
System Performance Tools: perf
CS165: Data Systems — Fall 2015
October 28, 2015

This document provides a short introduction to tools commonly used for
systems profiling. We cover profiling with perf through examples. This
tutorial is based amongst other sources on https://perf.wiki.kernel.

org/index.php/Tutorial. Other good tutorials can be found at http://
www.brendangregg.com/perf.html and http://sandsoftwaresound.net/

perf/perf-tutorial-hot-spots/.

Profiling with perf

Perf is a profiler tool for Linux 2.6+ based systems that abstracts away
CPU hardware differences in Linux performance measurements and
presents a simple command-line interface. Perf is based on the perf_events
interface exported by recent versions of the Linux kernel. Here we
demonstrates the perf tool through example runs. Output was ob-
tained on a Debian Wheezy 7.9 system with kernel 3.18.11 results
running on a 4-socket Intel Xeon E7-4820 v2 Ivy Bridge)1. For read- 1 This is in fact the machine we are using

for the testsability, some output is abbreviated using ellipsis ([...]).

Commands. The perf tool offers a rich set of commands to collect
and analyze performance and trace data. The command line usage is
reminiscent of git in that there is a generic tool, perf, which implements
a set of commands: stat, record, report, [...]

The list of supported commands:

$perf

usage: perf [--version] [--help] COMMAND [ARGS]

The most commonly used perf commands are:

annotate Read perf.data (created by perf record) and display annotated code

archive Create archive with object files with build-ids found in perf.data file

bench General framework for benchmark suites

buildid-cache Manage <tt>build-id</tt> cache.

buildid-list List the buildids in a perf.data file

diff Read two perf.data files and display the differential profile

inject Filter to augment the events stream with additional information

kmem Tool to trace/measure kernel memory(slab) properties

kvm Tool to trace/measure kvm guest os

list List all symbolic event types

lock Analyze lock events

probe Define new dynamic tracepoints

record Run a command and record its profile into perf.data

report Read perf.data (created by perf record) and display the profile

sched Tool to trace/measure scheduler properties (latencies)

https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
http://sandsoftwaresound.net/perf/perf-tutorial-hot-spots/
http://sandsoftwaresound.net/perf/perf-tutorial-hot-spots/

system performance tools: perf 2

script Read perf.data (created by perf record) and display trace output

stat Run a command and gather performance counter statistics

test Runs sanity tests.

timechart Tool to visualize total system behavior during a workload

top System profiling tool.

Certain commands require special support in the kernel and may
not be available. To obtain the list of options for each command, sim-
ply type the command name followed by -h:

$perf stat -h

usage: perf stat [<options>] [<command>]

-e, --event <event> event selector. use ’perf list’ to list available events

-i, --no-inherit child tasks do not inherit counters

-p, --pid <n> stat events on existing process id

-t, --tid <n> stat events on existing thread id

-a, --all-cpus system-wide collection from all CPUs

-c, --scale scale/normalize counters

-v, --verbose be more verbose (show counter open errors, etc)

-r, --repeat <n> repeat command and print average + stddev (max: 100)

-n, --null null run - dont start any counters

-B, --big-num print large numbers with thousands’ separators

Events. The perf tool supports a list of measurable events. The
tool and underlying kernel interface can measure events coming from
different sources. For instance, some event are pure kernel counters, in
this case they are called software events. Examples include: context-
switches, minor-faults.

Another source of events is the processor itself and its Performance
Monitoring Unit (PMU). It provides a list of events to measure micro-
architectural events such as the number of cycles, instructions retired,
L1 cache misses and so on. Those events are called PMU hardware
events or hardware events for short. They vary with each processor
type and model.

The perf_events interface also provides a small set of common hard-
ware events monikers. On each processor, those events get mapped
onto an actual events provided by the CPU, if they exists, otherwise
the event cannot be used. Somewhat confusingly, these are also called
hardware events and hardware cache events.

Finally, there are also tracepoint events which are implemented by
the kernel ftrace infrastructure. Those are only available with the 2.6.3x
and newer kernels.

