
Sortedness-Aware Indexing

Aneesh Raman
aneeshr@bu.edu

Sortedness
Refers to the structure or order in data

inversions

runs

exchanges

unsortedp

items_out_of_place

adjacent_inversions

Sortedness measures

par radius

Quantifying Sortedness

Research Focus

sorting algos. have
adapted to pre-sortedness

can other components of a
data system exploit

intrinsic data ordering?

Indexes in Databases

organize
data

efficient
queries

5

The process of inducing “sortedness” to an
otherwise unsorted data collection

unstructured
data

structured
data

What if we already
have some structure?

What if we already
have some structure?

Near-sorted data

What if we already
have some structure?

Near-sorted data

⩬
treated same as
unstructured data!

Intermediate-Sortedness in Practice

Time Series

Stock market

9

Join/query

efficient reads fast writes

classical indexes carry
redundant effort!

In an Ideal Tree...

Standard ingestion

Bulk loading

Ideal ingestion

SortedScrambled Increasing data sortedness

In
ge
st
io
n
la
te
nc
y Pay less cost as data becomes more sorted

10

In an Ideal Tree...

Standard ingestion

Bulk loading

Ideal ingestion

SortedScrambled Increasing data sortedness

In
ge
st
io
n
la
te
nc
y Pay less cost as data becomes more sorted

11

Unexplored study
with sortedness

Is this possible?

Lack of testing
framework

No such existing
index design

The Benchmark on
Data Sortedness (BoDS)

Benchmark on Data Sortedness (BoDS)

BENCHMARK

Benchmarking
Suite

Variable Sortedness
Data Generator

+

13

Quantifying Data Sortedness

14

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish
total order

Quantifying Data Sortedness

6 7 8 9 10 1 2 3 4 5

15

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish
total order

Quantifying Data Sortedness

6 7 8 9 10 1 2 3 4 5

global disorder
16

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish
total order

Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9

17

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish
total order

Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9

local disorder
18

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish
total order

(K, L)-Sortedness Metric

1 8 3 4 5 6 7 2 9 10

#. unordered entries

max. displacement among unordered entries

= K

= L

[BenMoshe, ICDT 2011] 19

(e)(c) (c)

Differently Sorted Data

Is (K,L) Enough?

What if we want to
distribute the

unordered entries
differently?

(e)(c) (c)

Displacement (L) Distribution

𝐵(𝛼, 𝛽) bounded between [−𝐿, 𝐿]

22

Displacement (L) Distribution

𝛼 = 𝛽 = 1

23

𝐵(𝛼, 𝛽) bounded between [−𝐿, 𝐿]

Displacement (L) Distribution

𝛼 = 𝛽 = 1 𝛼 = 𝛽 = 2

24

𝐵(𝛼, 𝛽) bounded between [−𝐿, 𝐿]

Displacement (L) Distribution

𝛼 = 𝛽 = 1 𝛼 = 𝛽 = 2

25

𝐵(𝛼, 𝛽) bounded between [−𝐿, 𝐿]

𝛼 = 𝛽 = 0.5

Displacement (L) Distribution

𝛼 = 𝛽 = 1 𝛼 = 𝛽 = 2 𝛼 = 𝛽 = 0.5 𝛼 = 2, 𝛽 = 5

26

𝐵(𝛼, 𝛽) bounded between [−𝐿, 𝐿]

Supported Workloads

27

Type Workload
Data Loading Operations

Method % of data R-W ratio % of data

Insert
only

A Bulk
loading 100% - -

Mixed
reads &
writes

Supported Workloads

28

Type Workload
Data Loading Operations

Method % of data R-W ratio % of data

Insert
only

A Bulk
loading 100% - -

B Individual
inserts 100% - -

Mixed
reads &
writes

Supported Workloads

29

Type Workload
Data Loading Operations

Method % of data R-W ratio % of data

Insert
only

A Bulk
loading 100% - -

B Individual
inserts 100% - -

Mixed
reads &
writes

C - 0% 17%-83% 100%

Supported Workloads

30

Type Workload
Data Loading Operations

Method % of data R-W ratio % of data

Insert
only

A Bulk
loading 100% - -

B Individual
inserts 100% - -

Mixed
reads &
writes

C - 0% 17%-83% 100%

D Bulk
loading 80% 50%-50% 20%

Supported Workloads

Type Workload
Data Loading Operations

Method % of data R-W ratio % of data

Insert
only

A Bulk
loading 100% - -

B Individual
inserts 100% - -

Mixed
reads &
writes

C - 0% 17%-83% 100%

D Bulk
loading 80% 50%-50% 20%

E Individual
inserts 80% 50%-50% 20%

31

Supported Workloads

Type Workload
Data Loading Operations

Method % of data R-W ratio % of data

Insert
only

A Bulk
loading 100% - -

B Individual
inserts 100% - -

Mixed
reads &
writes

C - 0% 17%-83% 100%

D Bulk
loading 80% 50%-50% 20%

E Individual
inserts 80% 50%-50% 20%

32

Benchmarking Action

33

Metrics:
• Ingestion latency
• Overall operational
latency

Benchmarking Action

34

Data Setup:
• 16M K-V pairs (~ 4GB)
• Key = 4B, Payload =
252B

Metrics:
• Ingestion latency
• Overall operational
latency

Benchmarking Action

35

System Setup:
• AWS EC2 instance (t2.medium)
• 2 Intel Xeon CPU v4 @2.3GHz
• 4GB RAM, 40GB SSD

