
Introduction to Indexing:
Trees, Tries, Hashing, Bitmaps: The Whole Design Space

Dr. Subhadeep Sarkar

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

A few reminders
A) Choose your class project. (40% of your grades)

B) Project proposals due on 03/12 in groups of 2-3.

C) Proposal format:
(i) Project background

(ii) Problem statement

(iii) Project objectives

(iv) Project timeline

What is an index?

Auxiliary structure to quickly find rows based on arbitrary attribute

Special form of <key, value>

indexed attribute
position/location/rowID/primary key/…

What are the possible index designs?

Data
Organization

Comments

B+ Trees Sorted &
partitioned

Partition k-ways recursively

LSM Trees Insertion &
Sorted

Optimizes insertion

Radix Trees Radix Partition using the key radix representation

Hash Indexes Hash Partition by hashing the key

Bitmap Indexes None Succinctly represent all rows with a key

Scan Accelerators None Metadata to skip accesses

What are the possible index designs?

Point
Queries

Short Range
Queries

Long Range
Queries

Data
Skew

Updates

B+ Trees

LSM Trees

Radix Trees

Hash Indexes

Bitmap Indexes

Scan Accelerators

B+ Trees

Search begins at root, and key comparisons direct it to a leaf.
Search for 5*, 15*, all data entries >= 24* ...

9

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Example B+ Tree - Inserting 8*

10

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

Example B+ Tree - Inserting 8*

11

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*23*

Example B+ Tree - Inserting 8*

12

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*

Example B+ Tree - Inserting 8*

13

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*

17 2413

Example B+ Tree - Inserting 8*

14

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*

17 24135

Example B+ Tree - Inserting 21*

15

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 22* 23* 24* 27* 29*7*5* 8*

5 13 17 24

data page split

Example B+ Tree - Inserting 21*

16

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

17 24

index page split

Example B+ Tree - Inserting 21*

17

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3*

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

17

Example B+ Tree - Inserting 21*

18

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3*

Root
17

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

Read Cost: !"#!(%)

Update Cost: !"#!(%) reads

how many I/Os per insert?

Example B+ Tree - Inserting 21*

19

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3*

Root
17

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

Read Cost: !"#!(%)

Update Cost: !"#!(%) reads

what about skewed data?

Example B+ Tree - Inserting 21*

20

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3*

Root
17

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

Read Cost: !"#!(%)

Update Cost: !"#!(%) reads

what about growing dataset size?

What are the possible index designs?

Point
Queries

Short Range
Queries

Long Range
Queries

Data
Skew

Updates

B+ Trees ✅ ✅ ✅ ✅

LSM Trees

Radix Trees

Hash Indexes

Bitmap Indexes

Scan Accelerators

0

1

level

LSM-trees
Is LSM-tree an index at all?

memory storage

buffer

0

1

level memory storage

one I/O per run

fence
pointers

lookup X

X

Bloom
filters

buffer

true
negative

false
positive

true
positive

LSM-trees

What are the possible index designs?

Point
Queries

Short Range
Queries

Long Range
Queries

Data
Skew

Updates

B+ Trees ✅ ✅ ✅ ✅

LSM Trees ✅ ❌ ✅ ✅

Radix Trees

Hash Indexes

Bitmap Indexes

Scan Accelerators

Radix Trees (special case of tries and prefix B-Trees)

Idea: use common prefixes for internal nodes to reduce size/height!

b

o

w rn

bow born

nd

…

bond

Maximum tree height?
the size of the
longest word!

what about integer keys?

Radix Trees (special case of tries and prefix B-Trees)

Idea: use common prefixes for internal nodes to reduce size/height!
Binary representation of any domain can be used

b

o

w rn

bow born

0000

01

01 10

5
00000101b

6
00000110b

nd

…

bond

…

Maximum tree height?
the size of the
longest word!

Maximum tree height?

8, that is, !"#"(max _+",-./_0-!12)
fixed worst case!

what about data skew?

What are the possible index designs?

