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Learned Systems
● Claim: hardware & app diversity growing faster than 

we can design systems
● Approach: build instance-optimized, learned systems 

that automatically…
– Invent new approaches to solving the user’s problem
– Adapt to the user’s workload & hardware
– Understands the user’s intention

Gottschlich et al. "The three pillars of machine programming." MAPL@SIGPLAN. 2018.



  

This Talk
● Why learn a query optimizer?
● Brief description of Neo, our first attempt.
● Key ideas in Bao, our second attempt.



  

Query Optimization
● Essentially: translate 

complex requests for 
information into fast 
programs.

● Ex: find all movies 
with Scarlett 
Johansson produced 
by Sony

a_id name YOB
  1  Scarl  84
  2  BradP  63
  3  JonTr  54
      …

ACTOR

f_id name RAT
  1  Her    86
  2  Aveng  81
  3  PulpF  93
      …

FILM

a_id f_id
  1    1
  1    2
  3    3
     …

APPEARS_IN

c_id name
  1  Sony
  2  Fox
  3  MGM
    …

COMPANY

c_id f_id
  1    1
  2    2
  3    2
     …

PRODUCED



  

Query Optimization
● Find all movies with Scarlett Johansson 

produced by Sony.
● Logically, what we want is to filter:

ACTOR  APPEARS_IN  FILM  ⋈ ⋈ ⋈
PRODUCED  ⋈ COMPANY

● Physically, I have a lot of options...



  

Query Optimization

a_id name YOB
  1  Scarl  84
  2  BradP  63
  3  JonTr  54
      …

ACTOR

f_id name RAT
  1  Her    86
  2  Aveng  81
  3  PulpF  93
      …

FILM

a_id f_id
  1    1
  1    2
  3    3
     …

APPEARS_IN

c_id name
  1  Sony
  2  Fox
  3  MGM
    …

COMPANY

c_id f_id
  1    1
  2    2
  3    2
     …

PRODUCED

ACTOR APPEARS_IN

FILM

PRODUCED

COMPANY

⋈

Find all movies with SJ. Then, filter those by movies produced by Sony.

⋈

⋈

⋈



  

Query Optimization

a_id name YOB
  1  Scarl  84
  2  BradP  63
  3  JonTr  54
      …

ACTOR

f_id name RAT
  1  Her    86
  2  Aveng  81
  3  PulpF  93
      …

FILM

a_id f_id
  1    1
  1    2
  3    3
     …

APPEARS_IN

c_id name
  1  Sony
  2  Fox
  3  MGM
    …

COMPANY

c_id f_id
  1    1
  2    2
  3    2
     …

PRODUCED

Find all Sony movies. Then, filter by those movies with SJ. 

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈



  

Query Optimization

Find all Sony movies, find all SJ movies, take the intersection.

∩

COMPANY PRODUCED

FILM⋈

⋈

ACTOR APPEARS_IN

FILM⋈

⋈



  

Query Optimization
● # plans follows 

Catalan numbers
● At n = 19, more than 

2^32 plans



  

Classic Query Optimizers
● Transform SQL into a query plan
● HUGE effort!

– 42K LOC in PG
– 1M+ SQL Server
– 45-55 FTEs, Oracle (~ $5mil/year)

● Requires per DB tuning
– PG: 15% bump
– Oracle: 22% bump
– SQL Server: 18% bump

SELECT * 
FROM t1, t2 WHERE… 

Query Optimizer



  

Classic Query Optimizers
● Cardinality estimation models

– Histograms 
– Uniformity
– MFVs

● Cost models
– Polynomials
– Hand tuned

● DP Search
– NP-Hard

Cardinality
Estimation

DP Search

Cost
Model



  

Query Optimization

Q Optimizer
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Q Optimizer



  

Query Optimization

Q Optimizer Engine
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ResultLatency



  

Query Optimization

Q Optimizer Engine

ResultLatency




  

Previous Approach: Neo

Q Engine

ResultLatency

Neo: A Learned Query Optimizer. VLDB ‘19 

Neo




  

Neo
● Neo is first to show we can have all learned 

everything.
– No cost models, cardinality estimation or exponential 

search.

● Deep connection between DRL and standard 
query optimization techniques

● Beat commercial systems



  

Deep Reinforcement Learning
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Deep Reinforcement Learning
Traditional Cost Model

A cost function C which 
estimates the intermediate 
cost of plan
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Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5
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Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best 
possible latency achievable 
from that state.

Of course, there’s no Q(·).

… so we will learn an 
approximation, QU

Q: 3

Q: 5
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Q: 6

Q: 9

Q: 3

Q: 7

Q: 8



  

Value Iteration
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This Ain’t Mario
Neo worked great on average…

But sometimes picked terrible plans.

Unlike most RL problems, doing 
worse takes longer. Makes sample 
inefficient methods even worse.

How do traditional optimizers 
compare?
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But sometimes picked terrible plans.

Unlike most RL problems, doing 
worse takes longer. Makes sample 
inefficient methods even worse.

How do traditional optimizers 
compare?



  

Introducing Bao
● Bao: Bandit optimizer
● By steering a traditional 

query optimizer, Bao:
– Outperforms after 1 hour
– Reduces 99% latency
– Adapts to changes in 

workload, schema, and 
data.
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Query Hints
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> Loop join plan, 
> Low selectivity

Try disabling loop join
> Huge improvement

Apply this hint globally
> … other regressions

Opt 1: Apply the hint to every instance of the query

Opt 2: Set as default, find regressions, add hints to those queries

Opt 3: Give up

Undo that, need local hints. Now what?