Data Setup:
• 16M K-V pairs (~ 4GB)
• Key = 4B, Payload = 252B

Metrics:
• Ingestion latency
• Overall operational latency

Benchmarking Action

36

Metrics:
• Ingestion latency
• Overall operational
latency

System Setup:
• AWS EC2 instance (t2.medium)
• 2 Intel Xeon CPU v4 @2.3GHz
• 4GB RAM, 40GB SSD

Data Setup:
• 16M K-V pairs (~ 4GB)
• Key = 4B, Payload =
252B

Default Index Setup:
• PostgreSQL (Unlogged
tables)

• B-tree on key (id_col)

Raw Ingestion Performance

0

10

20

30

40

100-1 50-1 25-1 5-1 1-1 0-0 1-5 1-10 1-25 1-50 1-100 100-10
0

In
se

rt
 l

at
en

cy
 (

mi
n)

K-L (%) sortedness combinations

Bulk loading Individual Inserts

37

increasing K increasing L

fully sorted scrambled

Raw Ingestion Performance
PostgreSQL cannot exploit data sortedness

38

0

10

20

30

40

100-1 50-1 25-1 5-1 1-1 0-0 1-5 1-10 1-25 1-50 1-100 100-10
0

In
se

rt
 l

at
en

cy
 (

mi
n)

K-L (%) sortedness combinations

Bulk loading Individual Inserts

increasing K increasing L

fully sorted scrambled

Mixed Workload Performance
3.2 M queries16 M inserts

0

30

60

90

120

150

0-0 1-1 5-5 10-10 100-100

La
te

nc
y/

op
er

at
io

n

K-L (%) sortedness combinations

Workload C Workload D Workload E

(𝜇
𝑠)

39

Column-Store Systems

40

Fundamental
design changes

Column-Store Systems

41

Fundamental
design changes

MonetDB

invalidated
by updates

Column-Store Systems

42

Fundamental
design changes

MonetDB

invalidated
by updates

Vertica

no live updates
to sorted column

Column-Store Systems

43

Fundamental
design changes

MonetDB

invalidated
by updates

Vertica Actian Vector

PDT similar
to b-trees

no live updates
to sorted column

The Sortedness-Aware
(SWARE) Paradigm

Key Ideas in SWARE Paradigm

opportunistic
bulk loading

increased fill
and split factor

Can be applied to any tree-index!

intelligent
buffering

SWARE Ingestions

...

B+-tree

700
-74

9

750
-79

9

800
-84

9

850
-91

0

870
-95

0

920
-99

1

890
-10

80

109
0-1

500

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages 650...

tail leaf node

non_overlapping pages

last_sorted_zone may move left/right
flush 3 pages

flush non-overlapping pages to tree

SWARE Ingestions

...

B+-tree

700
-74

9

750
-79

9

800
-84

9

850
-91

0

870
-95

0

920
-99

1

890
-10

80

109
0-1

500

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

non_overlapping_pages

last_sorted_zone may move left/right
flush 3 pages

flush non-overlapping pages to tree

bulk load page-by-page if in order

tail leaf node

SWARE Ingestions

...

B+-tree

700
-74

9

750
-79

9

800
-84

9

850
-91

0

870
-95

0

920
-99

1

890
-10

80

109
0-1

500

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

last_sorted_zone may move left/right

flush non-overlapping pages to tree

bulk load page-by-page if in order

tail leaf node

non_overlapping_pages

SWARE Ingestions

...

B+-tree

850
-91

0

915
-97

0

974
-10

30

103
2-1

088

109
0-1

500

Buffer

Zonemap
(min-max)

SWARE Buffer

Leaf pages

last_sorted_zone may move left/right

flush non-overlapping pages to tree

bulk load page-by-page if in order

move & sort remaining entries

tail leaf node

non_overlapping_pages

SWARE Ingestions

...

B+-tree

800...

Buffer

Zonemap
(min-max)

SWARE Buffer

750...700...Leaf pages

last_sorted_zone may move left/right

flush non-overlapping pages to tree

bulk load page-by-page if in order

850
-91

0

915
-97

0

974
-10

30

103
2-1

088

109
0-1

500

update non-overlapping pages

tail leaf node

non_overlapping_pages

SWARE Ingestions

...

