
The Adaptive Radix Tree

ARTful Indexing for Main-Memory Databases



Disk-Based Database System  Main-Memory Database System 

Bottleneck:

the overhead of disk I/O operations Index Efficiency



T-tree Cache Sensitive B+ tree

Do not optimally utilize 
on-CPU cache

Require more expensive 
update operations

O(logb N)O(log2 N)
b: branching factor



Is there any data structure that has better performance than O(log n)?

Hash Table !!!

Only support 
point queries

Cannot handle 
growth well

Require expansive 
reorganization upon 
overflow with O(n) 
complexity

O(1)



Fast hash tables that 
only allow point 
queries 

Fully-featured, but 
relatively slow, 
search trees.

Unfortunate trade-off 

Any other possible solution with 
overall better performance? 



Trie / Prefix Tree / Digital Search Tree

O(k)



Radix Tree

00101101: 8-bits span

00000000
00000001
00000010
…
11111110
11111111

2^8 children 

256 children

256 children

256 children 256 children



Generalized Prefix Tree



BST: Binary Search Tree          s: span parameter       k: # bits of keys



Generalized Prefix Tree



 Tree Height vs. Space Consumption 

GPT: Generalized Prefix Tree    LRT: Linux kernel radix tree    s: span parameter



Adaptive Radix Tree (ART)

→

256 Children

256 Children

256 Children 256 Children

Adaptive Node Design

1 Child

2 Children

4 Children 8 Children



Adaptive Radix Tree (ART)

4 types of nodes:

Node4

Node16

Node48

Node256

2 children

4 children 8 children



ART Inner Node Type 1



Space Consumption

1 byte 8 bytes

16 + 4 + 4 x 8 = 52 bytes

Metadata: 16 bytes overhead

How to search the key array?



ART Inner Node Type 1

When search: Loop through 



ART Inner Node Type 2

How to search the key array?



ART Inner Node Type 2

01001100 00110101

00111110

01001100

…

01110001

11001101

 Search in 16 keys 

01001100

01001100

01001100

…

01001100

01001100

  
Replicate our key 16 times Compare in parallel

0

0

1

…

0

0

compare



ART Inner Node Type 3

1 byte 8 bytes



ART Inner Node Type 4

8 bytes



Space Consumption



Space Consumption per key

52 52

Type Minimum 
Children

bytes

Node4 2 52

Node16 5 160

Node48 17 656

Node256 49 2064 

52

Node2

Space consumption per key is bounded by 52 

52 bytes budget/leaf



Space Consumption per key

52 52

Type Minimum 
Children

bytes

Node4 2 52

Node16 5 160

Node48 17 656

Node256 49 2064 

160

52 5252

52 x 5 = 260 > 160

52 x 17 = 884 > 656
52 x 49 = 2548 > 2064

Node16



Space Consumption per key

Non-adaptive radix tree:
Unbounded space consumption per key

52 52

2064

2064

…



ART Demo

Search Insert Delete

Lazy Expansion Path Compression



ART Insertion

Key: smile

Value: 10

[root]

Inner Node 

Leaf Node 

How is ART different from a 
trie in insertion?

Hint: Which unique technique 
does ART have for saving 
space? 



ART Insertion and Path Compression

Key: smile

Value: 10

[root]

s

[smile]

<10>

Inner Node 

Leaf Node 

Instead of saving s->m->i->l->e 
sequence in individual nodes, 
ART path compression 
technique saves it in one node 
and reduces space consumption.

Path compression:
One inner node is removed 
when it has only one or no child 
node. 



ART Insertion

[root]

s

[smile]

<10>

Key: smith

Value: 20

What will happen next?

Inner Node 

Leaf Node 



ART Lazy Expansion

Key: smith

Value: 20

How about finding the 
common part of [smile] 
and [smith]?

[root]

s

[smi]

Inner Node 

Leaf Node 

<10>
[le]

l
What happened to the 
previous leaf node [smile]?



ART Lazy Expansion

Key: smith

Value: 20

Lazy Expansion: 
One new inner node is created 
only when at least two leaf 
nodes need it to distinguish 
from. 

