
Adaptive Adaptive Indexing

Sumatra Dhimoyee, Ayesha Naeem, Joel
Franklin Stalin Vijayakumar, Peixu Xin

Introduction

Till now have looked at different
types of indexes in class…

● Tree
○ B+ Tree
○ LSM Tree
○ Radix Tree

● Hash index
● Bitmap index

But our requirements
are not constant

Workload, machine
and user
requirements are
constantly changing

What is the problem?

Problem Statement

How can we design an index that is able to handle these
changing environment?

● Adaptively build indexes

● Manual Tuning

Introducing the Concept of Cracking

What does it
mean to build
indexes
adaptively in
context of
workload?

Standard
Cracking

● Two times crack-in-two

What might be
the issue with
technique?

Pros:

● Cheapest initialization
cost

● Performs very well
under uniform workload

Sequential Workload

What is the problem?

● Long
convergence
time

● Least amount of
reorganization

Can we do better?

Stochastic
Cracking

● Introduces random cracks
on top of Standard
Cracking

● Pros:
Robust under various
workload as it
decouples
reorganization from
queries

What might be
the issue with
technique?

High
Initialization
Cost

Hybrid Cracking

● Split the inputs into
partitions, merge the final
column

● Improve convergence
speed and memory
footprint

Issues with existing work

Adaptive indexes already exists. Why are do we need
another one?

Each of the other indexes only addresses one specific
problem!

Solution to all the problems?

What if we can create a system with more adaptivity?

Adaptive Adaptive Indexing
(meta-adaptivity)

Adaptive Adaptive Indexing

What do we mean by meta-adaptivity?

A system that can be extended with various
implementations and can switch implementations
based on user and current workload requirements.

Components of Adaptive Adaptive Indexing

Generalize
Index
Refinement

Adapt
Reorganization
Effort

Defuse
Skewed
Data

Generalize Index Refinement

The applied fan-out of a partitioning algorithm dictates the convergence speed, variance, and distribution
of the indexing effort.

A system needs different implementations for adaptive indexing depending on the workload.

An algorithm that is able to set the fan-out of the partitioning procedure freely is able to adapt to the
behavior of various adaptive indexing algorithms.

● K= 2 -> Standard Cracking
● K = 2^64 for 64 bit keys -> Sorting

Partition-in-K for reorganizing the index using a freely adaptive fanout
● Distiguish b/w the out of place algorithm for the 1st query, optimized inplace algorithm for the rest
● But use radix partitioning instead of comparison based methods

Problem with comparison based method?

Radix Partitioning

Number Binary
Form

25 11001

9 1001

52 110100

6 0110

2 0010

Partition on two bits

Partitions Number

00 2

01 6

10 9

11 25, 52

Number Binary
Form

25 11001

9 1001

52 110100

6 0110

2 0010

Radix based partitioning has a higher partitioning throughput.

Adaptive the reorganization Effort

How much to actually partition?

Processing the First Query
Done out of place, copies the source column into a new array

Option 1: Using classical approach, copy the column and crack in
2.

If we are copying the entire column anyway, can we do
something smarter?

Option 2: Use the efficient radix based method with custom
fan-out.

36 0100100

13 0001101

67 1000011

42 0101010

99 1100011

78 1001110

18 0010010

85 1010101

28 0011100

55 0110111

5 0000101

47 0010111

36 0100100

13 0001101

67 1000011

42 0101010

99 1100011

78 1001110

18 0010010

85 1010101

28 0011100

55 0110111

5 0000101

47 0101111

Input: Source column and K = 2^b (number
of partitions).

2. Create a histogram 3. Use the histogram
to initialize pointers to
fill the partitions

4. Copy values from the source
column to the output column1. Count values in each partition

13

18

28

5

36

42

55

47

67

78

85

99

What is the problem here?

Random copying leads to TLB
misses with more than 32
partitions!

Translation Lookaside Buffer (TLB)

TLB stores a mapping of virtual
memory to physical memory for
quick lookups.

Separate entry for each partitions.

TLB can only store upto 32 PTEs at
a time for huge pages.