To obtain a list of supported events2: 2 All available events in our
server can be found here
http://daslab.seas.harvard.edu/

servers/adama/perf_events.txt

$ perf list

http://daslab.seas.harvard.edu/servers/adama/perf_events.txt
http://daslab.seas.harvard.edu/servers/adama/perf_events.txt

system performance tools: perf 3

An event can have sub-events (or unit masks). On some proces-
sors and for some events, it may be possible to combine unit masks
and measure when either sub-event occurs. Finally, an event can have
modifiers, i.e., filters which alter when or how the event is counted.

Counting with perf stat

For any of the supported events, perf can keep a running count during
process execution. In counting modes, the occurrences of events are
simply aggregated and presented on standard output at the end of an
application run. To generate these statistics, use the stat command of
perf. For instance:

$ perf stat -B dd if=/dev/zero of=/dev/null count=1000000

would give:

1000000+0 records in

1000000+0 records out

512000000 bytes (512 MB) copied, 0.407795 s, 1.3 GB/s

Performance counter stats for ’dd if=/dev/zero of=/dev/null count=1000000’:

408.479346 task-clock (msec) # 0.998 CPUs utilized

8 context-switches # 0.020 K/sec

0 cpu-migrations # 0.000 K/sec

76 page-faults # 0.186 K/sec

1,020,659,628 cycles # 2.499 GHz

400,205,489 stalled-cycles-frontend # 39.21% frontend cycles idle

<not supported> stalled-cycles-backend

1,643,498,017 instructions # 1.61

insns per cycle

0.24

stalled cycles per insn

332,324,072 branches # 813.564 M/sec

1,012,543 branch-misses # 0.30% of all branches

0.409323105 seconds time elapsed

With no events specified, perf stat collects the common events listed
above. Some are software events, such as context-switches, others are
generic hardware events such as cycles. After the hash sign, derived
metrics may be presented, such as ’IPC’ (instructions per cycle).

system performance tools: perf 4

Options controlling event selection

It is possible to measure one or more events per run of the perf tool.
Events are designated using their symbolic names followed by optional
unit masks and modifiers. Event names, unit masks, and modifiers are
case insensitive.

By default, events are measured at both user and kernel levels:

$ perf stat -e cycles dd if=/dev/zero of=/dev/null count=100000

To measure only at the user level, it is necessary to pass a modifier:

$ perf stat -e cycles:u dd if=/dev/zero of=/dev/null count=100000

To measure both user and kernel (explicitly):

$ perf stat -e cycles:uk dd if=/dev/zero of=/dev/null count=100000

Measure multiple events. To measure more than one event, simply
provide a comma-separated list with no space:

$ perf stat -e cycles,instructions,cache-misses [...]

There is no theoretical limit in terms of the number of events that
can be provided. If there are more events than there are actual hw
counters, the kernel will automatically multiplex them. There is no
limit of the number of software events. It is possible to simultane-
ously measure events coming from different sources. However, given
that there is one file descriptor used per event and either per-thread
(per-thread mode) or per-cpu (system-wide), it is possible to reach the
maximum number of open file descriptor per process as imposed by
the kernel. In that case, perf will report an error. See the troubleshoot-
ing section for help with this matter.

Multiplexing and scaling events. If there are more events than coun-
ters, the kernel uses time multiplexing (switch frequency = HZ, gener-
ally 100 or 1000) to give each event a chance to access the monitoring
hardware. Multiplexing only applies to PMU events. With multiplex-
ing, an event is not measured all the time. At the end of the run, the
tool scales the count based on total time enabled vs time running. The
actual formula is:

final_count = raw_count * time_enabled/time_running

This provides an estimate of what the count would have been, had
the event been measured during the entire run. It is very important to
understand this is an estimate not an actual count. Depending on the
workload, there will be blind spots which can introduce errors during
scaling.

Events are currently managed in round-robin fashion. Therefore
each event will eventually get a chance to run. If there are N counters,

system performance tools: perf 5

then up to the first N events on the round-robin list are programmed
into the PMU. In certain situations it may be less than that because
some events may not be measured together or they compete for the
same counter. Furthermore, the perf_events interface allows multiple
tools to measure the same thread or CPU at the same time. Each event
is added to the same round-robin list. There is no guarantee that all
events of a tool are stored sequentially in the list.