Point
Queries

Short Range
Queries

Long Range
Queries

Data
Skew

Updates

B+ Trees ✅ ✅ ✅ ✅

LSM Trees ✅ ❌ ✅ ✅

Radix Trees ✅ ✅ ✅ ❌

Hash Indexes

Bitmap Indexes

Scan Accelerators

Hash Indexes (static hashing)

#primary bucket pages fixed, allocated sequentially, never de-allocated; overflow
pages if needed

h(k) mod M = bucket to insert data entry with key k (M: #buckets)

h

0

1

2

…

M-1

key
h(key) mod M

…

…

…

…

…

Primary bucket pages Overflow pages

what if I have skew in the data set (or a bad hash function)?

Hash Indexes (static hashing)

#primary bucket pages fixed, allocated sequentially, never de-allocated; overflow
pages if needed

h(k) mod M = bucket to insert data entry with key k (M: #buckets)

h

0

1

2

…

M-1

key
h(key) mod M

…

…

…

…

…

Primary bucket pages Overflow pages

what if I have skew in the data set (or a bad hash function)?

what about range queries?

What are the possible index designs?

Point
Queries

Short Range
Queries

Long Range
Queries

Data
Skew

Updates

B+ Trees ✅ ✅ ✅ ✅

LSM Trees ✅ ❌ ✅ ✅

Radix Trees ✅ ✅ ✅ ❌

Hash Indexes ✅ ❌ ❌ ✅

Bitmap Indexes

Scan Accelerators

A=30A=20A=10

Bitmap Indexes

30
20
30
10
20
10
30
20

0
0
0
1
0
1
0
0

0
1
0
0
1
0
0
1

1
0
1
0
0
0
1
0

Column A
Speed & Size

Compact representation of query result

Query result is readily available

Bitvectors

Can leverage fast Boolean operators

Bitwise AND/OR/NOT faster than looping over meta data

Bitmap Indexes

30
20
30
10
20
10
30
20

Column A
Space-inefficient for domains with large cardinality

Addressed by bitvector encoding/compression

Index Size
A=20 A=30A=10

0
0
0
1
0
1
0
0

0
1
0
0
1
0
0
1

1
0
1
0
0
0
1
0

core idea: run-length encoding in prior work

encoded bitvectors

what about updates?

0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1

0
1
0
0
1
0
1

0
1
0
1

13 zeros

ending pattern

Update?

10 zeros

ending pattern

flip bit

re-encode

encode

decoderaw bitvector

encoded bitvector

What are the possible index designs?

Point
Queries

Short Range
Queries

Long Range
Queries

Data
Skew

Updates

B+ Trees ✅ ✅ ✅ ✅

LSM Trees ✅ ❌ ✅ ✅

Radix Trees ✅ ✅ ✅ ❌

Hash Indexes ✅ ❌ ❌ ✅

Bitmap Indexes ✅ ❌

Scan Accelerators

Scan Accelerators

Column AZ1: [32,72] Z2: [13,45] Z3: [1,10] Z4: [21,100] Z5: [28,35] Z6: [5,12]

Search for 25
Zonemaps

Scan Accelerators

Column AZ1: [32,72] Z2: [13,45] Z3: [1,10] Z4: [21,100] Z5: [28,35] Z6: [5,12]

Search for 25
Search for [5,11]

Zonemaps

Scan Accelerators

Column AZ1: [32,72] Z2: [13,45] Z3: [1,10] Z4: [21,100] Z5: [28,35] Z6: [5,12]

Search for 25
Search for [5,11]
Search for [31,46]

Zonemaps

Scan Accelerators

Column AZ1: [32,72] Z2: [13,45] Z3: [1,10] Z4: [21,100] Z5: [28,35] Z6: [5,12]

Search for 25
Search for [5,11]
Search for [31,46]

Zonemaps

Scan Accelerators

Column AZ1: [32,72] Z2: [13,45] Z3: [1,10] Z4: [21,100] Z5: [28,35] Z6: [5,12]

Search for 25
Search for [5,11]
Search for [31,46]

Zonemaps

Column AZ1: [1,15] Z2: [16,30] Z3: [31,50] Z4: [50,67] Z5: [68,85] Z6: [85,100]

Search for 25
Search for [5,11]
Search for [31,46]

if data were sorted:

Scan Accelerators

Column AZ1: [32,72] Z2: [13,45] Z3: [1,10] Z4: [21,100] Z5: [28,35] Z6: [5,12]

Search for 25
Search for [5,11]
Search for [31,46]

Zonemaps

Column AZ1: [1,15] Z2: [16,30] Z3: [31,50] Z4: [50,67] Z5: [68,85] Z6: [85,100]

Search for 25
Search for [5,11]
Search for [31,46]

if data were sorted:

what if data is perfectly uniformly distributed?

