

Machine Learning for Query Optimization
Ryan Marcus

University of Pennsylvania

Slides: https://rm.cab/bu23

https://rm.cab/bu23

Learned Systems
● Claim: hardware & app diversity growing faster than

we can design systems
● Approach: build instance-optimized, learned systems

that automatically…
– Invent new approaches to solving the user’s problem
– Adapt to the user’s workload & hardware
– Understands the user’s intention

Gottschlich et al. "The three pillars of machine programming." MAPL@SIGPLAN. 2018.

This Talk
● Why learn a query optimizer?
● Brief description of Neo, our first attempt.
● Key ideas in Bao, our second attempt.

Query Optimization
● Essentially: translate

complex requests for
information into fast
programs.

● Ex: find all movies
with Scarlett
Johansson produced
by Sony

a_id name YOB
 1 Scarl 84
 2 BradP 63
 3 JonTr 54
 …

ACTOR

f_id name RAT
 1 Her 86
 2 Aveng 81
 3 PulpF 93
 …

FILM

a_id f_id
 1 1
 1 2
 3 3
 …

APPEARS_IN

c_id name
 1 Sony
 2 Fox
 3 MGM
 …

COMPANY

c_id f_id
 1 1
 2 2
 3 2
 …

PRODUCED

Query Optimization
● Find all movies with Scarlett Johansson

produced by Sony.
● Logically, what we want is to filter:

ACTOR APPEARS_IN FILM ⋈ ⋈ ⋈
PRODUCED ⋈ COMPANY

● Physically, I have a lot of options...

Query Optimization

a_id name YOB
 1 Scarl 84
 2 BradP 63
 3 JonTr 54
 …

ACTOR

f_id name RAT
 1 Her 86
 2 Aveng 81
 3 PulpF 93
 …

FILM

a_id f_id
 1 1
 1 2
 3 3
 …

APPEARS_IN

c_id name
 1 Sony
 2 Fox
 3 MGM
 …

COMPANY

c_id f_id
 1 1
 2 2
 3 2
 …

PRODUCED

ACTOR APPEARS_IN

FILM

PRODUCED

COMPANY

⋈

Find all movies with SJ. Then, filter those by movies produced by Sony.

⋈

⋈

⋈

Query Optimization

a_id name YOB
 1 Scarl 84
 2 BradP 63
 3 JonTr 54
 …

ACTOR

f_id name RAT
 1 Her 86
 2 Aveng 81
 3 PulpF 93
 …

FILM

a_id f_id
 1 1
 1 2
 3 3
 …

APPEARS_IN

c_id name
 1 Sony
 2 Fox
 3 MGM
 …

COMPANY

c_id f_id
 1 1
 2 2
 3 2
 …

PRODUCED

Find all Sony movies. Then, filter by those movies with SJ.

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Query Optimization

Find all Sony movies, find all SJ movies, take the intersection.

∩

COMPANY PRODUCED

FILM⋈

⋈

ACTOR APPEARS_IN

FILM⋈

⋈

Query Optimization
● # plans follows

Catalan numbers
● At n = 19, more than

2^32 plans

Classic Query Optimizers
● Transform SQL into a query plan
● HUGE effort!

– 42K LOC in PG
– 1M+ SQL Server
– 45-55 FTEs, Oracle (~ $5mil/year)

● Requires per DB tuning
– PG: 15% bump
– Oracle: 22% bump
– SQL Server: 18% bump

SELECT *
FROM t1, t2 WHERE…

Query Optimizer

Classic Query Optimizers
● Cardinality estimation models

– Histograms
– Uniformity
– MFVs

● Cost models
– Polynomials
– Hand tuned

● DP Search
– NP-Hard

Cardinality
Estimation

DP Search

Cost
Model

Query Optimization

Q Optimizer

Query Optimization

Q Optimizer

Query Optimization

Q Optimizer Engine

Query Optimization

Q Optimizer Engine

Result

Query Optimization

Q Optimizer Engine

ResultLatency

Query Optimization

Q Optimizer Engine

ResultLatency

Previous Approach: Neo

Q Engine

ResultLatency

Neo: A Learned Query Optimizer. VLDB ‘19

Neo

Neo
● Neo is first to show we can have all learned

everything.
– No cost models, cardinality estimation or exponential

search.

