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FaaS

Containers

CONTAINER

CONTAINER

OPERATING SYSTEM

HARDWARE

write and update a piece of code on the fly

executed in response to certain events like just a click
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Why was FaaS chosen over other Cloud Services

Researchers ran few experiments for this using VM and Workers




laaS vs FaaS

Lack of control over scheduling
of functions.

Communication between
function invocation.
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Figure 1: Comparison of cloud architectures.

" | What are the limitations of FaaS?




What is serverless?

Ex: GCP, Amazon
services, Azure,
IBMwhisk

Is serverless really server less?

distribution of data
~among different nodes

The Serverless: The Future of the
Internet
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Google Cloud Platform 2e Geekflare

< VM instance details »" EDIT ) RESET

© gf-lab
Remote access
Enable connecting to serial ports

Instance Id
5025139990781714479

Machine configuration

Machine family

General-purpose  Compute-optimized Memory-optimized

Machine types for common workloads, optimized for cost and flexibility

Series

E2 >

Keeping the infrastructure
as simple as possible

CPU platform selection based on availability

Machine type
e2-small (2 vCPU, 2 GB memory) -

;< -~ VvCPU Memory GPUs
v 1 shared core 2GB -

CPU platform and GPU

Reservation

Airtomaticallv choonce



Auto-scaling mode

Auto-scale -

Autoscaling metrics
Use metrics to determine when to autoscale the group.
Autoscaling policy and target utilisation E2

Metric type

CPU utilisation -

Target CPU utilisation
| s0f %

Done Cancel

-+ Add new metric

Cool-down period
Specify how long to wait for a new instance before taking its metrics into account.
Cool-down period [

60 seconds
Minimum number of instances M:ﬁmum number of instances
| 1 | 10

® 10 maximise availability, the minimum number of instances should be at
least equal to the number of zones. Additional instances will be placed in




LAMBADA

Uses only serverless components to
overcome limitations of FaaS.

............................................................

Answers ad-hoc queries on Cold Data in
interactive query latency!

2x Cheaper and 1x Faster than normal QaaS




Goal: To use solely existing serverless
components.

Data-parallel
Query Plans

Serverless
Workers
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Challenges in Existing Serverless Paradigm

~

1. | Balancing cost of reading time and performance

Cloud Storage_/@:
Scan Operator

2. Delays in start up time of worker functions

Tree Based -(-)-
Invocation
Strategy

3. Efficient data transfer between workers and driver

Exchange :@:
Operator




What is the challenge with reading the data?




Cloud Storage Scan Operator

The cloud storage scan operator is a mechanism used to detect and prevent malicious content from being uploaded
or stored in cloud storage systems. This operator is designed to scan files that are being uploaded to cloud storage
and identify any potential security threats.

The paper examines the performance and cost of accessing S3 from serverless workers, and uses
microbenchmarks to evaluate the download speeds of large and small files from S3 into serverless workers

However,the memory size of the workers has an influence on the network bandwidth because the cloud provider
allocates CPU resources to each function that is proportional to its memory size.The Author suggests that using
multiple concurrent connections can maximize performance for short-running scans and hide latencies with
concurrent requests



Cloud Storage Scan Operator

Receives a request
from serverless

worker function Amasn S3
Retrieves relevant utsmr? distr ib‘l‘.lt‘ed
data from cloud |(€———— ACHIGUOS. O
parallel

storage system

!

Returns the extracted
data to the serverless
workers

(i) Workflow of scan operator

scanning/filtering
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Overall Analysis: Size of each request is directly proportional to cost of scan and inversely proportional
to the number of requests made
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Figure 5: Impact of the chunk size on scan characteris-

tics.

Scan bandwidth [MB/s]

Overall Analysis:

3.4x
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I 1 connections

B 2 connections |

I 4 connections
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Request costs [USD]

Chunk size [MiB]

Smaller reads increase cost but
can be supported using several
inflight methods.

