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What is the memory hierarchy ?
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Why have such a hierarchy?
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What if we had an oracle (index)?
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What if useful data is in all pages?



Scan or

5-page buffer

Main Memory

|O#:

HDD




Scan or

5-page buffer

Main Memory

|O#: 20 with scan

HDD




Faster
Smaller
More expensive

Cheaper

Slower
/ Main Memory ~100ns \

/ Flash ~100us \

/ HDD / Shingled HDD ~2ms \




Cache Hierarchy

What is a core?

What is a socket?

<10 cycles

N rer=—
WL LA A /

Core Core Core Core Core Core Core Core

|L1 | | L1||L1 U ||L1 | | L1]|L1

| |
e J e (e L] | (R L) L] [ ] /
| ¥ !

[
!! Memory controller | | Memory controller |— !!
Inter-socket links Inter-socket links /




Cache Hierarchy

Shared Cache: L3 (or LLC: Last Level Cache)
L3 is physically distributed in multiple sockets
L2 is physically distributed in every core of every socket

0 1 2 3
Each core has its own private L1 & L2 cache

All levels need to be coherent* L1 L1 L1 L1
/L2\/L2\/L2\/L2\
/ : \




Non Uniform Memory Access (NUMA)

Core 0 reads faster when data are in its L1
If it does not fit, it will go to L2, and then in L3

Can we control where data is placed?

0 1 2 3
We would like to avoid going to L2 and L3 altogether
L1 L1 L1 L1

But, at least we want to avoid to remote L2 and L3

And remember: this is only one socket! / L2 \/ L2 \/ L2 \/ L2 \

We have multiple of those!
/ : \




Non Uniform Memory Access (NUMA)
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Non Uniform Memory Access (NUMA)
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Non Uniform Memory Access (NUMA)
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Why knowing the cache hierarchy matters

int arraySize;
for (arraySize = 1024/sizeof(int) ; arraySize <= 2*¥1024*1024*1024/sizeof(int) ; arraySize*=2)
// Create an array of size 1KB to 4GB and run a large arbitrary number of operations
{
int steps = 64 * 1024 * 1024, // Arbitrary number of steps
int* array = (int*) malloc(sizeof(int)*arraySize); // Allocate the array
int lengthMod = arraySize - 1;

Time this loop for every arraySize :
/ P 4 Y Time per step (ns)

inti;
for (i = 0; i < steps; i++)
{ 14
array[(i * 16) & lengthMod]++;
, // (x & lengthMod) is equal to (x % arraySize) .§12 NUMA
> a 10
g g 16MB
_ _ & 6 256KB
This machine has: E ,
256KB L2 per core 5
16MB L3 per socket 2
0
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Array size (KB)



Storage Hierarchy

Why not stay in memory?
Cost
Volatility

What was missing from memory hierarchy?
Durability

Capacity



Storage Hierarchy
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Disks

Secondary durable storage that support both random and sequential access

e Data organized on pages/blocks (accross tracks)
e Multiple tracks create an (imaginary) cylinder
Disk access time:
seek latency + rotational delay + transfer time
(0.5-2ms) + (0.5-3ms) + <0.1ms/4KB
e Sequential >> random access (~10x)
Goal: avoid random access
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Disk head
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Seek time + Rotational delay + Transfer time

Seek Profile of a Modern Disk Drive

Seek time: the head goes to the right track

Short seeks are dominated by “settle” time
(D is on the order of hundreds or more)

Seek time [ms]

Rotational delay: The platter rotates to the right sector. 0 Seekdistance | VAX
What is the min/max/avg rotational delay for 10000RPM disk? ’\

Transfer time: <0.1ms / page — more than 100MB/s

Head Here =~ \~ /'

Block I Want



Flash

Secondary durable storage that support both random and sequential access

Data organized on pages (similar to disks) which are further grouped to erase blocks
Main advantage over disks: random read is now much more efficient

BUT: Slow random writes!
Goal: avoid random writes




The internals of flash

Flash Package
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Flash access time

... depends on:

device organization (internal parallelism)
software efficiency (driver)
bandwidth of flash packages

Flash Translation Layer (FTL), a complex device driver (firmware) which
o tunes performance and device lifetime



Flash vs HDD

HDD Flash
v Large - cheap capacity X Small - expensive capacity
X Inefficient random reads v Very efficient random reads

X Read/Write Asymmetry

@E-SSD e C-SSD
+E-HDD X C-HDD

0‘1 ; ' ;
0.03125 0.125 0.5 8 32

Capacity (GB/S)

Performance (kIOPS)



Storage Hierarchy
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Tapes

Data size grow exponentially!
Cheaper capacity:

e Increase density (bits/in?)
e Simpler devices

Tapes:

e Magnetic medium that allows
only sequential access
(yes like an old school tape)




Increasing disk density

Writing a track affects neighboring tracks
Create different readers/writers
Interleave writes tracks

Very difficult to differentiate between tracks
“settle” time becomes

Seek Profile of a Modern Disk Drive Conventional Writes
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Summary

Memory/Storage Hierarchy
Access granularity (pages, blocks, cache-lines)

Memory Wall — deeper and deeper hierarchy

Next week: Algorithm design with a good understanding of the hierarchy
-- External Sorting
-- Cache-conscious algorithms