● Deep connection between DRL and standard
query optimization techniques

● Beat commercial systems

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep Reinforcement Learning
Traditional Cost Model

A cost function C which
estimates the intermediate
cost of plan

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

C: 1

C: 2

C: 1

C: 5

C: 6

C: 9

C: 3

C: 7

C: 8

Deep Reinforcement Learning
Traditional Cost Model

A cost function C which
estimates the intermediate
cost of plan

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

C: 1

C: 2

C: 1

C: 5

C: 6

C: 9

C: 3

C: 7

C: 8

Deep Reinforcement Learning
Traditional Cost Model

A cost function C which
estimates the intermediate
cost of plan

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

C: 1

C: 2

C: 1

C: 5

C: 6

C: 9

C: 3

C: 7

C: 8

Deep Reinforcement Learning
Traditional Cost Model

A cost function C which
estimates the intermediate
cost of plan

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

C: 1

C: 2

C: 1

C: 5

C: 6

C: 9

C: 3

C: 7

C: 8

Deep Reinforcement Learning
Traditional Cost Model

A cost function C which
estimates the intermediate
cost of plan

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

C: 1

C: 2

C: 1

C: 5

C: 6

C: 9

C: 3

C: 7

C: 8

Deep Reinforcement Learning
Traditional Cost Model

A cost function C which
estimates the intermediate
cost of plan

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

C: 1

C: 2

C: 1

C: 5

C: 6

C: 9

C: 3

C: 7

C: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Of course, there’s no Q(·).

… so we will learn an
approximation, QU

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Value Iteration

Neo

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o

rm
a

liz
e

d
 L

a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo

Neo

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o

rm
a

liz
e

d
 L

a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo

$1
00

 b
ill

io
n

co
m

pa
ny

Neo

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o

rm
a

liz
e

d
 L

a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo

$1
00

 b
ill

io
n

co
m

pa
ny

1
G

P
U

This Ain’t Mario
Neo worked great on average…

But sometimes picked terrible plans.

Unlike most RL problems, doing
worse takes longer. Makes sample
inefficient methods even worse.

How do traditional optimizers
compare?

This Ain’t Mario
Neo worked great on average…

But sometimes picked terrible plans.

Unlike most RL problems, doing
worse takes longer. Makes sample
inefficient methods even worse.

How do traditional optimizers
compare?

Introducing Bao
● Bao: Bandit optimizer
● By steering a traditional

query optimizer, Bao:
– Outperforms after 1 hour
– Reduces 99% latency
– Adapts to changes in

workload, schema, and
data.

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query.

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Try disabling loop join
> ...

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Try disabling loop join
> Huge improvement

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Try disabling loop join
> Huge improvement

Apply this hint globally
> …

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Try disabling loop join
> Huge improvement

Apply this hint globally
> … other regressions

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Try disabling loop join
> Huge improvement

Apply this hint globally
> … other regressions

Undo that, need local hints. Now what?

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Try disabling loop join
> Huge improvement

Apply this hint globally
> … other regressions

Opt 1: Apply the hint to every instance of the query

Undo that, need local hints. Now what?

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Try disabling loop join
> Huge improvement

Apply this hint globally
> … other regressions

Opt 1: Apply the hint to every instance of the query

Opt 2: Set as default, find regressions, add hints to those queries

Undo that, need local hints. Now what?

Query Hints

16b 24b
JOB Query

0

20

40

60

Qu
er

y
la

te
nc

y
(s

ec
on

ds
)

60.2s

0.4s

21.2s 19.7s

PostgreSQL
PostgreSQL (no loop join)

Slow query. Run EXPLAIN.
> Loop join plan,
> Low selectivity

Try disabling loop join
> Huge improvement

Apply this hint globally
> … other regressions

Opt 1: Apply the hint to every instance of the query

Opt 2: Set as default, find regressions, add hints to those queries

Opt 3: Give up

Undo that, need local hints. Now what?

