BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

Introduction to Indexing:
Trees, Tries, Hashing, Bitmaps: The Whole Design Space

Dr. Subhadeep Sarkar

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

A few reminders

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

What is an index?

Auxiliary structure to quickly find rows based on arbitrary attribute

Special form of <key, value>

indexed attribute \

position/location/rowID/primary key/...

BOSTON
UNIVERSITY

What are the possible index designs?

Data Comments
Organization

B+ Trees Sorted & Partition k-ways recursively
partitioned
LSM Trees Insertion & Optimizes insertion
Sorted
Radix Trees Radix Partition using the key radix representation
Hash Indexes Hash Partition by hashing the key
Bitmap Indexes None Succinctly represent all rows with a key
Scan Accelerators None Metadata to skip accesses

BOSTON
UNIVERSITY

What are the possible index designs?

Point Short Range Long Range Data Updates
Queries Queries Queries Skew

B+ Trees
LSM Trees
Radix Trees
Hash Indexes
Bitmap Indexes

Scan Accelerators

BOSTON
UNIVERSITY

B+ Trees

Search begins at root, and key comparisons direct it to a leaf.
Search for 5*, 15%*, all data entries >= 24* ...

Root \

13 17 24 30

2% | 3 [5 | 7* 14*| 16* 19* 20*| 22* 24% | 27%| 29* 33*| 34*| 38* | 39*

BOSTON ;
UNIVERSITY

Example B+ Tree - Inserting 8*

Root

BOSTON "
UNIVERSITY

Example B+ Tree - Inserting 8*

BOSTON
UNIVERSITY

Root
13 17 24
N\ N\ v £ N\
2* [3* | 5% | 7* 14*| 16* 19% 20*(22* | 23* 24* | 27*| 29*
£\ £\
2* [3* | 5% | 7* 14*| 16* 19*% 20*| 22* | 23* 24* | 27*| 29*

11

Example B+ Tree - Inserting 8*

BOSTON
UNIVERSITY

Root
13 17 24
N\ N\ v £ N\
2* [3* | 5% | 7* 14*| 16* 19% 20*(22* | 23* 24* | 27*| 29*
N\ £\ £ N\ £\
2% | 3* 5 | 7% | 8* 14*| 16* 19*% 20*| 22* | 23* 24* | 27*| 29*

12

Example B+ Tree - Inserting 8*

BOSTON
UNIVERSITY

Root
13 17 24
N\ N\ v £ N\
2* [3* | 5% | 7* 14*| 16* 19% 20*(22* | 23* 24* | 27*| 29*
13 17 24
N\ £\ £ N\ £\
2% | 3* 5 | 7% | 8* 14*| 16* 19*% 20*| 22* | 23* 24* | 27*| 29*

13

Example B+ Tree - Inserting 8*

BOSTON
UNIVERSITY

Root
13 17 24
£ N\ N\ V VR
2* | 3* | 5% | 7* 14*| 16* 19* 20*| 22* | 23* 24* | 27*| 29*
5 13 17 24
y 4 \ b h
N\ £\ £ N\ £ N\
2% | 3* 5 | 7% | 8* 14*| 16* 19* 20*| 22* | 23* 24* | 27*| 29*

14

Example B+ Tree <nserting 21*

2| 3* 5| 7% | 8* 14*|16* 197 20% 22*%| 23*| | 24*| 27*|29*

N

data page split

17

2| 3* 5| 7% | 8* 14*|16* 191 20% 22*| 23" 24*| 27% 29*

UNIVERSITY

Example B+ Tree <nserting 21*

BOSTON
UNIVERSITY

5 |[13 || 17]| 24
2+ | 3* 5+ 7+ 8 14+ 16* 197 209 224 23| [24*] 27| 20
index page split
5 || 13 || 17]| 24
N
2+ 3 5[7+ 8* 14+ 16+ 199 204 21%) 22+ 23+ 24+ 274 29+

16

Example B+ Tree <nserting 21*

2| 3* 5| 7% | 8* 14*|16* 197 20% 22*%| 23*| | 24*| 27*|29*

17

5 13 21 24
Y \ S L <
2* | 3* 5¢ 7*| 8* 14*| 16* 197 20" 21*| 22*|23* 24*| 27% 29*

UNIVERSITY

Example B+ Tree <nserting 21*

2% | 3* 5% 7% | 8* 14*| 16* 19%

17 (| 24

i

* 22* 23*| 24| 27*(29*

Read Cost: logg (N)