How do we handle TLB misses? -
Software managed buffers!

Software Managed Buffers

Out of place partitioning using software managed buffers

Buffer of size 2 for each partition

Likely to fit in CPU caches

Non temporal Streaming Stores and SIMD

SIMD intrinsics allow to bypass the CPU caches when flushing the
software-managed buffers to the destination partitions.

Enhancing software managed buffers using non temporal streaming stores

Data Partitioning in Subsequent Queries

Already used out of place partitioning for the first query

In place reorganization must happen for subsequent queries

In-place radix partitioning

Step 1: Create a histogram for number of entries for each partition k

Step 2: Perform search and replace on the index column

Phase 1: Histogram Generation

Determine the number of partitions k and the number of fanout bit b

B is the number of bits by which the input should be partitioned K = 2b (More on this later)
 b = 2

0010

0001

0011

1111

0111

0110

2

1

3

15

7

6

Bit
representation

0010

0001

0011

1111

0111

0110

00 : 3

11 : 1

01 : 1

Now we know the boundaries of the
partitions (after 3rd, 5th and 6th element!)

Phase 2: Search and Replace

2

1

3

15

7

6

0010

0001

0011

1111

0111

0110

Index
Column

Bit
representation

00

01

11

1. Check if
elements belong
to the right
partition.

2

1

3

6

7

15

0010

0001

0011

0110

0111

1111

Index
Column

Bit
representation

00

01

11

2. 15 belongs to
 partition 11. Scan
 partition 11 and
 find the first
 element that does
 not belong to 11.
 Swap it with 15

❓

Evaluation of In
and out of place
Radix Partitioning
● Overhead of partitioning with higher

fan-out k decreases with a decrease in
partition size.

● Driving factor for deciding b bits for K =
2^b

● With a decrease in partition size,
increase fan-out k. At a sufficiently small
size, finish the partition by sorting it as
the cost is negligible.

● How to find K?

Adapting the Partitioning Fan-out K= 2^b

bfirst Number of fanout bits in the first query.

bmin Minimal no. of fanout bits during
adaption.

bmax Maximal no. of fanout bits during
adaption.

tadapt Threshold below which fanout adaption
starts.

s Size of a partition

bsort No. of fan-out bits required for sorting.

tsort Threshold below which sorting is
triggered..

Handling Skew

Radix based partitioning cannot
handle skewed input distributions
well - Why?

Solution: Equi-depth partitioning
[10-20)[-,10) (20, +]

[-,14) [14-21) (20, +]

Sk
ew

ed
 D

is
tr

ib
ut

io
n

Eq
ui

-d
ep

th
 D

is
tr

ib
ut

io
nNot suitable for radix based partitioning

- Why?

Meta Adaptive Index’s Solution:
Equi-depth out of place radix
partitioning algo

Handling Skew

● Create a histogram for the first query (b=
bfirst)

● Skewtol denotes skew tolerance of a partition. If
s > (columnsize/k)*skewtol, mark partition as
skewed.

● Complete out-of place partitions (bfirst)and
build histograms on skewed partitions (bmin)

● Sub-partition skewed partitons (bmin) in-place.

Experimental Evaluation

Two Tests

Emulation of other indexes
by meta-adaptive index

Comparison of response
times of the meta-adaptive
index to other indexes

Emulation of the below Indexing Algorithms

1. Standard Cracking

2. Hybrid Crack Sort (HCS)

3. Hybrid Sort Sort (HSS)

4. Scan

5. Quick Sort + Binary Search

6. Coarse-granular Index 1K

Memory Requirements for the Experiment

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size

24GB of DDR3 RAM

Our Dataset

100 million entries

Each entry - 8B Key and 8B rowID

1.5 GB of data

Different Key Distributions used in Experiment

Different Key Distributions used in Experiment

Key range

Different Key Distributions used in Experiment

Key range

Different Key Distributions used in Experiment

Key range

Different Key Distributions used in Experiment

Key range

What is the effect of differing key distributions?

