
The Adaptive Radix Tree

ARTful Indexing for Main-Memory Databases

Disk-Based Database System Main-Memory Database System

Bottleneck:

the overhead of disk I/O operations Index Efficiency

T-tree Cache Sensitive B+ tree

Do not optimally utilize
on-CPU cache

Require more expensive
update operations

O(logb N)O(log2 N)
b: branching factor

Is there any data structure that has better performance than O(log n)?

Hash Table !!!

Only support
point queries

Cannot handle
growth well

Require expansive
reorganization upon
overflow with O(n)
complexity

O(1)

Fast hash tables that
only allow point
queries

Fully-featured, but
relatively slow,
search trees.

Unfortunate trade-off

Any other possible solution with
overall better performance?

Trie / Prefix Tree / Digital Search Tree

O(k)

Radix Tree

00101101: 8-bits span

00000000
00000001
00000010
…
11111110
11111111

2^8 children

256 children

256 children

256 children 256 children

Generalized Prefix Tree

BST: Binary Search Tree s: span parameter k: # bits of keys

Generalized Prefix Tree

 Tree Height vs. Space Consumption

GPT: Generalized Prefix Tree LRT: Linux kernel radix tree s: span parameter

Adaptive Radix Tree (ART)

→

256 Children

256 Children

256 Children 256 Children

Adaptive Node Design

1 Child

2 Children

4 Children 8 Children

Adaptive Radix Tree (ART)

4 types of nodes:

Node4

Node16

Node48

Node256

2 children

4 children 8 children

ART Inner Node Type 1

Space Consumption

1 byte 8 bytes

16 + 4 + 4 x 8 = 52 bytes

Metadata: 16 bytes overhead

How to search the key array?

ART Inner Node Type 1

When search: Loop through

ART Inner Node Type 2

How to search the key array?

ART Inner Node Type 2

01001100 00110101

00111110

01001100

…

01110001

11001101

 Search in 16 keys

01001100

01001100

01001100

…

01001100

01001100

Replicate our key 16 times Compare in parallel

0

0

1

…

0

0

compare

ART Inner Node Type 3

1 byte 8 bytes

ART Inner Node Type 4

8 bytes

Space Consumption

Space Consumption per key

52 52

Type Minimum
Children

bytes

Node4 2 52

Node16 5 160

Node48 17 656

Node256 49 2064

52

Node2

Space consumption per key is bounded by 52

52 bytes budget/leaf

Space Consumption per key

52 52

Type Minimum
Children

bytes

Node4 2 52

Node16 5 160

Node48 17 656

Node256 49 2064

160

52 5252

52 x 5 = 260 > 160

52 x 17 = 884 > 656
52 x 49 = 2548 > 2064

Node16

Space Consumption per key

Non-adaptive radix tree:
Unbounded space consumption per key

52 52

2064

2064

…

ART Demo

Search Insert Delete

Lazy Expansion Path Compression

ART Insertion

Key: smile

Value: 10

[root]

Inner Node

Leaf Node

How is ART different from a
trie in insertion?

Hint: Which unique technique
does ART have for saving
space?

ART Insertion and Path Compression

Key: smile

Value: 10

[root]

s

[smile]

<10>

Inner Node

Leaf Node

Instead of saving s->m->i->l->e
sequence in individual nodes,
ART path compression
technique saves it in one node
and reduces space consumption.

Path compression:
One inner node is removed
when it has only one or no child
node.

ART Insertion

[root]

s

[smile]

<10>

Key: smith

Value: 20

What will happen next?

Inner Node

Leaf Node

ART Lazy Expansion

Key: smith

Value: 20

How about finding the
common part of [smile]
and [smith]?

[root]

s

[smi]

Inner Node

Leaf Node

<10>
[le]

l
What happened to the
previous leaf node [smile]?

ART Lazy Expansion

Key: smith

Value: 20

Lazy Expansion:
One new inner node is created
only when at least two leaf
nodes need it to distinguish
from.