Root Update Cost: logy (N) reads
- il \how many 1/Os per insert?
(° N 13 . , 21 24 J

2F| 3 5| 77| 8* 14*|16* 191 207 21% 22*(23* 24*(27*| 29*

BOSTON .
UNIVERSITY

Example B+ Tree <nserting 21*

2% | 3* 5% 7% | 8* 14*| 16* 19%

17 (| 24

i

* 22* 23*| 24| 27*(29*

Read Cost: logg (N)

Root\,\ Update Cost: logg(N) reads
17
|l what about skewed data?
/ \
|15 (] 13 , 21 || 24 \

2F| 3 5| 77| 8* 14*|16* 191 207 21% 22*(23* 24*(27*| 29*

BOSTON .
UNIVERSITY

Example B+ Tree <nserting 21*

2% | 3* 5% 7% | 8* 14*| 16* 19%

17 (| 24

i

* 22* 23*| 24| 27*(29*

Read Cost: logg (N)

Root\,\ Update Cost: logg (N) reads
Il what about growing dataset size?
/ \
| 5 13 | 21 24
2% 3* 5| 7| 8* 14*(16* 1979 207 21*| 22*|23* 24*| 27* 29*

BOSTON .
UNIVERSITY

What are the possible index designs?

Point Short Range Long Range Data Updates

Queries Queries Queries Skew
B+ Trees
LSM Trees
Radix Trees

Hash Indexes
Bitmap Indexes

Scan Accelerators

BOSTON
UNIVERSITY

LSM-trees

Is LSM-tree an index at all?
memory storage

LSM-trees

lookup X memory storage

|

Bloom fence
filters pointers

true : O
: Q

s
true '/'/_
positive .

r
false
positive

What are the possible index designs?

Point Short Range Long Range Data Updates

Queries Queries Queries Skew
B+ Trees <>
LSM Trees X Q

Radix Trees
Hash Indexes
Bitmap Indexes

Scan Accelerators

BOSTON
UNIVERSITY

Radix Trees (special case of tries and prefix B-Trees)

ldea: use common prefixes for internal nodes to reduce size/height!

what about integer keys?

Maximum tree height?
the size of the
longest word!

bow born bond

BOSTON
UNIVERSITY

Radix Trees (special case of tries and prefix B-Trees)

ldea: use common prefixes for internal nodes to reduce size/height!

Binary representation of any domain can be used

Maximum tree height? Maximum tree height?

the size of the
longest word!

0000

8, that is, log, (max _domain_value)
fixed worst case!

bow born bond 5 6 what about data skew?

00000101b 00000110b

BOSTON
UNIVERSITY

What are the possible index designs?

Point Short Range Long Range Data Updates

Queries Queries Queries Skew
B+ Trees O
LSM Trees X O
Radix Trees X O

Hash Indexes
Bitmap Indexes

Scan Accelerators

BOSTON
UNIVERSITY

Hash Indexes (static hashing)

#primary bucket pages fixed, allocated sequentially, never de-allocated; overflow
pages if needed

h(k) mod M = bucket to insert data entry with key k (M: #buckets)

0 —— -
h(key) mod M 1 +— -— ..
key
» h 2 T/ ..
M-1 ——— ...

Primary bucket pages Overflow pages

what if | have skew in the data set (or a bad hash function)?

Hash Indexes (static hashing)

#primary bucket pages fixed, allocated sequentially, never de-allocated; overflow

pages if needed

h(k) mod M = bucket to insert data entry with key k (M: #buckets)

h(key) mod M

ke
y e

0 —— ..

1] ——

2 T— ..
- ..

M-1 ——

Primary bucket pages

‘what about range queries?

Overflow pages

what if | have skew in the data set (or a bad hash function)?

What are the possible index designs?

Point Short Range Long Range Data Updates

Queries Queries Queries Skew
B+ Trees Q
LSM Trees X Q
Radix Trees X Q
Hash Indexes Q X X

Bitmap Indexes

Scan Accelerators

BOSTON
UNIVERSITY

Bitmap Indexes

Speed & Size
Column A A=10 A=20 A=30 _
? N (D fT] Compact representation of query result
20 1] Query result is readily available
30 1
1 1 .
0 Bitvectors
20 1
10 1 |:| Can leverage fast Boolean operators
30 1 v . . .
20 .] Bitwise AND/OR/NOT faster than looping over meta data

~——)]

Bitmap Indexes

Index Size
Column A A=10 A=20 A=30
(30) ' | (1) KSpace-inefﬁcient for domains with large cardinality
20 1
30 1] Addressed by bitvector encoding/compression
10 1 id length ding i i k
f— core idea: run-length encoding in prior wor

20 \1\'§\§

\ .
10 1 encoded bitvectors
30 1
50 . what about updates?