Larger chunk size can result in
higher throughput but might result
in higher cost if few requests are
made to S3.



CSV

What are different kinds of file formats?

Parquet

Column-Oriented data on disk

Led Zeppelin IV  Houses of the Holy Physical Graffiti 11/08/1971 03/28/1973

02/24/1975



Parquet File format

Row Group

Col 1
Ehrse b 2 Column Chunk Column 3
Col2h Col2e

Page Header

File Metadata

Page
- Metadata

- R Values
- D Values

- ENCODED




Compression methods

Category LZO GZIP Snappy
Comepression size Medium Smallest Medium
Compression speed Fast Slow Fastest (> LZO)
Decompression speed Fastest (> Snappy) Slow Fast
Frequent of data usage More frequent (hot) Less frequent (cold) More frequent (hot)
Splitable Yes No Yes
Best For General usage Long term storage General usage (> LZO)
CSV vs Parquet
File Format Query Time (sec)  Size (GB)
Ccsv 2892.3 437.46
Parquet: LZO 50.6 556
7Parquet: Uncompressea 7 43.4 1387.5;
Parquet: GZIP 403 36.78

Parquet: Snappy 28.9 54.83



Parquet Scan Operator
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Identify how we could achieve maximum bandwidth utilization on small files during Scan operation?




3. Downloading
multiple row groups at
the same time




Evaluations: Scan Operators



Dataset and Methodology

Lambada vs Google BigQuery vs Amazon Athena

Performance Cost

Scale Factor(SF) of 1k is equal to 502 GiB

TPC-H B h k
C enchmar dataset

dbgen is modified to generate only integers as Lambada does not support @




Scan Heavy Queries

Two Scan Heavy TPC-H Queries

/\_

Q1: Selects 98% of the Relation and uses Q6: Selects 2% of the Relation and uses
seven attributes four attributes

Query 1 Query 6

SELECT
1_returnflag,
1_linestatus,

SELECT
sum(l_extendedprice * 1_discount) as revenue

sum(l_quantity) as sum _gty, FROM

sum(1l_extendedprice) as sum base_price, lineitem

sum(1l_extendedprice * (1 - 1 _discount)) as sum disc_price, WHERE

sum(1l_extendedprice * (1 - 1 _discount) * (1 + 1_tax)) as sum_charge, 1 shipdate >= date '1994-01-01"'

avg(l_quantity) as avg_gty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,

AND 1 _shipdate < date '1994-01-01' + interval 'l' year
AND 1_discount between 0.06 - 0.01 AND 0.06 + 0.01

count(*) as count_order AND 1 _quantity < 24;
FROM

lineitem
WHERE

1_shipdate <= date '1998-12-01' - interval '90' day
GROUP BY

1_returnflag,
1 linestatus
ORDER BY
1_returnflag,
1_linestatus;




TPC-H Queries

Query 1

SELECT
1_returnflag,
1_linestatus,
sum(1l_quantity) as sum_gty,
sum(1l_extendedprice) as sum_base_price,
sum(1l_extendedprice * (1 - 1 _discount)) as sum disc_price,
sum(l_extendedprice * (1 - 1l _discount) * (1 + 1_tax)) as sum_charge,
avg(l_quantity) as avg_gty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order
FROM
lineitem
WHERE
1_shipdate <= date '1998-12-01' - interval '90' day
GROUP BY
1_returnflag,
1 _linestatus
ORDER BY
1_returnflag,
1_linestatus;

Query 6

SELECT
sum(l_extendedprice * 1_discount) as revenue
FROM
lineitem
WHERE
1_shipdate >= date '1994-01-01'
AND 1 _shipdate < date '1994-01-01' + interval 'l' year
AND 1_discount between 0.06 - 0.01 AND 0.06 + 0.01
AND 1 _quantity < 24;

Q1: Selects 98% of the Relation and uses
seven attributes

Q6: Selects 2% of the Relation and uses
four attributes




Effect of Worker Configuration

This influences the
number of CPU cycles

v, O EOltd the functions can use
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0] B

Cost [¢] F: Number of files that each

worker can process

(a) F = 1, varying M.