Column AZ1: [1,99] Z2: [2,95] Z3: [1,100] Z4: [2,100] Z5: [3,97] Z6: [2,99]

What are the possible index designs?

Point
Queries

Short Range
Queries

Long Range
Queries

Data
Skew

Updates

B+ Trees ✅ ✅ ✅ ✅

LSM Trees ✅ ❌ ✅ ✅

Radix Trees ✅ ✅ ✅ ❌

Hash Indexes ✅ ❌ ❌ ✅

Bitmap Indexes ✅ ❌

Scan Accelerators ❌ ✅ ✅

data structure designs navigate a three-way tradeoff

Reads

Updates
Memory

The RUM Conjecture

every access method has a (quantifiable)
• read overhead

• update overhead

• memory overhead

the three of which form a competing triangle

Read

Update Memorywe can optimize for two of
the overheads at the
expense of the third

45

max

min

minmin

what would be an optimal read behavior?

X data

read(X)

oracle

read(x) accesses only the bytes of object X

how free can an oracle be?

46

R

U M

?

max

min

minmin

what would be an optimal read behavior?

X data

read(X)

oracle

read(x) accesses only the bytes of object X

how free can an oracle be?

47

R

U M

? ?

max

min

minmin

what would be an optimal read behavior?

48

1 4 5 82 17

insert 2insert 17delete 8

minimum read overhead

bound update overhead

unbounded memory overhead

update 4 -> 3

3

X

what would be an optimal update behavior?

data

always append, and on update invalidate

49

R

U M

?

?

A BX X

Always scan

update (X) changes the minimal number of bytes

more data?

C D

what about reads?
max

min

minmin

X

what would be an optimal update behavior?

data

always append, and invalidate on update

50

R

U M

?

?

A BX X

Always scan

update (X) changes the minimal number of bytes

C D

higher read and memory overhead

max

min

minmin

what would be an optimal memory overhead?

X data

scan and find

scan and in-place updates

51

R

U M
?

?

no metadata whatsoever, would result in the smallest memory footprint

do we need to reach the optimal(s)?

No!
max

min

minmin

are there only three overheads?

Read

Update Memory

are there only three overheads?

Point Read Range Read (short/long/full scan)

Update

MemoryInsert

Delete

PyRUMID overheads

how to decide how to design a data structure?

break it down to design dimensions

how to break down the design in independent dimensions?

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

buffer

batching via buffering

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

adaptivity

batching via buffering

data structures design dimensions and their values

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

batching via buffering

adaptivity

how to break down popular designs
to those design decisions?

b+ trees

global data organization

local data organization

local search algorithm

modification policy

range partitioning

search tree

sorted

binary search / scan

in-place

range

tree

Workload?

point and range queries and some modifications

global searching (algorithm or index)

insert optimized b+ trees

global data organization

global searching (algorithm or index)

local data organization

local search algorithm

modification policy

range partitioning

search tree

logging

binary search / scan

deferred in-place

range

treeWorkload?

increased number of modifications

static hashing

global data organization

local data organization

local search algorithm

modification policy

hash partitioning

direct addressing (hashing)

logging

scan

in-place

Workload?

point queries and modifications

global searching (algorithm or index)

lsm-trees

global data organization

local data organization

local search algorithm

modification policy

partitioned logging

filter indexing

sorted

binary / data-driven search

out-of-place

Workload?

modification-heavy with point and range queries

global searching (algorithm or index)

Projects
A) LSM-tree implementation B) Bufferpool implementation

C) WA quantification for LSMs on SSDs

D) Range deletes in LSMs

E) Query-driven compactions in LSMs

F) Finding the optimal compaction strategy in LSMs to reduce WA

G) Finding the optimal indexing granularity for LSMs

H) Evaluating sorting algorithms for varied data sortedness

I) Measuring robustness in SplinterDB

J) Boosting join performance in Postgres for skewed correlation

K) Benchmarking large-scale graph processing systems

Introduction to Indexing:
Trees, Tries, Hashing, Bitmaps: The Whole Design Space

Dr. Subhadeep Sarkar

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