Bao
● Bao automatically determines the right hint to use.

● Consider different hints as arms in a contextual multi-
armed bandit

Q

Bao
● Bao automatically determines the right hint to use.

● Consider different hints as arms in a contextual multi-
armed bandit

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

Bao
● Bao automatically determines the right hint to use.

● Consider different hints as arms in a contextual multi-
armed bandit

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

20

25

18

Predicted Performance

Bao
● Bao automatically determines the right hint to use.

● Consider different hints as arms in a contextual multi-
armed bandit

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

20

25

18

Predicted Performance

E
xecution

Bao
● Bao automatically determines the right hint to use.

● Consider different hints as arms in a contextual multi-
armed bandit

(,)Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

20

25

18

Predicted Performance

E
xecution

Merge plan 38

Actual
Latency

Bao
● Bao automatically determines the right hint to use.

● Consider different hints as arms in a contextual multi-
armed bandit

(,)Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

20

25

18

Predicted Performance

E
xecution

Merge plan 38

Actual
Latency

Model Training

Predictive Model
● Bao needs a good predictive model.
● Problem: Query plans have a tree structure.
● Solution: flatten the tree into a vector and

engineer some features

A

⨝

B

⨝

C

Predictive Model
● Bao needs a good predictive model.
● Problem: Query plans have a tree structure.
● Solution: flatten the tree into a vector and

engineer some features

A

⨝

B

⨝

CThis is not normally how
machine learning is effective.

What makes ML good?

Convolution
Neural Networks

(CNNs)

Attention
mechanisms

F
C

 Layer

F
C

 Layer

What makes ML good?

INDUCTIVE BIAS

Convolution
Neural Networks

(CNNs)

Attention
mechanisms

F
C

 Layer

F
C

 Layer

What makes ML good?

INDUCTIVE BIAS

Convolution
Neural Networks

(CNNs)

Attention
mechanisms

F
C

 Layer

F
C

 LayerMachine learning works
when the model structure

matches
the underlying structure of the task.

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Sort

Sort

Sort

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Sort

Sort

Sort

“Many stacked sort
operators – possibly
avoids a resort.”

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

“APPEARS_IN” is
presorted on disk –
should use a sort
instead of a hash.

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

“APPEARS_IN” is
presorted on disk –
should use a sort
instead of a hash.

Experts examine local structure first,
then look to higher level features.

Tree Convolution

hash?

sort? 0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2

0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2

0

0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2

0

0 0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2

0 0

0 0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

sort?

0 B?

0

2 0

0 0

Hash

Sort C

A B

Detects a merge join with B on the right

What makes ML good?

Fundamental structure is a query
plan tree.

=> Tree convolution neural
networks

https://ryan.cab/neo
https://ryan.cab/treeconv

A

⨝

B

⨝

C

D

⨝

F

⨝

⨝

A B

https://ryan.cab/neo
https://ryan.cab/treeconv

Training
● Option 1: Use a giant query log and train /

continuously redeploy the model.
– “Easy,” but doesn’t adapt.

● Option 2: Periodically retrain the model online
using Thompson sampling.

Exploration & Exploitation
● How do we balance exploration (new policies)

with exploitation (doing what we know works)?

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

9

25

18

Predicted Performance

Exploration & Exploitation
● How do we balance exploration (new policies)

with exploitation (doing what we know works)?

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

9

25

18

Predicted Performance

Exploitation: pick the lowest.

Exploration & Exploitation
● How do we balance exploration (new policies)

with exploitation (doing what we know works)?

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

9

25

18

Predicted Performance

Exploitation: pick the lowest.
Exploration: choose randomly.

Exploration & Exploitation
● How do we balance exploration (new policies)

with exploitation (doing what we know works)?