B+-tree

800...

Buffer

Zonemap
(min-max)

SWARE Buffer

750...700...Leaf pages

fully sorted pages

last_sorted_zone may move left/right

flush non-overlapping pages to tree

bulk load page-by-page if in order

850
-91

0

915
-97

0

974
-10

30

103
2-1

088

109
0-1

500

fully sorted pages

tail leaf node

non_overlapping_pages

Overall Structure for Queries

...

B+-tree

800...

Buffer

SWARE Buffer

750...700...Leaf pages

850
-89

9

900
-95

0

951
-10

00

111
1-1

168

117
0-1

500Zonemap
(min-max) 100

2-1
200

101
0-1

800

107
0-1

999

Global Bloom filter

Per-page Bloom filters

Global BF. helps skip buffer probe

Per-page BFs eliminate page-scans

sorted section can use
interpolation search

tail leaf node

fully sorted pages

non_overlapping_pages

Query-driven Partial Sorting

50 51 58 60 61 68 70 56 62

sorted section
Q1 58

Query-driven Partial Sorting

50 51 58 60 61 68 56 70 62

sorted section

sorted block
sb1

Q1 58

Query-driven Partial Sorting

50 51 58 60 61 68 56 70 62 54 76

sorted section

sorted block
sb1

Q1 58 Q2 62

Query-driven Partial Sorting

50 51 58 60 61 68 56 70 54 62 76

sorted section
Q1 58

sorted block
sb1

Q2 62

sorted block
sb2

Query-driven Partial Sorting

50 51 58 60 61 68 56 70 54 62 76

sorted section
Q1 58

sorted block
sb1

Q2 62

sorted block
sb2

use faster search algorithm

Query-driven Partial Sorting

50 51 58 60 61 68 56 70 54 62 76

sorted section
Q1 58

sorted block
sb1

Q2 62

sorted block
sb2

use faster search algorithm

merge sorted components once buffer is full

Experimental Setup

Metrics:
1. Overall performance (speedup)
2. Raw performance (latency)

Workload Generator: BoDS
1. 500M Integer keys (~ 4GB)
2. Random lookups on existing

keys

System Setup:
1. Intel Xeon Gold 5230
2. 2.1GHZ processor w. 20 cores
3. 384GB RAM, 28MB L3 cache

Default Index Setup:
1. Buffer = 40MB; flush <= 50%
2. BFs = 10 BPK; Murmur Hash
3. Split = 80:20; Bulk load =

95%

10:90 25:75 40:60 50:50 60:40 75:25 90:10
Read:Write Ratio

0

2

4

6

8

10

S
p
ee

d
u
p

K=0%

K=5%, L=5%

K=50%, L=50%

Fully sorted

Near-sorted

Less sorted

Scrambled

B+-tree Cost

Overall Performance

≅ 9x speedup

10:90 25:75 40:60 50:50 60:40 75:25 90:10
Read:Write Ratio

0

2

4

6

8

10

S
p
ee

d
u
p

K=0%

K=5%, L=5%

K=50%, L=50%

Fully sorted

Near-sorted

Less sorted

Scrambled

B+-tree Cost

Overall Performance

≅ 4x for mixed
reads & writes

≅ 9x speedup

10:90 25:75 40:60 50:50 60:40 75:25 90:10
Read:Write Ratio

0

2

4

6

8

10

S
p
ee

d
u
p

K=0%

K=5%, L=5%

K=50%, L=50%

Fully sorted

Near-sorted

Less sorted

Scrambled

B+-tree Cost

Overall Performance

comparable to
B+-tree with

less sortedness

Raw Performance

0 2 10 20 50 100
K (%)

0

5

10

15

In
se
rt
La
te
nc
y
(µ
s)

(a)

0 2 10 20 50 100
K (%)

0

5

10

15

Lo
ok

up
La

te
nc

y
(µ

s) (b)B+ -tree SA B+-tree

ingestion latency reduced between 27-90%

Raw Performance

0 2 10 20 50 100
K (%)

0

5

10

15

In
se
rt
La
te
nc
y
(µ
s)

(a)

0 2 10 20 50 100
K (%)

0

5

10

15

Lo
ok

up
La

te
nc

y
(µ

s) (b)B+ -tree SA B+-tree

ingestion latency reduced between 27-90% overhead in lookups between 5-26%

Future Work

Fast-append
tree

outlier
tree

Dual B+-tree

Can we build LSM-trees
bottom up?

Speed up SMJ for
near-sorted data?

Can compression algorithms
exploit sortedness?

Smart buffering + bulk index appends = faster inserts

Summary

Identify “sortedness” as a resource

8.8x speedup with SWARE meta-design

Framework can be extended to other indexes

Thank You!