To avoid scaling (in the presence of only one active perf_event user),
one can try and reduce the number of events. The following table
provides the number of counters for a few common processors (the
testing server is an Ivy Bridge):

Processor Generic Counters Fixed Counters
Intel Core 2 3

Intel Nehalem 4 3

Intel Ivy Bridge (HT on) 4 3

Intel Ivy Bridge (HT off) 8 3

Generic counters can measure any event. Fixed counters can only
measure one event. Some counters may be reserved for special pur-
poses, such as a watchdog timer.

The following examples show the effect of scaling3: 3 Here we use the noploop
benchmark: http://www.

brendangregg.com/blog/2014-04-26/

the-noploop-cpu-benchmark.html

$ perf stat -B -e cycles,cycles,cycles ./noploop

Performance counter stats for ’./noploop’:

5,044,187,042 cycles

5,044,187,030 cycles

5,044,187,030 cycles

2.019098080 seconds time elapsed

Here, there is no multiplexing and thus no scaling. Let’s add one
more event:

$ perf stat -B -e cycles,cycles,cycles,cycles,cycles,cycles ./noploop

Performance counter stats for ’./noploop’:

5,042,263,226 cycles [83.36%]

5,042,138,165 cycles [83.36%]

5,042,174,429 cycles [83.36%]

5,041,937,370 cycles [83.36%]

5,042,137,362 cycles [83.36%]

5,033,444,804 cycles [83.33%]

http://www.brendangregg.com/blog/2014-04-26/the-noploop-cpu-benchmark.html
http://www.brendangregg.com/blog/2014-04-26/the-noploop-cpu-benchmark.html
http://www.brendangregg.com/blog/2014-04-26/the-noploop-cpu-benchmark.html

system performance tools: perf 6

2.020170625 seconds time elapsed

Repeated measurement. It is possible to use perf stat to run the
same test workload multiple times and get for each count, the standard
deviation from the mean.

$ perf stat -r 5 sleep 1

Performance counter stats for ’sleep 1’ (5 runs):

0.465979 task-clock (msec) # 0.000 CPUs utilized

(+- 2.15%)

1 context-switches # 0.002 M/sec

0 cpu-migrations # 0.000 K/sec

56 page-faults # 0.119 M/sec

(+- 1.22%)

1,134,026 cycles # 2.434 GHz

(+- 2.17%)

826,792 stalled-cycles-frontend # 72.91% frontend cycles idle

(+- 3.08%)

<not supported> stalled-cycles-backend

617,402 instructions # 0.54

insns per cycle

1.34

stalled cycles per insn (+- 1.02%)

137,798 branches # 295.716 M/sec

(+- 1.01%)

6,991 branch-misses # 5.07% of all branches

(+- 0.62%)

1.001362075 seconds time elapsed

(+- 0.00%)

Options controlling environment selection

The perf tool can be used to count events on a per-thread, per-process,
per-cpu or system-wide basis. In per-thread mode, the counter only
monitors the execution of a designated thread. When the thread is
scheduled out, monitoring stops. When a thread migrated from one
processor to another, counters are saved on the current processor and
are restored on the new one.

The per-process mode is a variant of per-thread where all threads
of the process are monitored. Counts and samples are aggregated
at the process level. The perf_events interface allows for automatic

system performance tools: perf 7

inheritance on fork() and pthread_create(). By default, the perf tool
activates inheritance.

In per-cpu mode, all threads running on the designated processors
are monitored. Counts and samples are thus aggregated per CPU.
An event is only monitoring one CPU at a time. To monitor across
multiple processors, it is necessary to create multiple events. The perf
tool can aggregate counts and samples across multiple processors. It
can also monitor only a subset of the processors.

Counting and inheritance. By default, perf stat counts for all threads
of the process and subsequent child processes and threads. This can
be altered using the -i option. It is not possible to obtain a count
breakdown per-thread or per-process.

Processor-wide mode. By default, perf stat counts in per-thread
mode. To count on a per-cpu basis pass the -a option. When it is
specified by itself, all online processors are monitored and counts are
aggregated. For instance:

$ perf stat -B -ecycles:u,instructions:u -a dd if=/dev/zero of=/dev/null count=2000000

2000000+0 records in

2000000+0 records out

1024000000 bytes (1.0 GB) copied, 0.811336 s, 1.3 GB/s

Performance counter stats for ’system wide’:

439,673,000 cycles:u [100.00%]

633,677,536 instructions:u #1.44 IPC

0.812883452 seconds time elapsed

This measurement collects events cycles and instructions across all
CPUs. The duration of the measurement is determined by the execu-
tion of dd. In other words, this measurement captures execution of the
dd process and anything else than runs at the user level on all CPUs.