[root]

s

[smi]

Inner Node 

Leaf Node 

<10>
[le]

l

<20>
[th]

t



ART Insertion

Key: smiley

Value: 30

What’s next if I want to 
insert a new key smiley?

[root]

s

[smi]

Inner Node 

Leaf Node 

<10>
[le]

l

<20>
[th]

t



ART Lazy Expansion

Key: smiley

Value: 30

Another lazy expansion! 

What’s special this time?

[root]

s

[smi]

Inner Node 

Leaf Node 

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y



ART Deletion

Key: smile

Edge case: An empty key.

If I delete it, what should 
happen? 

What’s the first step 
before the deletion?

[root]

s

[smi]

Inner Node 

Leaf Node 

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y



ART Search

Key: smile
Is this node null? 

Is this node a leaf node?

Is this node a inner node?

Searching from the root…

[root]

s

[smi]

Inner Node 

Leaf Node 

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y



ART Search

Key: smile

[root]

s

[smi]

Inner Node 

Leaf Node 

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

Recursively searching…

Match?



ART Search

Key: smile

[root]

s

[smi]

Inner Node 

Leaf Node 

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

Recursively searching…

Match?



ART Search

Key: smile

[root]

s

[smi]

Inner Node 

Leaf Node 

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

Recursively searching…

Match?



ART Deletion

Key: smile

[root]

s

[smi]

Inner Node 

Leaf Node 

[le]

l

<20>
[th]

t

[y]
<30>

The inner node [le] now 
only has one child node.

What’s next?



ART Path Compression

Key: smile

Another path compression!
[root]

s

[smi]

Inner Node 

Leaf Node 

[le]

l

<20>
[th]

t

[y]
<30>



ART Path Compression

Key: smile

[root]

s

[smi]

Inner Node 

Leaf Node 

[ley]

l

<20>
[th]

t

<30>



ART Bulk Loading

[root]

s

[smi]

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

Key 1: smile

Key 2: smith

Key 3: smiley

Bulk load all nodes. 

Starts from the first byte of 
each key and go through all 
keys to find the most 
appropriate inner node 
type.

Build ART while perform 
radix sort -> Higher time 
complexity. 



Evaluation - Random Search
GPT: Generalized Prefix Tree RB: red-black tree

CSB: Cache-Sensitive B+-tree HT: hash table

kary: k-ary search tree FAST: Fast Architecture Sensitive Tree

Benchmark against

Dense keys: Range(1, n)                           Sparse keys: Each bit be randomly 0 or 1

k1 k2 k3 k4 k5 k1 k3 k5



Evaluation - Mispredictions

0 miss prediction branches for ART dense keys!
0.5x cache miss rate for dense keys

HT: Hash Table

FAST: Fast Architecture Sensitive Tree



Evaluation - Caching Effects

HT not affected!

ART is more sensitive

Hit% increases

Competing Memory Access 

To add temporal locality,
Access skewed data to utilize the processor cache

HT: Hash Table

FAST: Fast Architecture Sensitive Tree



Evaluation - Update

Insertion Performance For 16M keys

Bulk insertion: Sparse keys -> Dense keys 
2.5x faster!

GPT: Generalized Prefix Tree RB: red-black tree

CSB: Cache-Sensitive B+-tree HT: hash table



Evaluation - Search & Update

Random Insertion, Deletion, Lookups

Δ is RB tree to help FAST 
store differences and 
merge later

HT: Hash Table

FAST: Fast Architecture Sensitive Tree



Evaluation - End to End

~4x

~2x

~1x

rehashing

https://www.hammerdb.com/docs3.3/ch03s05.html

TPC-C OLTP Workload

RB: red-black tree HT: hash table

Merchandising company

Orders, Customers, Stocks

Manage, Sell, Distribute products



Evaluation - Space Consumption

Long unique string!

Common prefix

Path compression is good for common prefix!
Both are good for long strings.

Why?



Discussion

Thank You!

Q&A


