s_region = 'AMERICA’

group by d_year, p_brand1
order by d_year, p_brand1;

13 queries

Fact table

Dimension tables

Invisible Joins

Idea: rewrite joins as predicates on foreign keys in fact table

Algorithm:
1. apply each predicate to the appropriate dimension table
2. build a hash table on matching keys
3. compute bitvector with bits set for qualifying positions (tuples)
4. intersect bitvectors (positions) via bitwise AND
5. for each resulting position reconstruct the resulting tuple

1. apply each predicate to the appropriate dimension table
2. build a hash table on matching keys

3. compute bitvector with bits set for qualifying positions (tuples)
4. intersect bitvectors (positions) via bitwise AND

SELECT c.nation, s.nation, d.year,
sum(lo.revenue) as revenue

FROM customer AS c, lineorder AS lo,
supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey AND
lo.suppkey = s.suppkey AND
lo.orderdate = d.datekey AND
c.region = ’ASIA’ AND s.region = ’ASIA’ AND
d.year >= 1992 and d.year <= 1997

GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

5. For each resulting position, extract the values
from the columns that are in the result

Are invisible joins a general join algorithm?

No! It works only for Star Schemas

Experiments

1 CPU 2.8GHz, 3GB RAM, Red Hat Linux 5

4-disk HDD array with 160-200MB/s aggregate bandwidth

(older paper, so small numbers!)

Report averages with “warm” bufferpool (smaller than data size)

Focus on SSB averages (the paper has more detailed graphs)

Experimenting with row-stores (SSB averages)

Experimenting with row-stores (SSB averages)
tuple reconstruction (via expensive joins)
prior to the join between tables

tuple overheads (additional record IDs)

Row-Stores vs. Column-Stores (SSB average)

MV have the result readily available

A native col-store is faster

Can we simulate a column-store with a row-store?

(a) All Indexes is a poor way to do it

(b) Vertical Partitioning’s problem are NOT fundamental
i. tuple header can be removed
ii. TIDs can be virtual
iii. horizontal partitioning can be based on the values of a different VP

But still, column-stores and row-stores are apples and oranges!!

Methodology

Start from a native column-store

Remove column-store-specific performance optimizations

End with a column-store with a row-oriented query engine

Row-Store

25

To make the most of a col-store

1. Efficient support of
vertical partitioning
(compression)

2. Column-specific
execution
(late materialization)

T=tuple-at-a-time processing, t=block processing;
I=invisible join enabled, i=disabled;
C=compression enabled, c=disabled;
L=late materialization enabled, l=disabled

T is traditional, T(B) is traditional (bitmap),
MV is materialized views, VP is vertical partitioning,
and AI is all indexes

C-store appears to do even better than fully materialized joins

Bulk processing buys you 5 to 50%

Invisible join buys you 50-75%

Compression buys you 2X

Late materialization gets you almost 3X

Things to remember

Row-stores vs. Col-stores: fundamental differences

üCompression
ü Late Materialization
üBlock Iteration
üColumn-store-specific join optimizations

class 5

Row-stores vs. Column-stores

Dr. Subhadeep Sarkar

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

with slides based on Dan Abadi’s

https://bu-disc.github.io/CS561/