[root]

s

[smi]

Inner Node

Leaf Node

<10>
[le]

l

<20>
[th]

t

ART Insertion

Key: smiley

Value: 30

What’s next if I want to
insert a new key smiley?

[root]

s

[smi]

Inner Node

Leaf Node

<10>
[le]

l

<20>
[th]

t

ART Lazy Expansion

Key: smiley

Value: 30

Another lazy expansion!

What’s special this time?

[root]

s

[smi]

Inner Node

Leaf Node

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

ART Deletion

Key: smile

Edge case: An empty key.

If I delete it, what should
happen?

What’s the first step
before the deletion?

[root]

s

[smi]

Inner Node

Leaf Node

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

ART Search

Key: smile
Is this node null?

Is this node a leaf node?

Is this node a inner node?

Searching from the root…

[root]

s

[smi]

Inner Node

Leaf Node

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

ART Search

Key: smile

[root]

s

[smi]

Inner Node

Leaf Node

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

Recursively searching…

Match?

ART Search

Key: smile

[root]

s

[smi]

Inner Node

Leaf Node

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

Recursively searching…

Match?

ART Search

Key: smile

[root]

s

[smi]

Inner Node

Leaf Node

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

Recursively searching…

Match?

ART Deletion

Key: smile

[root]

s

[smi]

Inner Node

Leaf Node

[le]

l

<20>
[th]

t

[y]
<30>

The inner node [le] now
only has one child node.

What’s next?

ART Path Compression

Key: smile

Another path compression!
[root]

s

[smi]

Inner Node

Leaf Node

[le]

l

<20>
[th]

t

[y]
<30>

ART Path Compression

Key: smile

[root]

s

[smi]

Inner Node

Leaf Node

[ley]

l

<20>
[th]

t

<30>

ART Bulk Loading

[root]

s

[smi]

[le]

l

<20>
[th]

t

[y][“ ”]
<10> <30>

-1 y

Key 1: smile

Key 2: smith

Key 3: smiley

Bulk load all nodes.

Starts from the first byte of
each key and go through all
keys to find the most
appropriate inner node
type.

Build ART while perform
radix sort -> Higher time
complexity.

Evaluation - Random Search
GPT: Generalized Prefix Tree RB: red-black tree

CSB: Cache-Sensitive B+-tree HT: hash table

kary: k-ary search tree FAST: Fast Architecture Sensitive Tree

Benchmark against

Dense keys: Range(1, n) Sparse keys: Each bit be randomly 0 or 1

k1 k2 k3 k4 k5 k1 k3 k5

Evaluation - Mispredictions

0 miss prediction branches for ART dense keys!
0.5x cache miss rate for dense keys

HT: Hash Table

FAST: Fast Architecture Sensitive Tree

Evaluation - Caching Effects

HT not affected!

ART is more sensitive

Hit% increases

Competing Memory Access

To add temporal locality,
Access skewed data to utilize the processor cache

HT: Hash Table

FAST: Fast Architecture Sensitive Tree

Evaluation - Update

Insertion Performance For 16M keys

Bulk insertion: Sparse keys -> Dense keys
2.5x faster!

GPT: Generalized Prefix Tree RB: red-black tree

CSB: Cache-Sensitive B+-tree HT: hash table

Evaluation - Search & Update

Random Insertion, Deletion, Lookups

Δ is RB tree to help FAST
store differences and
merge later

HT: Hash Table

FAST: Fast Architecture Sensitive Tree

Evaluation - End to End

~4x

~2x

~1x

rehashing

https://www.hammerdb.com/docs3.3/ch03s05.html

TPC-C OLTP Workload

RB: red-black tree HT: hash table

Merchandising company

Orders, Customers, Stocks

Manage, Sell, Distribute products

Evaluation - Space Consumption

Long unique string!

Common prefix

Path compression is good for common prefix!
Both are good for long strings.

Why?

Discussion

Thank You!

Q&A