To time the duration of the measurement without actively consum-
ing cycles, it is possible to use the =/usr/bin/sleep= command:

$ perf stat -B -ecycles:u,instructions:u -a sleep 5

Performance counter stats for ’system wide’:

61,339,632 cycles:u [100.00%]

73,528,386 instructions:u #1.20 IPC

5.001298458 seconds time elapsed

system performance tools: perf 8

It is possible to restrict monitoring to a subset of the CPUS using
the -C option. A list of CPUs to monitor can be passed. For instance,
to measure on CPU0, CPU2 and CPU3:

$ perf stat -B -e cycles:u,instructions:u -a -C 0,2-3 sleep 5

Performance counter stats for ’system wide’:

51,150 cycles:u [100.00%]

12,189 instructions:u #0.24 IPC

5.001239100 seconds time elapsed

Counts are aggregated across all the monitored CPUs. Notice how
the number of counted cycles and instructions are reduced dramati-
cally when measuring only 3 CPUs (out of 64).

Attaching to a running process. It is possible to use perf to attach to
an already running thread or process. This requires the permission to
attach along with the thread or process ID. To attach to a process, the
-p option must be the process ID. To attach to the sshd service that is
commonly running on many Linux machines, issue:

$ ps ax | fgrep sshd

4625 ? Ss 0:01 /usr/sbin/sshd

104078 ? Ss 0:00 sshd: manos [priv]

104083 ? S 0:00 sshd: manos@pts/1

104349 pts/1 S+ 0:00 fgrep sshd

$ perf stat -e cycles -p 4625 sleep 2

Performance counter stats for process id ’4625’:

<not counted> cycles

2.001250972 seconds time elapsed

What determines the duration of the measurement is the command
to execute. Even though we are attaching to a process, we can still pass
the name of a command. It is used to time the measurement. Without
it, perf monitors until it is killed. Also note that when attaching to a
process, all threads of the process are monitored. Furthermore, given
that inheritance is on by default, child processes or threads will also
be monitored. To turn this off, you must use the -i option. It is pos-
sible to attach a specific thread within a process. By thread, we mean
kernel visible thread. In other words, a thread visible by the ps or top
commands. To attach to a thread, the -t option must be used. We look
at rsyslogd, because it always runs on Debian, with multiple threads.

system performance tools: perf 9

$ ps -L ax | fgrep rsyslogd | head -5

3735 3735 ? Sl 0:00 /usr/sbin/rsyslogd -c5

3735 3742 ? Sl 0:33 /usr/sbin/rsyslogd -c5

3735 3743 ? Sl 0:07 /usr/sbin/rsyslogd -c5

3735 3744 ? Sl 0:00 /usr/sbin/rsyslogd -c5

104358 104358 pts/1 S+ 0:00 fgrep rsyslogd

$ perf stat -e cycles -t 3742 sleep 2

Performance counter stats for thread id ’3742’:

<not counted> cycles

2.001415190 seconds time elapsed

Sampling with perf record

The perf tool can be used to collect profiles on per-thread, per-process
and per-cpu basis.

There are several commands associated with sampling: record, re-
port, annotate. You must first collect the samples using perf record.
This generates an output file called perf.data. That file can then be
analyzed, possibly on another machine, using the perf report and perf
annotate commands.4 4 The model is fairly similar to that of

OProfile.
Event-based sampling overview. Perf_events is based on event-based
sampling. The period is expressed as the number of occurrences of an
event, not the number of timer ticks. A sample is recorded when the
sampling counter overflows, i.e., wraps from 264 back to 0. No PMU
implements 64-bit hardware counters, but perf_events emulates such
counters in software.

The way perf_events emulates 64-bit counter is limited to express-
ing sampling periods using the number of bits in the actual hardware
counters. If this is smaller than 64, the kernel silently truncates the
period in this case. Therefore, it is best if the period is always smaller
than 231 if running on 32-bit systems.

On counter overflow, the kernel records information, i.e., a sample,
about the execution of the program. What gets recorded depends on
the type of measurement. This is all specified by the user and the tool.
But the key information that is common in all samples is the instruc-
tion pointer, i.e. where was the program when it was interrupted.

