
FASTER
A Concurrent Key-Value Store with In-Place Updates

1

Requirements

Large State High Update Intensity Strong Temporal Locality

Optimized for Point Operations Analytics Readiness

2

Distributed In-memory Storage Systems

In-place updates

Problems?

Cost Inefficient UtilizationNo Persistence

Parallelism

3

Concurrency

Existing Key Value Stores

Blind Updates
Range Deletes
Range Scans

Point Queries
Read-Modify-Write

Few million updates per
second

Persistence

Problems?

4

Caching Systems

Point Queries

In memory External system for persistence

Problems?

Increased Latency and Overhead

5

Design Philosophy

Faster point queries using
concurrent hash index

Choosing how and when to perform
expensive activities

In-place updates

6

Faster is a concurrent latch-free key-value store that is designed for high
performance and scalability across threads.
Faster is a concurrent latch-free key-value store that is designed for high
performance and scalability across threads.
Faster is a concurrent latch-free key-value store that is designed for high
performance and scalability across threads.

What is FASTER?

T1

T3

7

T2

T4

Faster is a concurrent latch-free key-value store that is designed for high
performance and scalability across threads.
Faster is a concurrent latch-free key-value store that is designed for high
performance and scalability across threads.

What is FASTER?

T1

T3

7

Faster is a concurrent latch-free key-value store that is designed for high
performance and scalability across threads.

What is FASTER?

T1

T3

7

Lazy Synchronization: Epoch Protection

1 2 3 4 5Thread 1

1 2 3 4 5Thread 2

1 2 3 4 5Thread 3

1 2 3 4 5Thread 4

1 2 3 4 5Thread 5

E = 0

Et = 0

Es = 0

Et = 1Et = 2

Et = 0Et = 1

Et = 0Et = 1

Et = 0Et = 1

Et = 0Et = 1

E = 1E = 2

Es = 1

∀ T : Es < ET ≤ E

Time

8

Lazy Synchronization: Epoch Protection

1 2 3 4 5Thread 1

1 2 3 4 5Thread 2

1 2 3 4 5Thread 3

1 2 3 4 5Thread 4

1 2 3 4 5Thread 5

E = 0

Et = 0

Es =

Et = 1Et = 2Et = 3Et = 4

Et = 0Et = 1Et = 2Et = 3Et = 4

Et = 0Et = 1Et = 2Et = 3Et = 4

Et = 0Et = 1Et = 2Et = 3Et = 4

Et = 0Et = 1Et = 2Et = 3Et = 4

E = 1E = 2E = 3E = 4

Es =Es =Es =Es = 4

∀ T : Es < ET ≤ E

Time

8

Es = 0Et = 0Et = 1

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

<1, flush>

<1, flush>

9

Es = 0Et = 0Et = 1Et = 2

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

<2, close>

<1, flush> <2, close>

9

Es = Es = 1Et = 0Et = 1Et = 2

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

<2, close>

9

Es = Es = Es = 2Et = 0Et = 1Et = 2

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

9

Es = Es = Es = 2Et = 0Et = 1Et = 2Et = 3

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

<3, flush>

<3, flush>

9

Es = 0Es = 1Es = 2Es = 3Et = 0Et = 1Et = 2Et = 3

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

9

Es = 0Es = 1Es = 2Es = 3Et = 0Et = 1Et = 2Et = 3Et = 4

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

<4,checkpoint>

<4,checkpoint>

9

Es = 0Es = 1Es = 2Es = 3Es = 4Et = 0Et = 1Et = 2Et = 3Et = 4

Lazy Synchronization: Trigger Actions

1 2 3 4 5Thread 1

drain-list

<epoch, action>

9

FASTER Architecture

10

Hash Index

T1

T2

T3

T4

Threads

Array of 2^k buckets

Latch Free

Concurrent

Scalable

Resizable

Hash Bucket (s)
11

Hash Bucket

… … … … … … …
Address to

next bucket

64 B

Each bucket consist of seven 8 B hash buckets entries

One 8 B entry to serve overflow bucket pointer

Why 8 byte entry

48 bit

Header Key Value

Header Key Value

Header Key Value

Header Key Value

12

Hash Bucket Entry

Tentative Tag Address

1 b 15 b 48 b

Meta

48 bit

Entry value 0 (zero)→Empty slot

Tentative →Used by Latch Free Two-phase Algorithm

Tag→May increase hashing resolution

Address→Physical/Logical record address

… … … … … … …
Address to next

bucket

Why Keys are not
part of Hash Index

13

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Find)

