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Introduction

Till now have looked at different 
types of indexes in class…

● Tree 
○ B+ Tree 
○ LSM Tree
○ Radix Tree

● Hash index 
● Bitmap index

But our requirements 
are not constant

Workload, machine 
and user 
requirements are 
constantly changing

What is the problem?



Problem Statement

How can we design an index that is able to handle these 
changing environment?

● Adaptively build indexes

● Manual Tuning 



Introducing the Concept of Cracking

What does it 
mean to build 
indexes 
adaptively in 
context of 
workload?



Standard 
Cracking

● Two times crack-in-two

What might be 
the issue with 
technique? 

Pros:

● Cheapest initialization 
cost

● Performs very well 
under uniform workload



Sequential Workload

What is the problem?

● Long 
convergence 
time

● Least amount of 
reorganization

Can we do better?



Stochastic 
Cracking

● Introduces random cracks 
on top of Standard 
Cracking

● Pros:
Robust under various 
workload as it 
decouples 
reorganization from 
queries

What might be 
the issue with 
technique? 

High 
Initialization 
Cost



Hybrid Cracking

● Split the inputs into 
partitions, merge the final 
column

● Improve convergence 
speed and memory 
footprint



Issues with existing work

Adaptive indexes already exists. Why are do we need 
another one?

Each of the other indexes only addresses one specific 
problem!



Solution to all the problems?

What if we can create a system with more adaptivity? 

Adaptive Adaptive Indexing
(meta-adaptivity)



Adaptive Adaptive Indexing

What do we mean by meta-adaptivity?

A system that can be extended with various 
implementations and can switch implementations 
based on user and current workload requirements.



Components of Adaptive Adaptive Indexing

Generalize 
Index 
Refinement 

Adapt 
Reorganization 
Effort 

Defuse 
Skewed 
Data



Generalize Index Refinement

The applied fan-out of a partitioning algorithm dictates the convergence speed, variance, and distribution 
of the indexing effort.

A system needs different implementations for adaptive indexing depending on the workload.

An algorithm that is able to set the fan-out of the partitioning procedure freely is able to adapt to the 
behavior of various adaptive indexing algorithms.

● K= 2 -> Standard Cracking
● K = 2^64 for 64 bit keys -> Sorting

Partition-in-K for reorganizing the index using a freely adaptive fanout
● Distiguish b/w the out of place algorithm for the 1st query, optimized inplace algorithm for the rest
● But use radix partitioning instead of comparison based methods

Problem with comparison based method?



Radix Partitioning

Number Binary 
Form

25 11001

9 1001

52 110100

6 0110

2 0010

Partition on two bits

Partitions Number

00 2

01 6

10 9

11 25, 52

Number Binary 
Form

25 11001

9 1001

52 110100

6 0110

2 0010

Radix based partitioning has a higher partitioning throughput.



Adaptive the reorganization Effort

How much to actually partition?



Processing the First Query
Done out of place, copies the source column into a new array

Option 1: Using classical approach, copy the column and crack in 
2.

If we are copying the entire column anyway, can we do 
something smarter?

Option 2: Use the efficient radix based method with custom 
fan-out.



36 0100100

13 0001101

67 1000011

42 0101010

99 1100011

78 1001110

18 0010010

85 1010101

28 0011100

55 0110111

5 0000101

47 0010111

36 0100100

13 0001101

67 1000011

42 0101010

99 1100011

78 1001110

18 0010010

85 1010101

28 0011100

55 0110111

5 0000101

47 0101111

Input: Source column and K = 2^b (number 
of partitions). 

2. Create a histogram 3. Use the histogram 
to initialize pointers to 
fill the partitions

4. Copy values from the source 
column to the output column1. Count values in each partition
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99

What is the problem here?

Random copying leads to TLB 
misses with more than 32 
partitions!



Translation Lookaside Buffer (TLB)

TLB stores a mapping of virtual 
memory to physical memory for 
quick lookups.

Separate entry for each partitions.

TLB can only store upto 32 PTEs at 
a time for huge pages.

How do we handle TLB misses? - 
Software managed buffers!



Software Managed Buffers

Out of place partitioning using software managed buffers

Buffer of size 2 for each partition

Likely to fit in CPU caches



Non temporal Streaming Stores and SIMD

SIMD intrinsics allow to bypass the CPU caches when flushing the 
software-managed buffers to the destination partitions.

Enhancing software managed buffers using non temporal streaming stores



Data Partitioning in Subsequent Queries

Already used out of place partitioning for the first query

In place reorganization must happen for subsequent queries

In-place radix partitioning

Step 1: Create a histogram for number of entries for each partition k

Step 2:  Perform search and replace on the index column



Phase 1: Histogram Generation

Determine the number of partitions k and the number of fanout bit b

B is the number of bits by which the input should be partitioned K = 2b  (More on this later) 
 b = 2

0010
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1111
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0110
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1

3
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7

6

Bit 
representation

0010

0001

0011

1111

0111

0110

00 : 3

11 : 1

01 : 1

Now we know the boundaries of the 
partitions (after 3rd, 5th and 6th element!)