Interrupt-based sampling introduces skids on modern processors.
That means that the instruction pointer stored in each sample des-
ignates the place where the program was interrupted to process the
PMU interrupt, not the place where the counter actually overflows,
i.e., where it was at the end of the sampling period. In some case, the

system performance tools: perf 10

distance between those two points may be several dozen instructions
or more if there were taken branches. When the program cannot make
forward progress, those two locations are indeed identical. For this
reason, care must be taken when interpreting profiles.

Default event: cycle counting. By default, perf record uses the cycles
event as the sampling event. This is a generic hardware event that is
mapped to a hardware-specific PMU event by the kernel. For Intel, it
is mapped to UNHALTED_CORE_CYCLES. This event does not main-
tain a constant correlation to time in the presence of CPU frequency
scaling. Intel provides another event, called UNHALTED_REFERENCE_CYCLES
but this event is NOT currently available with perf_events.

On AMD systems, the event is mapped to CPU_CLK_UNHALTED
and this event is also subject to frequency scaling. On any Intel or
AMD processor, the cycle event does not count when the processor is
idle, i.e., when it calls mwait().

Period and rate. The perf_events interface allows two modes to ex-
press the sampling period: (1) the number of occurrences of the event
(period), and (2) the average rate of samples/sec (frequency).

The perf tool defaults to the average rate. It is set to 1000Hz, or 1000

samples/sec. That means that the kernel is dynamically adjusting the
sampling period to achieve the target average rate. The adjustment
in period is reported in the raw profile data. In contrast, with the
other mode, the sampling period is set by the user and does not vary
between samples. There is currently no support for sampling period
randomization.

Collecting samples. By default, perf record operates in per-thread
mode, with inherit mode enabled. The simplest mode looks as follows,
when executing the noloop benchmark (which is busy looping):

$ perf record ./noploop

[perf record: Woken up 2 times to write data]

[perf record: Captured and wrote 0.322 MB perf.data (~14055 samples)]

The example above collects samples for event cycles at an aver-
age target rate of 1000Hz. The resulting samples are saved into the
perf.data file. If the file already existed, you may be prompted to pass
-f to overwrite it. To put the results in a specific file, use the -o option.

WARNING: The number of reported samples is only an estimate. It
does not reflect the actual number of samples collected. The estimate
is based on the number of bytes written to the perf.data file and the
minimal sample size. But the size of each sample depends on the type
of measurement. Some samples are generated by the counters them-
selves but others are recorded to support symbol correlation during
post-processing, e.g., mmap() information.

system performance tools: perf 11

To get an accurate number of samples for the perf.data file, it is
possible to use the perf report command:

$ perf report -D -i perf.data | fgrep RECORD_SAMPLE | wc -l

8151

To specify a custom rate, it is necessary to use the -F option. For
instance, to sample on event instructions only at the user level and at
an average rate of 250 samples/sec:

$ perf record -e instructions:u -F 250 ./noploop

[perf record: Woken up 1 times to write data]

[perf record: Captured and wrote 0.030 MB perf.data (~1322 samples)]

To specify a sampling period, instead, the -c option must be used.
For instance, to collect a sample every 2000 occurrences of event in-
structions only at the user level only:

$ perf record -e instructions:u -c 2000 ./noploop

[perf record: Woken up 7 times to write data]

[perf record: Captured and wrote 1.699 MB perf.data (~74222 samples)]

Processor-wide mode. In per-cpu mode, samples are collected for all
threads executing on the monitored CPU. To switch perf record in per-
cpu mode, the -a option must be used. By default in this mode, ALL
online CPUs are monitored. It is possible to restrict to the a subset of
CPUs using the -C option, as explained with perf stat above.

Sample analysis with perf report

Samples collected by perf record are saved into a binary file called,
by default, perf.data. The perf report command reads this file and
generates a concise execution profile. By default, samples are sorted
by functions with the most samples first. It is possible to customize
the sorting order and therefore to view the data differently.

To sample on cycles at both user and kernel levels for 5s on all CPUS
with an average target rate of 1000 samples/sec:

$ perf record -a -F 1000 sleep 5

and the report:

$ perf report

Samples: 527 of event ’cycles’

Event count (approx.): 456470131

Overhead Command Shared Object Symbol

........