Effect of Worker Configuration
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Effect of Worker Configuration
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Comparison with Other QaaS Systems

b_\\_.l E: Google BigQuery E Amazon Athena




Comparison with Other QaaS Systems - Query 1
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[ @@ Where would be the ideal place for the points to lie in this graph?




Comparison with Other QaaS Systems - Query 6
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Comparison wit

n Other QaaS Systems

Running time

Compared to Amazon Athena, Lambada
4x Faster for Q1 (SF 1k)
On par for Q6 (SF 1k)
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(a) Q1, SF 1k. (b) Q1, SF 10k.

26x and 15x respectively (SF 10k)

Lambada is cheaper than both
systems
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End to End Workloads
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Challenges in Existing Serverless Paradigm

1. Balancing cost of reading time and performance

2. Delays in start up time of worker functions

Efficient data transfer between workers and driver

~

Cloud Storage_/@:
Scan Operator

Tree Based -(-)-
Invocation
Strategy

Exchange :@:
Operator
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Lambada Two-level Invocation

How does this work?

/ﬁ[le....], input data
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Challenges in Existing Serverless Paradigm

~

Cloud Storage_/@:

1. Balancing cost of reading time and performance Scan Operator
Tree Based -(-)-
2. Delays in start up time of worker functions Invocation
Strategy
3. Efficient data transfer between workers and driver SN @

Operator




Exchange Operators

Used in exchanging data among workers and workers and drivers



Exchange Operator

ANNVIAOVE)\ —

Lambda Lambda Lambda Lambda Lambda Lambda Lambda Lambda
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A A4 A4 A I
/o S i }
. 04 O 5
Amazon S3 Amazon SQS Amazon
DynamoDB

Shared Serverless Storage

Function in FaaS that is used for parallel processing

~




Exchange Operator

Worker A ~<—__

Driver

>~

" N N N N N N

Lambda Lambda Lambda Lambda Lambda Lambda Lambda
A A A A

A

N
o0
@

Amazon S3 Amazon SQS

I

Amazon
DynamoDB

Shared Serverless Storage

T

Worker B

What if worker A requires to exchange data with worker B for computation of some query?



Basic Exchange Algorithm (Single level)

Each worker s et
splits the data partition into a file Reads those files
int‘(’) B e 3 with own ID as 3 which have its ID
_ P source and ID of as receiver
P = total workers receiver

@ What could be the limitations of this approach?
@



Challenges with Basic Exchange Algorithm

What happens to the number of files if we
increase the number of workers?




Optimizations that reduces number of requests




Lambada Multi Level Exchange

Workers are divided into subsets

W



Lambada Multi Level Exchange

Each worker performs two exchange

Vertical Exchange Horizontal Exchange




Optimizations that reduces number of requests




Lambada Write Combining

Writing all partitions into one
file

Receiver only has to read a
part of file

Row groups in parquet files




Lambada Write Combining

Amount of data that needs to be read is reduced — Significant
Performance Improvement




Evaluations: Exchange
Operators



Performance of Exchange Operators in Lambada

Experiment 1: 100GB Dataset

Implementation Main Memory of Workers
Locus 1536 MB
Qubole 1536 MB
Pocket 3008 MB

Lambada 2048 MB



Implementation

Pocket
Locus

Qubole

Lambada

Results

# of Workers Running Time
250 98s
Dynamic 80s - 140s
400 580s
250 22s
500 15s

1000 13s

Always On?