  

Bao
● Bao automatically determines the right hint to use.

● Consider different hints as arms in a contextual multi-
armed bandit

Q
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Bao
● Bao automatically determines the right hint to use.

● Consider different hints as arms in a contextual multi-
armed bandit

(         ,    )Q

Loop plan

Hash plan

Merge plan

Traditional Query Optimizer

20
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18

Predicted Performance

E
xecution

Merge plan 38

Actual 
Latency

Model Training



  

Predictive Model
● Bao needs a good predictive model.
● Problem: Query plans have a tree structure.
● Solution: flatten the tree into a vector and 

engineer some features

A

⨝

B

⨝

C



  

Predictive Model
● Bao needs a good predictive model.
● Problem: Query plans have a tree structure.
● Solution: flatten the tree into a vector and 

engineer some features

A

⨝

B

⨝

CThis is not normally how 
machine learning is effective.



  

What makes ML good?

Convolution 
Neural Networks 

(CNNs)

Attention 
mechanisms
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What makes ML good?

INDUCTIVE BIAS

Convolution 
Neural Networks 

(CNNs)

Attention 
mechanisms

F
C

 Layer

F
C

 LayerMachine learning works 
when the model structure

matches 
the underlying structure of the task.



  

Tree Convolution
● How do we come up 

with a good inductive 
bias for query plans?

Sort
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Tree Convolution
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with a good inductive 
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Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Sort

Sort

Sort

“Many stacked sort 
operators – possibly 
avoids a resort.”
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Tree Convolution
● How do we come up 

with a good inductive 
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100% 
requires rehash or 
resort.”

“APPEARS_IN” is 
presorted on disk – 
should use a sort 
instead of a hash.

Experts examine local structure first, 
then look to higher level features.



  

Tree Convolution

hash?

sort? 0

Hash

Sort C

A B

Detects a hash on top of a sort
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Tree Convolution

hash?

sort? 0
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Hash

Sort C

A B

Detects a hash on top of a sort



  

Tree Convolution

sort?

0 B?

0

2 0

0 0

Hash

Sort C

A B

Detects a merge join with B on the right



  

What makes ML good?

Fundamental structure is a query 
plan tree.

=> Tree convolution neural 
networks

https://ryan.cab/neo
https://ryan.cab/treeconv

A

⨝

B

⨝

C

D

⨝

F

⨝

⨝

A B

https://ryan.cab/neo
https://ryan.cab/treeconv


  

Training
● Option 1: Use a giant query log and train / 

continuously redeploy the model. 
– “Easy,” but doesn’t adapt.

● Option 2: Periodically retrain the model online 
using Thompson sampling.



  

Exploration & Exploitation
● How do we balance exploration (new policies) 

with exploitation (doing what we know works)?
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Exploration & Exploitation
● How do we balance exploration (new policies) 

with exploitation (doing what we know works)?

Q

Loop plan

Hash plan

Merge 
plan

Traditional Query Optimizer

9

25

18

Predicted Performance

+ fuzz factor

+ fuzz factor

+ fuzz factor

Exploitation: pick the lowest.
Exploration: choose randomly.

With Thompson sampling, 
always pick the lowest.

BUT

We move the “fuzz factor” into the model itself
in a way that respects certainty



  

Thompson Sampling
● An old, well-studied algorithm for balancing 

exploration and exploitation.
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Thompson Sampling
● An old, well-studied algorithm for balancing 

exploration and exploitation.

model weights = E[P(model weights | data)]
Usual ML training

 (exploitation)

model weights = sample P(model weights)
Pick a random model

 (exploration)

model weights = sample P(model weights | data)
Sample model weights
 (Thompson Sampling)



  

Extensibility
● New cardinality estimators can be easily added as 

features
– Bao automatically incorporates them into decision making

● New optimization strategies can be added
– Number of arms is exponential, so some care needed
– Possibly easier than integrating into a traditional optimizer



  

Experimental Highlights
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Bao
PostgreSQL

Bao handles dynamic 
workloads, schema, 
and data.



  

Microsoft SCOPE
● Bao adopted by Microsoft for SCOPE system
● 5+ PB analytic database



  

Collaborators

Tim Kraska, Olga Papaemmanouil, Mohammad Alizadeh, Justin Gottschlich, Nesime Tatbul, Bailu Ding, Sudipto Das, Wentao Wu, James Storer,
Antonella DiLillo, Pari Negi, Hongzi Mao, Chi Zhang, Alex van Renen, Sanchit Misra, Nadia Chepurko, Emanuel Zgraggen, 
Andreas Kipf, Amadou Ngom, Sofiya Semenova, Raul Castro Fernandez, Solomon Garber, Jialin Ding, Anat Kleiman  

You?



  

Next Steps
● Ongoing collaboration: SageDB

– Integrating many components under one roof

● Learned query “superoptimization”
– Program synthesis and Bayes optimization

● Learned systems beyond on the RDBMS



  

Ryan Marcus
● Find me online: https://ryanmarc.us
● Twitter: @RyanMarcus
● Mastodon: RyanMarcus@discuss.systems
● Email: rcmarcus@seas.upenn.edu 
● Actively seeking students and collaborators!
● Slides: https://rm.cab/bu23

https://ryanmarc.us/
mailto:rcmarcus@seas.upenn.edu
https://rm.cab/bu23
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