~——)]

ending pattern

/ 10 zeros

B
< ,_
QT
=
Q
Sy T ,_
O “ - - _
e e e e e e e e e e e J
o -
Q
o+
©
(@ o
Q)
+ S =
@) o ©
S N S
Q. o e
U QU \ : , S
o
r 3 S
S m ﬁO — 1T 2
° S
O c ©
F Q o
S S
3 ;
| .
o - - 0000000000 \
“ — — “

What are the possible index designs?

Point Short Range Long Range Data Updates

Queries Queries Queries Skew
B+ Trees Q
LSM Trees X O
Radix Trees X Q
Hash Indexes Q X X
Bitmap Indexes Q Q Q X

Scan Accelerators

BOSTON
UNIVERSITY

Scan Accelerators

Zonemaps

71:[32,72] | Z2:[13,45] | Z3:[1,10] |Zz4:[21,100]| Z5:[28,35] | Z6:[5,12]

Search for 25

BOSTON
UNIVERSITY

Scan Accelerators

Zonemaps
Search for 25

h
71:[32,72] | Z2:[13,45] | Z3:[1,10] |Z4:[21,100]| z5:[28,35] | Z6:[5,12] Search for [5,11]

BOSTON
UNIVERSITY

Scan Accelerators

Zonemaps
Search for 25

h f
Z1:[32,72] | Z2:[13,45] | Z3:[1,10] | Z4:[21,100] | Z5:[28,35] | Z6:(5,12] Search for [5,11]
Search for [31,46]

BOSTON
UNIVERSITY

Scan Accelerators

Zonemaps
Search for 25

h f
Z1:[32,72] | Z2:(13,45] | Z3:[1,10] |Z4:([21,100] | 25:([28,35] | Z6:[5,12] Search for [5,11]
Search for [31,46]

BOSTON
UNIVERSITY

Scan Accelerators

Zonemaps
Search for 25

h f
Z1:[32,72] | Z2:[13,45] | z3:[1,10] |Z4:[21,100] | Z5:[28,35] | Z6:[5,12] Search for [5,11]
Search for [31,46]

if data were sorted:
Search for 25

Z1:[1,15] | Z2:[16,30] | Z3:[31,50] | z4:[50,67] | Z5:[68,85] | Z6: [85,100] Search for [5,11]
Search for [31,46]

BOSTON
UNIVERSITY

Scan Accelerators

Zonemaps
Search for 25

Search for [5,11]
Z1:[32,72] | Z2:[13,45] | Z3:[1,10] | Z4:[21,100] | Z5:[28,35] | Z6:[5,12]
Search for [31,46]

if data were sorted:
Search for 25

Z1:[1,15] | Z2:[16,30] | Z3:[31,50] | Z4:[50,67] | Z5:[68,85] | Z6:[85,100] Search for [5,11]
Search for [31,46]

what if data is perfectly uniformly distributed?

BOSTON

UNIVERSITY

What are the possible index designs?

Point Short Range Long Range Data Updates

Queries Queries Queries Skew
B+ Trees Q
LSM Trees X O
Radix Trees X Q
Hash Indexes Q X X
Bitmap Indexes Q (A Q X
Scan Accelerators X QO O

BOSTON
UNIVERSITY

data structure designs navigate a three-way tradeoff

3

N
Updates

BOSTON
UNIVERSITY

The RUM Conjecture

every access method has a (quantifiable) Read
* read overhead
* update overhead
* memory overhead

the three of which form a competing triangle

we can optimize for two of Update Memory
the overheads at the
expense of the third

BOSTON
UNIVERSITY

what would be an optimal read behavior?

read(x) accesses only the bytes of object X

read(X)
/ how free can an oracle be?
[oracle]

\
] e)

46

BOSTON
UNIVERSITY

what would be an optimal read behavior?

read(x) accesses only the bytes of object X

read(X)
/ how free can an oracle be?
[oracle]

\
] e)

47

BOSTON
UNIVERSITY

what would be an optimal read behavior?

minimum read overhead

bound update overhead

unbounded memory overhead

what would be an optimal update behavior?

always append, and on update invalidate

update (X) changes the minimal number of bytes

s
[@ data A|B|X|C|D

what about reads?
min‘/ -\ min

more data?

what would be an optimal update behavior?

always append, and invalidate on update

update (X) changes the minimal number of bytes

[@ data A|B|X]|C|D

higher read and memory overhead

what would be an optimal memory overhead?

no metadata whatsoever, would result in the smallest memory footprint

scan and in-place updates

[scan and find

/

[X| data

No!
min /“ i min

do we need to reach the optimal(s)?

are there only three overheads?

