
FASTER
A Concurrent Key-Value Store with In-Place Updates
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Requirements

Large State High Update Intensity Strong Temporal Locality

Optimized for Point Operations Analytics Readiness
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Distributed In-memory Storage Systems

In-place updates

Problems?

Cost Inefficient UtilizationNo Persistence

Parallelism
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Existing Key Value Stores

Blind Updates
Range Deletes
Range Scans

Point Queries
Read-Modify-Write

Few million updates per 
second

Persistence

Problems?
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Caching Systems

Point Queries

In memory External system for persistence

Problems?

Increased Latency and Overhead
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Design Philosophy

Faster point queries using 
concurrent hash index

Choosing how and when to perform 
expensive activities

In-place updates
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Lazy Synchronization: Epoch Protection
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Es = 0Et = 0Et = 1

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

<1, flush>

<1, flush>
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Es = 0Et = 0Et = 1Et = 2

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

<2, close>

<1, flush> <2, close>
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Es = Es = 1Et = 0Et = 1Et = 2
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Es = Es = Es = 2Et = 0Et = 1Et = 2
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Es = Es = Es = 2Et = 0Et = 1Et = 2Et = 3

Lazy Synchronization: Trigger Actions
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drain-list

<epoch, action>

<3, flush>

<3, flush>
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Es = 0Es = 1Es = 2Es = 3Et = 0Et = 1Et = 2Et = 3

Lazy Synchronization: Trigger Actions
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Es = 0Es = 1Es = 2Es = 3Et = 0Et = 1Et = 2Et = 3Et = 4

Lazy Synchronization: Trigger Actions
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Es = 0Es = 1Es = 2Es = 3Es = 4Et = 0Et = 1Et = 2Et = 3Et = 4

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>
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FASTER Architecture
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Hash Index

T1

T2

T3

T4

Threads

Array of 2^k buckets

Latch Free

Concurrent

Scalable

Resizable

Hash Bucket (s)
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Hash Bucket

… … … … … … …
Address to 

next bucket

64 B

Each bucket consist of seven 8 B hash buckets entries

One 8 B entry to serve overflow bucket pointer

Why 8 byte entry

48 bit

Header Key Value

Header Key Value

Header Key Value

Header Key Value
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Hash Bucket Entry

Tentative Tag Address

1 b 15 b 48 b

Meta

48 bit

Entry value 0 (zero)→Empty slot

Tentative →Used by Latch Free Two-phase Algorithm

Tag→May increase hashing resolution

Address→Physical/Logical record address

… … … … … … …
Address to next 

bucket

Why Keys are not 
part of Hash Index
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g1 g2 g3 g4
Address to 

next bucket
g1 g2 g3 g4

Address to 

next bucket

Hash Index Operations (Find)

T1 find G4
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g1 g2 g3 g4
Address to 
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Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

0

T                 Tag               Address

3
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g1 g2 g3 g4
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Hash Index Operations (Inserts)

T1 insert G5
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T2
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0 3
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In-Memory Key-Value Store

T1
Header Key ValueHeader Key Value

1004 1005

Insert Key = z, value = 
1M

Eval : h1(z) Eval : h1(z)  => 0 (offset)
Eval : h2(z)  => 3 (tag)

00      01     02    03
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In-Memory Key-Value Store

T1

Insert Key = z, value = 
1M

Eval : h1(z) Eval : h1(z)  => 0 (offset)
Eval : h2(z)  => 3 (tag)

Header Key Value

Header Key Value

1005

1004

D057C z 1M

1003
00      01     02    03

Same (offset, tag) value are 
organized as a reverse singly-linked-
list
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What If Data Larger than Memory?
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What If Data Larger than Memory?
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Handling Larger Data In FASTER

P-0    | P-1    | P-2    | P-3   | P-4    | P-
5

● Circular Buffer (Circular Queue)

When can we flush 
the Page on the disk

Do you see anything 
that could go wrong
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Handling Larger Data In FASTER

The log-structured allocator is a step in the 
correct direction but it comes at the cost of

- updating an atomic increment of the tail 
offset to create a new record

- copying data from the previous location
- atomic replacement of the logical 

address in the hash index
An append-only log grows fast with update-
intensive workloads making disk I/O a 
bottleneck.
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Handling Larger Data In FASTER

Read-Only MutableStable

Logical Address Action

Invalid New record at tail-end

< HeadOffset Issue Async IO Request

< ReadOnlyOffset Mutable copy at tail-end

< ∞ Update in-place

Disk Memory

Head ReadOnly Tail
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Lost Update Anomaly

Read-Only MutableStable

Logical Address Action

Invalid New record at tail-end

< Head Issue Async IO Request

< SafeReadOnly Add to pending list

< ReadOnly Mutable copy at tail-end

< ∞ Update in-place

22

Read-Only MutableStable

T1

T2

SafeReadOnly

Fuzzy region



Lag = 0 is an append only log

Handling Larger Data In FASTER
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Lag = buffer size  is an in-memory store

Handling Larger Data In FASTER
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90:10 division for good performance

Handling Larger Data In FASTER
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EVALUATIONS 

Throughput Memory 
budget  

Faster and  
HybridLog
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Setup and Workload

Machine – Dell PowerEdge R730 server

● 2 socket, 14 cores per socket, 2 hyper-

threads per core (56 Hyper Threads)

● 256GB RAM, 3.2TB FusionIO NVMe SSD

Modified YCSB-A workload

● 250 million distinct 8-byte keys,

values of 8 and 100 bytes

● Varying fraction of reads, blind updates, 

read-modify-writes

Baseline Systems

● In-memory structures: Intel TBB hashmap, 

Masstree

● Key-value store: RocksDB
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Throughput - Single and MultiThreaded

Single Thread Multi thread
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Scalability with number of Threads
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Throughput - Increasing Memory Budget
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Throughput - Append-only vs. Hybrid logs

Why hybrid log is better
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Conclusions
FASTER can “HAVE IT ALL”

Larger-Than-Memory Temporal locality

High Performance
(up to 160 million ops/sec)

Degrade gracefully
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