Phase 2: Search and Replace
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Index 
Column

Bit 
representation

00
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1. Check if 
elements belong 
to the right 
partition.
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Index 
Column

Bit 
representation

00
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2.    15 belongs to  
        partition 11. Scan                 
        partition 11 and 
        find the first 
        element that does 
        not belong to 11. 
        Swap it with 15

❓



Evaluation of In 
and out of place 
Radix Partitioning
● Overhead of partitioning with higher 

fan-out k decreases with a decrease in 
partition size.

● Driving factor for deciding b bits for K = 
2^b

● With a decrease in partition size, 
increase fan-out k. At a sufficiently small 
size, finish the partition by sorting it as 
the cost is negligible.

● How to find K?



Adapting the Partitioning Fan-out K= 2^b

bfirst Number of fanout bits in the first query.

bmin Minimal no. of fanout bits during 
adaption.

bmax Maximal no. of fanout bits during 
adaption.

tadapt Threshold below which fanout adaption 
starts.

s Size of a partition

bsort No. of fan-out bits required for sorting.

tsort Threshold below which sorting is 
triggered..



Handling Skew

Radix based partitioning cannot 
handle skewed input distributions 
well - Why?

Solution: Equi-depth partitioning
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- Why? 

Meta Adaptive Index’s Solution: 
Equi-depth out of place radix 
partitioning algo



Handling Skew

● Create a histogram for the first query ( b= 
bfirst)

● Skewtol denotes skew tolerance of a partition. If 
s > (columnsize/k)*skewtol, mark partition as 
skewed.

● Complete out-of place partitions (bfirst)and 
build histograms on skewed partitions (bmin)

● Sub-partition skewed partitons (bmin) in-place.



Experimental Evaluation

Two Tests

Emulation of other indexes 
by meta-adaptive index

Comparison of response 
times of the meta-adaptive 
index to other indexes



Emulation of the below Indexing Algorithms

1. Standard Cracking

2. Hybrid Crack Sort (HCS)

3. Hybrid Sort Sort (HSS)

4. Scan

5. Quick Sort + Binary Search

6. Coarse-granular Index 1K



Memory Requirements for the Experiment

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size

24GB of DDR3 RAM



Our Dataset

100 million entries

Each entry - 8B Key and 8B rowID

1.5 GB of data



Different Key Distributions used in Experiment
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Key range
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Different Key Distributions used in Experiment

Key range

What is the effect of differing key distributions?



Different Key Distributions used in Experiment

Key range

Different key distributions affect the SKEW



Different Query Workloads



Different Query Workloads

Blue dots represent the high keys whereas red dots represent the low keys

Each Query Workload consists of 1000 range queries
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Emulation of Adaptive Indexes and Traditional methods
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Question

From the graph, why is Hybrid Crack Sort 
and Hybrid Sort Sort better than 
Standard Cracking?
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Question

In emulation of Scan (blue graph), all 
parameters are set to 0. So no 
partitions are created. Still the graph 
is a line at y = 1. Why?
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Question

Can you guess the parameters (bfirst, bmin, tadapt, bmax, tsort) 
for emulation of Coarse-granular Index 1K?
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Cracking
Performance

Crack fails to deliver the 
performance improvements in 
sequential workload.

With the sequential workload, 
Crack touches a large number 
of tuples, which falls only 
negligibly as new queries 
arrive, whereas with the random 
workload the number of 
touched tuples drops swiftly 
after only a few queries.



Evaluation of 
Out-of-place 
Radix Partitioning

The meta-adaptive index shows 
the most stable performance and 
offers early on fast individual 
response times, similar to the full 
index. 

Question: why does all algos 
become faster and faster?

The touched tuple become 
smaller and smaller.



Evaluation of 
Out-of-place 
Radix Partitioning

The meta-adaptive index 
becomes unstable, but still more 
stable than others.

Question: why does it becomes 
less stable?

Because many values fall into a 
narrow range. 



Evaluation of 
Out-of-place 
Radix Partitioning

The worse case, as most values 
fall into few partitions. But 
meta-adaptive index is still the 
best one.



Accumulated 
Query Response 
Time

Question: Why does the HCS even slower than DC?

Because HCS is calibrated for sequential 
queries?? Also, merge is not free.



Conclusion

1. Minimal overhead compared to previous work, with better results.

2. Performs well in almost every workloads (uniform, normal and zipf 
distribution).

3. Optimize parameters using simulated annealing algorithm.



What can we improve?

1. Simulating annealing algorithms has some cons. If the cooling process is slow enough, 
the performance of more solutions will be better, but in contrast to this, the convergence 
speed is too slow. If the cooling process is too fast, the global optimal solution may not 
be obtained.

2. Introduce more adaptive index algorithms to fully enhanced the robustness of the 
meta-adaptive index. Also, they could try MDD1R stochastic cracking algorithm instead 
of DD1R.


