
A short Introduction to
Storage and Memory Hierarchy

Manos Athanassoulis

What is the memory hierarchy ?

HDD / Shingled HDD

Flash

Main Memory

L3

L2

L1

~2ms

Bigger
Cheaper
Slower

Faster
Smaller
More expensive

~100μs

~100ns

~3ns

<1ns

~10ns

Why have such a hierarchy?

 Which one is faster?

As the gap grows, we need a deeper memory
hierarchy

HDD / Shingled HDD

Flash

Main Memory

L3

L2

L1

~2ms

Bigger
Cheaper
Slower

Faster
Smaller
More expensive

~100μs

~100ns

~3ns

<1ns

~10ns

4

page size ~4KB

block size
(cacheline) 64B

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: Load 5 pages

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 5

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 5

Send for consumption

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 5 Load 5 pages

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 10

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 10 Load 5 pages

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 15

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 15 Load 5 pages

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 20

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#: 20

Send for consumption

What if we had an oracle (index)?

IO cost: Scanning a relation to select 10%

HDD

Main Memory

5-page buffer

IO#:

Index

IO cost: Use an index to select 10%

HDD

Main Memory

5-page buffer

IO#:

Index

Load the index

IO cost: Use an index to select 10%

HDD

Main Memory

5-page buffer

IO#: 1

Index

IO cost: Use an index to select 10%

HDD

Main Memory

5-page buffer

IO#: 1

Index

Load useful pages

IO cost: Use an index to select 10%

HDD

Main Memory

5-page buffer

IO#: 3

Index

What if useful data is in all pages?

Scan or Index ?

HDD

Main Memory

5-page buffer

IO#:

Index

Scan or Index ?

HDD

Main Memory

5-page buffer

IO#: 20 with scan

Index

IO#: 21 with index

HDD / Shingled HDD

Flash

Main Memory

L3

L2

L1

~2ms

Bigger
Cheaper
Slower

Faster
Smaller
More expensive

~100μs

~100ns

~3ns

<1ns

~10ns

Cache Hierarchy

L3

L2

L1

What is a core?

What is a socket?

Cache Hierarchy
Shared Cache: L3 (or LLC: Last Level Cache)

L3 is physically distributed in multiple sockets

L2 is physically distributed in every core of every socket

Each core has its own private L1 & L2 cache
All levels need to be coherent*

L3

L2

L1 L1 L1 L1

0 1 2 3

L2 L2 L2

Core 0 reads faster when data are in its L1

If it does not fit, it will go to L2, and then in L3

Can we control where data is placed?

We would like to avoid going to L2 and L3 altogether

But, at least we want to avoid to remote L2 and L3

And remember: this is only one socket!
We have multiple of those!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

L2 L2 L2 L2

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
hit!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
miss!

Cache
hit!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
miss!

Cache
hit!

Cache
miss!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
miss!

LLC
miss!

Cache
miss!

Non Uniform Memory Access (NUMA)

0 1 2 3

L3

L1 L1 L1 L1

0 1 2 3

L3

L1 L1 L1 L1

Main Memory

L2 L2 L2 L2 L2 L2 L2 L2

Cache
miss!

NUMA
access!

Cache
miss!

Why knowing the cache hierarchy matters
int arraySize;
for (arraySize = 1024/sizeof(int) ; arraySize <= 2*1024*1024*1024/sizeof(int) ; arraySize*=2)
// Create an array of size 1KB to 4GB and run a large arbitrary number of operations
{
 int steps = 64 * 1024 * 1024; // Arbitrary number of steps
 int* array = (int*) malloc(sizeof(int)*arraySize); // Allocate the array
 int lengthMod = arraySize - 1;

 // Time this loop for every arraySize
 int i;
 for (i = 0; i < steps; i++)
 {
 array[(i * 16) & lengthMod]++;
 // (x & lengthMod) is equal to (x % arraySize)
 }
}

256KB

16MB

This machine has:
256KB L2 per core
16MB L3 per socket

NUMA!

Storage Hierarchy
Why not stay in memory?

Cost

Volatility

What was missing from memory hierarchy?

Durability

Capacity

Storage Hierarchy

HDD

Flash

Main Memory

Shingled Disks

Tape

Storage Hierarchy

HDD

Flash

Main Memory

Shingled Disks

Tape

Disks
Secondary durable storage that support both random and sequential access

● Data organized on pages/blocks (accross tracks)
● Multiple tracks create an (imaginary) cylinder
● Disk access time:

seek latency + rotational delay + transfer time
(0.5-2ms) + (0.5-3ms) + <0.1ms/4KB

● Sequential >> random access (~10x)
● Goal: avoid random access

Seek time + Rotational delay + Transfer time
Seek time: the head goes to the right track

Short seeks are dominated by “settle” time
(D is on the order of hundreds or more)

Rotational delay: The platter rotates to the right sector.
What is the min/max/avg rotational delay for 10000RPM disk?

Transfer time: <0.1ms / page → more than 100MB/s

Flash
Secondary durable storage that support both random and sequential access

● Data organized on pages (similar to disks) which are further grouped to erase blocks
● Main advantage over disks: random read is now much more efficient
● BUT: Slow random writes!
● Goal: avoid random writes

The internals of flash

Flash access time
… depends on:

● device organization (internal parallelism)
● software efficiency (driver)
● bandwidth of flash packages
● Flash Translation Layer (FTL), a complex device driver (firmware) which

○ tunes performance and device lifetime

Flash vs HDD
HDD

✓ Large - cheap capacity

✗ Inefficient random reads

Flash

✗ Small - expensive capacity

✓ Very efficient random reads

✗ Read/Write Asymmetry

Storage Hierarchy

HDD

Flash

Main Memory

Shingled Disks

Tape

Tapes
Data size grow exponentially!

Cheaper capacity:

● Increase density (bits/in2)
● Simpler devices

Tapes:

● Magnetic medium that allows
only sequential access
(yes like an old school tape)

Very difficult to differentiate between tracks
“settle” time becomes

Increasing disk density
Writing a track affects neighboring tracks
Create different readers/writers
Interleave writes tracks

Memory/Storage Hierarchy

Access granularity (pages, blocks, cache-lines)

Memory Wall → deeper and deeper hierarchy

Next week: Algorithm design with a good understanding of the hierarchy
 -- External Sorting
 -- Cache-conscious algorithms

Summary

