
Pump Up the Volume: Processing 
Large Data on GPUs with Fast 
Interconnects
Team members:  Xiao Zhang 

  Chen Zhu 
  Ran Wei 
  Xingjian Zhang



What is a GPU? Graphics Processing Unit

What can we see from the 
right picture?

DRAM: main memory. 
L1/L2/L3 Cache: high speed cache. 

Control: control unit. 
Core: computation unit

https://cvw.cac.cornell.edu/GPUarch/gpu_characteristics



How to apply GPU in database area?

Acceleration! But how?



How to apply GPU in database area?

Door

Transfer Data

Transfer Data

 Door

Problems!



Three fundamental limitations

1. Low interconnect bandwidth

2. Small GPU memory capacity

3. Coarse-grained cooperation of CPU and GPU 

Let’s see how we can break these limitations with the new technology.



State-of-art data channel: PCIe 3.0

General usage.

16GB/s

Limitation 1:
Low interconnect bandwidth



New technology: NVLink 2.0

Higher Speed!  Lower Latency!  Higher Bandwidth!

Special designed for GPU

75GB/s

Limitation 1? 
Low interconnect bandwidth?



NVLink 2.0

Interconnection between GPUs !

Interconnection between GPU and CPU is still PCIe 3.0



How could interconnection help us with 
the capacity problem?

1. Low interconnect bandwidth ——SOLVED

2. Small GPU memory capacity ?



Cache Coherence
NVLink 2.0

PCIe 3.0

Cache-Coherence: Data consistency. 

Limitation 2: Memory Capacity.



Three fundamental limitations

Coming up with NVLink 2.0 against PCIe
Let’s see exactly how can NVLink 2.0 improves everything above.

1. Low interconnect bandwidth

2. Small GPU memory capacity

3. Coarse-grained cooperation of CPU and GPU 



Fast Interconnect

In previous discussion, we see three main advantages of fast interconnect:

Higher Bandwidth & Lower Latency

Cache Coherence



Performance Comparison of Interconnects

Fast Interconnect: NVLink 2.0

GPU Interconnect: PCI-e 3.0

CPU Interconnect: Intel Ultra Path Interconnect (Point-to-Point Interconnect)

IBM X-Bus (Bus Interconnect)



Point-to-Point Interconnect vs Bus Interconnect

Device 1

Device 2 Device 3

Point-to-Point Interconnect

Device 1 Device 2 Device 3

Shared Channel

Bus Interconnect



Performance Comparison of Interconnects



Fast Interconnect

In previous discussion, we see three main advantages of fast interconnect:

Higher Bandwidth & Lower Latency

Cache Coherence

Limitation 1: Low interconnect bandwidth (Solved)

Limitation 2: Small GPU memory capacity



Data Transfer between CPU and GPU



8 Methods of Data Transmission



Data Transfer between CPU and GPU

Zero-copy

Using Unified Virtual Addressing (UVA)

Avoid any explicit copying of data

Still require additional software

Coherence

New approach enabled by NVLink 2.0

Based on Hardware Address Translation (HAT)

Totally managed in hardware

Limitation 2: Small GPU memory capacity



Scaling GPU Hash Joins to Arbitrary Data Sizes

VS

GPU CPU

Smaller memory Larger memory

https://www.iconfont.cn/search/index?searchType=icon&q=GPU



Example: Hash Joins

https://nan01ab.github.io/2019/03/Hash-Joins.html



Scaling the Probe Side to Any Data Size

Problem?

not enough GPU memory for the whole relations

Strategy 1.  Baseline approach

Relations: GPU
Hash tables: GPU



Scaling the Probe Side to Any Data Size

Problem?

Strategy 2.  Probe-side scalable approach: large relations

not enough GPU memory for the hash table

Relations: CPU
Hash tables: GPU



Scaling the Build Side to Any Data Size

Problem?

Strategy 3.  Build-side scalable approach: large relations & large hash tables

Relations: CPU
Hash tables: CPU



Scaling the Build Side to Any Data Size

Problem: 

Strategy 3.  Build-side scalable approach: large relations & large hash tables

random accesses in CPU memory is very slow



Hash Table Placement

Strategy 4.  Hybrid hash table: large relations & large hash tables

Relations: CPU
Hash tables: Virtual

● Amortize the harm of large hash tables

Allocating strategy:



Scaling-up using CPU and GPU

VS

GPU CPU

working unused



Scaling-up using CPU and GPU

GPU CPU

working working

co-process



Task Scheduling

changing throughput load imbalances

Morsel Batches for GPU
● High latency of scheduling work
● Higher processing rate of GPU

CPUs and GPUs 
● actively request for tuples
● work at the same time



Heterogenous Hash Table Placement

Relations: CPU
Hash tables: CPU
Co-process: Yes



Heterogenous Hash Table Placement

always speed up

Strategy 5.  Het strategy: both relations and hash tables are in CPU memory

Relations: CPU
Hash tables: CPU
Co-process: Yes



Heterogenous Hash Table Placement

Relations: CPU
Hash tables: CPU
Co-process: Yes

Relations: CPU
Hash tables: CPU
Co-process: No



Heterogenous Hash Table Placement

Strategy 4.  Hybrid hash table: relations are in CPU memory and hash tables are in virtual memory

Relations: CPU
Hash tables: CPU
Co-process: No



Heterogenous Hash Table Placement

Relations: CPU
Hash tables: CPU
Co-process: Yes

Relations: CPU
Hash tables: CPU
Co-process: No

Relations: CPU
Hash tables: GPU
Co-process: Yes



Heterogenous Hash Table Placement

Strategy 6.  GPU + Het strategy: relations are in CPU memory and a copy of hash tables is in every memory.

Relations: CPU
Hash tables: GPU
Co-process: Yes



Heterogenous Hash Table Placement

Relations: CPU
Hash tables: CPU
Co-process: Yes

Relations: CPU
Hash tables: CPU
Co-process: No

Relations: CPU
Hash tables: GPU
Co-process: Yes

Relations: GPU
Hash tables: GPU
Co-process: No



Heterogenous Hash Table Placement

Strategy 1.  Baseline approach: both relations and hash tables are in GPU memory

Relations: GPU
Hash tables: GPU
Co-process: No



Multi-GPU Hash Table Placement

Small hash table -> strategy 6. GPU + Het strategy

Large hash table -> strategy 7. Hybrid hash table in GPUs  (interleave the pages over all GPUs)

Advantages of only using multiple GPUs:
● Avoid computational skew
● Free CPU memory bandwidth
● Utilize the full bi-directional bandwidth of fast interconnects



Evaluation



Probe-Side Scaling

● Up to 2 GiB ⋈ 122 GiB

GPU
memory

Larger than GPU memory

Baseline of the CPU



Build-Side Scaling

● Up to 30  ⋈ 30 GiB with a 30 GIB has table = 90 Gib

Larger than GPU memory
Hash table in GPU memory



Build-Side Scaling

● Up to 30  ⋈ 30 GiB with a 30 GIB has table = 90 Gib

85%

18X



Build-Side Scaling

● Up to 30  ⋈ 30 GiB with a 30 GIB has table = 90 Gib

● Hybrid hash table spills to CPU memory
GPUs are able to operate on large, out-of-core data structures



Cooperative Co-processing



GPU+CPU Cooperation

Workload A: 2 GiB ⋈ 32GiB 
Workload B: 4 MiB ⋈ 32GiB 
Workload C: 7.8 GiB ⋈ 7.8GiB



Conclusion:

Explore in which ways fast interconnects benefit database:

● Out-of-core data sets
● Out-of-core data structures
● Fine-grained Cooperative co-processing