Different Key Distributions used in Experiment

Key range

Different key distributions affect the SKEW

Different Query Workloads

Different Query Workloads

Blue dots represent the high keys whereas red dots represent the low keys

Each Query Workload consists of 1000 range queries

Different Query Workloads

Blue dots represent the high keys whereas red dots represent the low keys

Each Query Workload consists of 1000 range queries

Different Query Workloads

Blue dots represent the high keys whereas red dots represent the low keys

Each Query Workload consists of 1000 range queries

Different Query Workloads

Blue dots represent the high keys whereas red dots represent the low keys

Each Query Workload consists of 1000 range queries

Different Query Workloads

Blue dots represent the high keys whereas red dots represent the low keys

Each Query Workload consists of 1000 range queries

Different Query Workloads

Blue dots represent the high keys whereas red dots represent the low keys

Each Query Workload consists of 1000 range queries

Emulation of Adaptive Indexes and Traditional methods
In

de
xi

ng
 P

ro
gr

es
s

Querying Progress

Question

From the graph, why is Hybrid Crack Sort
and Hybrid Sort Sort better than
Standard Cracking?

Emulation of Adaptive Indexes and Traditional methods
In

de
xi

ng
 P

ro
gr

es
s

Querying Progress

Emulation of Adaptive Indexes and Traditional methods
In

de
xi

ng
 P

ro
gr

es
s

Querying Progress

Question

In emulation of Scan (blue graph), all
parameters are set to 0. So no
partitions are created. Still the graph
is a line at y = 1. Why?

Emulation of Adaptive Indexes and Traditional methods
In

de
xi

ng
 P

ro
gr

es
s

Querying Progress

Question

Can you guess the parameters (bfirst, bmin, tadapt, bmax, tsort)
for emulation of Coarse-granular Index 1K?

Emulation of Adaptive Indexes and Traditional methods

In
de

xi
ng

 P
ro

gr
es

s

Querying Progress

0.2
0.4

0.6
0.8

1

0.2
0.4
0.6
0.8

1

Emulation of Adaptive Indexes and Traditional methods

In
de

xi
ng

 P
ro

gr
es

s

Querying Progress

0.2
0.4

0.6
0.8

1

0.2
0.4
0.6
0.8

1

Emulation of Adaptive Indexes and Traditional methods

In
de

xi
ng

 P
ro

gr
es

s

Querying Progress

0.2
0.4

0.6
0.8

1

0.2
0.4
0.6
0.8

1

Cracking
Performance

Crack fails to deliver the
performance improvements in
sequential workload.

With the sequential workload,
Crack touches a large number
of tuples, which falls only
negligibly as new queries
arrive, whereas with the random
workload the number of
touched tuples drops swiftly
after only a few queries.

Evaluation of
Out-of-place
Radix Partitioning

The meta-adaptive index shows
the most stable performance and
offers early on fast individual
response times, similar to the full
index.

Question: why does all algos
become faster and faster?

The touched tuple become
smaller and smaller.

Evaluation of
Out-of-place
Radix Partitioning

The meta-adaptive index
becomes unstable, but still more
stable than others.

Question: why does it becomes
less stable?

Because many values fall into a
narrow range.

Evaluation of
Out-of-place
Radix Partitioning

The worse case, as most values
fall into few partitions. But
meta-adaptive index is still the
best one.

Accumulated
Query Response
Time

Question: Why does the HCS even slower than DC?

Because HCS is calibrated for sequential
queries?? Also, merge is not free.

Conclusion

1. Minimal overhead compared to previous work, with better results.

2. Performs well in almost every workloads (uniform, normal and zipf
distribution).

3. Optimize parameters using simulated annealing algorithm.

What can we improve?

1. Simulating annealing algorithms has some cons. If the cooling process is slow enough,
the performance of more solutions will be better, but in contrast to this, the convergence
speed is too slow. If the cooling process is too fast, the global optimal solution may not
be obtained.

2. Introduce more adaptive index algorithms to fully enhanced the robustness of the
meta-adaptive index. Also, they could try MDD1R stochastic cracking algorithm instead
of DD1R.