Read

Update Memory

BOSTON
UNIVERSITY

are there only three overheads?

Point Read Range Read (short/long/full scan)

Delete Update

Insert Memory

PYRUMID overheads

BOSTON
UNIVERSITY

how to decide how to design a data structure?

break it down to design dimensions

BOSTON
UNIVERSITY

1
how to break down the design in independent dimensions? ?\;

how to physically organize the data?

how to search through the data?
can | accelerate search through metadata?
multiple levels of nested organization?
— how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

BOSTON
UNIVERSITY

N
how to break down the design in independent dimensions? ?k

global data organization

how to search through the data?
can | accelerate search through metadata?
multiple levels of nested organization?
_ how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

BOSTON
UNIVERSITY

1
how to break down the design in independent dimensions? ?\\;

global data organization

global search algorithm
can | accelerate search through metadata?
multiple levels of nested organization?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

BOSTON
UNIVERSITY

N
how to break down the design in independent dimensions? ?\g

global data organization

global search algorithm
metadata for searching
multiple levels of nested organization?
— how to update or add new data?
how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

BOSTON
UNIVERSITY

N
how to break down the design in independent dimensions? ?\

global data organization

global search algorithm
metadata for searching
local data organization & search algorithm

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

BOSTON
UNIVERSITY

N
how to break down the design in independent dimensions? ?\r_

global data organization

global search algorithm
metadata for searching

local data organization & search algorithm

— S
how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

BOSTON
UNIVERSITY

N
how to break down the design in independent dimensions? ?\

global data organization

global search algorithm
metadata for searching
local data organization & search algorithm
— modification policy
batching via buffering

should the above decisions be applied eagerly or lazily?

BOSTON
UNIVERSITY

N
how to break down the design in independent dimensions? ?\r_

global data organization

global search algorithm
metadata for searching
local data organization & search algorithm
— modification policy
batching via buffering

adaptivity

BOSTON
UNIVERSITY

data structures design dimensions and their values

global data organization
global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

batching via buffering

adaptivity

BOSTON
UNIVERSITY

how to break down popular designs
to those design decisions?

BOSTON
UNIVERSITY

b+ trees

7t
global data organization range partitioning
global searching (algorithm or index) search tree
local data organization sorted
local search algorithm binary search / scan
modification policy in-place

Workload? 2\,

point and range queries and some modifications

ra nge —

— |- [—|—|—

insert optimized b+ trees

7t
global data organization range partitioning
global searching (algorithm or index) search tree
local data organization logging
local search algorithm binary search / scan
modification policy deferred in-place

Werkiood? 23 A

increased number of modifications
range —

{ M@\)\ 11l

BOSTON
UNIVERSITY

static hashing

global data organization
global searching (algorithm or index)
local data organization
local search algorithm
modification policy

Workload? 2\,

point queries and modifications

BOSTON
UNIVERSITY

7t
hash partitioning
direct addressing (hashing)
logging
scan

in-place

Ism-trees

ral
global data organization partitioned logging
global searching (algorithm or index) filter indexing
local data organization sorted
local search algorithm binary / data-driven search
modification policy out-of-place

Workload? 2\,

modification-heavy with point and range queries

@__)

UNIVERSITY

Projects

A) LSM-tree implementation B) Bufferpool implementation

C) WA quantification for LSMs on SSDs

D) Range deletes in LSMs

E) Query-driven compactions in LSMs

F) Finding the optimal compaction strategy in LSMs to reduce WA
G) Finding the optimal indexing granularity for LSMs

H) Evaluating sorting algorithms for varied data sortedness

1) Measuring robustness in SplinterDB

J) Boosting join performance in Postgres for skewed correlation
K) Benchmarking large-scale graph processing systems

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

CS 561: Data Systems Architectures

Introduction to Indexing:
Trees, Tries, Hashing, Bitmaps: The Whole Design Space

Dr. Subhadeep Sarkar

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