T1 find G4

14

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Find)

T1 find G4

14

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Find)

T1 find G4

14

g1 g2 g3 g4
Address to

next bucket

Hash Index Operations (Find)

T1 find G4

14

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Delete)

T2 delete G4

15

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Delete)

T2 delete G4

15

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Delete)

T2 delete G4

15

g1 g2 g3 g4
Address to

next bucket

Hash Index Operations (Delete)

T2 delete G4

15

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

0

T Tag Address

3

Any Issue ?

16

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

0 3

Any Issue ?

16

T Tag Address

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

0 3

Any Issue ?

16

T Tag Address

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

T2

g3

0 3

Any Issue ?

16

T Tag Address

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

T2

g3

0 3

Any Issue ?

16

T Tag Address

g1 g2 g3 g4
Address to

next bucket
g1 g2 g3 g4

Address to

next bucket

Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

T2

g3

0 3

Any Issue ?

16

T Tag Address

g1 g2 g3 g4
Address to

next bucket

Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

g5

T1T2

g3g5

0 3

0 51

1

Any Issue ?

16

T Tag Address

g1 g2 g3 g4
Address to

next bucket

Hash Index Operations (Inserts)

T1 insert G5
T2 delete G3 & insert G5

T2

g3g5

0 3

0 5

Any Issue ?

16

T Tag Address

In-Memory Key-Value Store

T1
Header Key ValueHeader Key Value

1004 1005

Insert Key = z, value =
1M

Eval : h1(z) Eval : h1(z) => 0 (offset)
Eval : h2(z) => 3 (tag)

00 01 02 03

17

In-Memory Key-Value Store

T1

Insert Key = z, value =
1M

Eval : h1(z) Eval : h1(z) => 0 (offset)
Eval : h2(z) => 3 (tag)

Header Key Value

Header Key Value

1005

1004

D057C z 1M

1003
00 01 02 03

Same (offset, tag) value are
organized as a reverse singly-linked-
list

17

What If Data Larger than Memory?

18

What If Data Larger than Memory?

18

Handling Larger Data In FASTER

P-0 | P-1 | P-2 | P-3 | P-4 | P-
5

● Circular Buffer (Circular Queue)

When can we flush
the Page on the disk

Do you see anything
that could go wrong

19

Handling Larger Data In FASTER

The log-structured allocator is a step in the
correct direction but it comes at the cost of

- updating an atomic increment of the tail
offset to create a new record

- copying data from the previous location
- atomic replacement of the logical

address in the hash index
An append-only log grows fast with update-
intensive workloads making disk I/O a
bottleneck.

20

Handling Larger Data In FASTER

Read-Only MutableStable

Logical Address Action

Invalid New record at tail-end

< HeadOffset Issue Async IO Request

< ReadOnlyOffset Mutable copy at tail-end

< ∞ Update in-place

Disk Memory

Head ReadOnly Tail

21

Lost Update Anomaly

Read-Only MutableStable

Logical Address Action

Invalid New record at tail-end

< Head Issue Async IO Request

< SafeReadOnly Add to pending list

< ReadOnly Mutable copy at tail-end

< ∞ Update in-place

22

Read-Only MutableStable

T1

T2

SafeReadOnly

Fuzzy region

Lag = 0 is an append only log

Handling Larger Data In FASTER

23

Lag = buffer size is an in-memory store

Handling Larger Data In FASTER

23

90:10 division for good performance

Handling Larger Data In FASTER

23

EVALUATIONS

Throughput Memory
budget

Faster and
HybridLog

24

Setup and Workload

Machine – Dell PowerEdge R730 server

● 2 socket, 14 cores per socket, 2 hyper-

threads per core (56 Hyper Threads)