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

9

25

18

Predicted Performance

+ fuzz factor

+ fuzz factor

+ fuzz factor

Exploitation: pick the lowest.
Exploration: choose randomly.

Exploration & Exploitation
● How do we balance exploration (new policies)

with exploitation (doing what we know works)?

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

9

25

18

Predicted Performance

+ fuzz factor

+ fuzz factor

+ fuzz factor

Exploitation: pick the lowest.
Exploration: choose randomly.

Exploration & Exploitation
● How do we balance exploration (new policies)

with exploitation (doing what we know works)?

Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

9

25

18

Predicted Performance

+ fuzz factor

+ fuzz factor

+ fuzz factor

Exploitation: pick the lowest.
Exploration: choose randomly.

Exploration & Exploitation
● How do we balance exploration (new policies)

with exploitation (doing what we know works)?

Q

Loop plan

Hash plan

Merge
plan

Traditional Query Optimizer

9

25

18

Predicted Performance

+ fuzz factor

+ fuzz factor

+ fuzz factor

Exploitation: pick the lowest.
Exploration: choose randomly.

With Thompson sampling,
always pick the lowest.

BUT

We move the “fuzz factor” into the model itself
in a way that respects certainty

Thompson Sampling
● An old, well-studied algorithm for balancing

exploration and exploitation.

Thompson Sampling
● An old, well-studied algorithm for balancing

exploration and exploitation.

model weights = E[P(model weights | data)]
Usual ML training

 (exploitation)

Thompson Sampling
● An old, well-studied algorithm for balancing

exploration and exploitation.

model weights = E[P(model weights | data)]
Usual ML training

 (exploitation)

model weights = sample P(model weights)
Pick a random model

 (exploration)

Thompson Sampling
● An old, well-studied algorithm for balancing

exploration and exploitation.

model weights = E[P(model weights | data)]
Usual ML training

 (exploitation)

model weights = sample P(model weights)
Pick a random model

 (exploration)

model weights = sample P(model weights | data)
Sample model weights
 (Thompson Sampling)

Extensibility
● New cardinality estimators can be easily added as

features
– Bao automatically incorporates them into decision making

● New optimization strategies can be added
– Number of arms is exponential, so some care needed
– Possibly easier than integrating into a traditional optimizer

Experimental Highlights

Experiment Highlights

Corp IMDb Stack
Dataset

0

200

400

600

800

1000
Co

st
 (c

en
ts

)

Corp IMDb Stack
Dataset

0

200

400

600

800

1000

Ti
m

e
(m

)

Bao
PostgreSQL

Bao handles dynamic
workloads, schema,
and data.

Microsoft SCOPE
● Bao adopted by Microsoft for SCOPE system
● 5+ PB analytic database

Collaborators

Tim Kraska, Olga Papaemmanouil, Mohammad Alizadeh, Justin Gottschlich, Nesime Tatbul, Bailu Ding, Sudipto Das, Wentao Wu, James Storer,
Antonella DiLillo, Pari Negi, Hongzi Mao, Chi Zhang, Alex van Renen, Sanchit Misra, Nadia Chepurko, Emanuel Zgraggen,
Andreas Kipf, Amadou Ngom, Sofiya Semenova, Raul Castro Fernandez, Solomon Garber, Jialin Ding, Anat Kleiman

You?

Next Steps
● Ongoing collaboration: SageDB

– Integrating many components under one roof

● Learned query “superoptimization”
– Program synthesis and Bayes optimization

● Learned systems beyond on the RDBMS

Ryan Marcus
● Find me online: https://ryanmarc.us
● Twitter: @RyanMarcus
● Mastodon: RyanMarcus@discuss.systems
● Email: rcmarcus@seas.upenn.edu
● Actively seeking students and collaborators!
● Slides: https://rm.cab/bu23

https://ryanmarc.us/
mailto:rcmarcus@seas.upenn.edu
https://rm.cab/bu23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 88
	Slide 89
	Slide 90
	Slide 91