True
False

True

False



Implementation

Pocket
Locus

Qubole

Lambada

Results

# of Workers Running Time Always On?
250 | 98s | True
Dynamic 80s - 140s False
400 580s True
250 | 22s |
500 15s False
1000 13s

Lambada runs 5x faster than Pocket



Implementation

Pocket
Locus

Qubole

Lambada

Results

# of Workers Running Time

250 98s
Dynamic 80s - 140s
400 580s
250 22s
500 15s
1000 13s

N\

Always On?

True
False

True

False

multiple buckets to partition the input data — sublinear amount of requests

~



Results

Implementation | # of Workers Running Time Always On?
Pocket 250 98s True
Locus Dynamic | 80s - 140s | False
Qubole 400 580s True

250 | 22s |
Lambada 500 15s False
1000 13s

Locus uses dynamic number of workers, but even with 250 workers Lambada is faster



Implementation

Pocket
Locus

Qubole

Lambada

Results

# of Workers Running Time
250 98s
Dynamic 80s - 140s
400 580s
250 22s
500 15s
1000 13s

Leads to wastage of resources

(4

Always On?

True

False

True

False



Evaluation: Performance of Exchange Operators in
Lambada

Experiment 2: 1TB Dataset

Locus Lambada
Baseline: _ )
e Compared with Locus (1TB) Running Time | 39s 565
Cost High Low

Locus uses VM-based fast storage for intermediate results which is expensive but fast



How do stragglers impact the performance of
Lambada®?

Wait a minute!
Who is a straggler?

Straggler: a worker that takes significantly longer
than other workers to complete its tasks.



Fastest running time of each phase for any worker as a fraction of end to end latency
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1 TB Workload

4% Round 1 write £4% Round 2 write
BB Round 1 read == Round 2 read
Bl Readinput e Fastest worker
Bl Waiting time

Running time [%]

Fastest worker takes around 85% of the total time



3 TB Workload

4% Round 1 write £4% Round 2 write
BB Round 1 read == Round 2 read
Bl Readinput e Fastest worker
Bl Waiting time

Running time [%]

More than 50% of the total run time is due to stragglers
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Fastest running time of each phase for any worker as a fraction of end to end latency

[
o
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o
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Running time [%]
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1TB 3TB

Stragglers impact 3TB workload more than 1TB



Distribution of the running time of each worker ordered by increasing running time

5% Round 1 write +5% Round 2 write

% Round 1 wait -8 Round 2 wait )'E' Round 1 write %4+ Round 2 write
I8 Round 1 read =7 Round 2 read . a
BN Readinput e SCsESea 48 Round 1 wait 48 Round 2 wait
Bl Waiting time
= o 15 -
= E
"; 50 ; 10 1 %‘—‘—'—""—’—“‘) .
[= E r— 7))
£ 5 2 2L
S 3 - - ()
€ 0 T o4 ; T GJ
0 500 1000 e g
Worker rank ] 10— === - -t
(a) 1B, 1250 workers. é g c
= 100 - E 51 ; §
E E o é 0 LT . - -| o 0 +r T T
@ 50 2401 0 500 1000 0 1000 2000
£ E20 Worker rank Worker rank
g o x o4 - ;
0 1000 2000 1TB 3TB

Worker rank
(b) 3 TB, 2500 workers.




Running time [s]

Distribution of the running time of each worker ordered by increasing running time

4% Round 1 write £%% Round 2 write

48 Round 1 wait 48 Round 2 wait
Write phases have a stable run time
until the 95-percentile
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Running time [s]

Distribution of the running time of each worker ordered by increasing running time

4% Round 1 write %% Round 2 write

48 Round 1 wait 48 Round 2 wait
Wait time dominates the execution time
for the larger dataset — tail latencies
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Conclusion



Interesting Parts




Missing Parts




Conclusions

Data analytics on serverless computing is technically possible and economically viable
Tree-based invocation of workers for fast startup

Design for scan operators that balances cost and performance of cloud storage

Purely serverless exchange operator

Lambada can answer queries on more than 1TB of data in about 15 s,