● 256GB RAM, 3.2TB FusionIO NVMe SSD

Modified YCSB-A workload

● 250 million distinct 8-byte keys,

values of 8 and 100 bytes

● Varying fraction of reads, blind updates,

read-modify-writes

Baseline Systems

● In-memory structures: Intel TBB hashmap,

Masstree

● Key-value store: RocksDB

25

Throughput - Single and MultiThreaded

Single Thread Multi thread

26

Scalability with number of Threads

27

Throughput - Increasing Memory Budget

28

Throughput - Append-only vs. Hybrid logs

Why hybrid log is better

29

Conclusions
FASTER can “HAVE IT ALL”

Larger-Than-Memory Temporal locality

High Performance
(up to 160 million ops/sec)

Degrade gracefully

30

	Slide 1: FASTER
	Slide 2: Requirements
	Slide 3: Distributed In-memory Storage Systems
	Slide 4: Existing Key Value Stores
	Slide 5: Caching Systems
	Slide 6: Design Philosophy
	Slide 7: What is FASTER?
	Slide 8: What is FASTER?
	Slide 9: What is FASTER?
	Slide 10: Lazy Synchronization: Epoch Protection
	Slide 11: Lazy Synchronization: Epoch Protection
	Slide 12: Lazy Synchronization: Trigger Actions
	Slide 13: Lazy Synchronization: Trigger Actions
	Slide 14: Lazy Synchronization: Trigger Actions
	Slide 15: Lazy Synchronization: Trigger Actions
	Slide 16: Lazy Synchronization: Trigger Actions
	Slide 17: Lazy Synchronization: Trigger Actions
	Slide 18: Lazy Synchronization: Trigger Actions
	Slide 19: Lazy Synchronization: Trigger Actions
	Slide 20: FASTER Architecture
	Slide 21: Hash Index
	Slide 22: Hash Bucket
	Slide 23: Hash Bucket Entry
	Slide 24: Hash Index Operations (Find)
	Slide 25: Hash Index Operations (Find)
	Slide 26: Hash Index Operations (Find)
	Slide 27: Hash Index Operations (Find)
	Slide 28: Hash Index Operations (Delete)
	Slide 29: Hash Index Operations (Delete)
	Slide 30: Hash Index Operations (Delete)
	Slide 31: Hash Index Operations (Delete)
	Slide 32: Hash Index Operations (Inserts)
	Slide 33: Hash Index Operations (Inserts)
	Slide 34: Hash Index Operations (Inserts)
	Slide 35: Hash Index Operations (Inserts)
	Slide 36: Hash Index Operations (Inserts)
	Slide 37: Hash Index Operations (Inserts)
	Slide 38: Hash Index Operations (Inserts)
	Slide 39: Hash Index Operations (Inserts)
	Slide 40: In-Memory Key-Value Store
	Slide 41: In-Memory Key-Value Store
	Slide 42: What If Data Larger than Memory?
	Slide 43: What If Data Larger than Memory?
	Slide 44: Handling Larger Data In FASTER
	Slide 45: Handling Larger Data In FASTER
	Slide 46: Handling Larger Data In FASTER
	Slide 47: Lost Update Anomaly
	Slide 48: Handling Larger Data In FASTER
	Slide 49: Handling Larger Data In FASTER
	Slide 50: Handling Larger Data In FASTER
	Slide 51: EVALUATIONS
	Slide 52: Setup and Workload
	Slide 53: Throughput - Single and MultiThreaded
	Slide 54: Scalability with number of Threads
	Slide 55: Throughput - Increasing Memory Budget
	Slide 56: Throughput - Append-only vs. Hybrid logs
	Slide 57: Conclusions