#

27.54% swapper [kernel.kallsyms] [k] 0xffffffff8124897a

system performance tools: perf 12

3.90% tmux [kernel.kallsyms] [k] 0xffffffff8113ac61

3.86% perf_3.18 [kernel.kallsyms] [k] 0xffffffff810908f1

3.21% swapper [kernel.kallsyms] [k] 0xffffffff8107be14

3.06% swapper [kernel.kallsyms] [k] 0xffffffff8103908a

2.58% swapper [kernel.kallsyms] [k] 0xffffffff81042d2c

2.56% sleep [kernel.kallsyms] [k] 0xffffffff81124aff

1.90% swapper [kernel.kallsyms] [k] 0xffffffff8106310d

1.07% swapper [kernel.kallsyms] [k] 0xffffffff8106fca1

1.07% htop [kernel.kallsyms] [k] 0xffffffff81137422

The column ’Overhead’ indicates the percentage of the overall sam-
ples collected in the corresponding function. The second column re-
ports the process from which the samples were collected. In per-
thread/per-process mode, this is always the name of the monitored
command. But in cpu-wide mode, the command can vary. The third
column shows the name of the ELF image where the samples came
from. If a program is dynamically linked, then this may show the name
of a shared library. When the samples come from the kernel, then the
pseudo ELF image name [kernel.kallsyms] is used. The fourth column
indicates the privilege level at which the sample was taken, i.e. when
the program was running when it was interrupted:

. : user level
k : kernel level
g : guest kernel level (virtualization)
u : guest os user space
H : hypervisor

The final column shows the symbol name. There are many different
ways samples can be presented, i.e., sorted. To sort by shared objects,
i.e., dsos:

$ perf report --sort=dso

Samples: 527 of event ’cycles’

Event count (approx.): 456470131

#

Overhead Shared Object

........

88.18% [kernel.kallsyms]

11.82% [unknown]

Processor-wide mode. In per-cpu mode, samples are recorded from
all threads running on the monitored CPUs. As as result, samples
from many different processes may be collected. For instance, if we
monitor across all CPUs for 5s:

system performance tools: perf 13

$ perf record -a sleep 5

$ perf report

Samples: 1K of event ’cycles’

Event count (approx.): 367549016

#

Overhead Command Shared Object Symbol

........

#

12.01% swapper [kernel.kallsyms] [k] 0xffffffff8124897a

2.17% htop [kernel.kallsyms] [k] 0xffffffff8106fca1

1.32% perf_3.18 [kernel.kallsyms] [k] 0xffffffff810908ee

0.99% htop [unknown] [.] 0x00007f17db4a2910

0.95% perf_3.18 [kernel.kallsyms] [k] 0xffffffff810908f1

0.73% htop [kernel.kallsyms] [k] 0xffffffff8117460d

0.67% htop [kernel.kallsyms] [k] 0xffffffff811262af

0.67% htop [kernel.kallsyms] [k] 0xffffffff811fb565

0.67% htop [unknown] [.] 0x00007f17db418aaa

0.60% swapper [kernel.kallsyms] [k] 0xffffffff8105e49f

0.51% htop [kernel.kallsyms] [k] 0xffffffff8106f636

0.51% htop [kernel.kallsyms] [k] 0xffffffff81137392

0.51% htop [unknown] [.] 0x00007f17db421a04

0.51% htop [kernel.kallsyms] [k] 0xffffffff813d08cb

0.50% htop [unknown] [.] 0x00007f17db418aac

[...]

When the symbol is printed as an hexadecimal address, this is be-
cause the ELF image does not have a symbol table. This happens when
binaries are stripped. We can sort by cpu as well. This could be useful
to determine if the workload is well balanced:

$ # Samples: 1K of event ’cycles’

Event count (approx.): 367549016

#

Overhead CPU

........ ...

#

68.84% 001

4.68% 000

3.06% 029

3.00% 026

1.25% 017

1.10% 004

0.93% 043

0.87% 015

0.64% 032

system performance tools: perf 14

0.57% 008

0.56% 013

0.54% 014

0.52% 022

[...]

Overhead calculation. The overhead can be shown in two columns as
’Children’ and ’Self’ when perf collects callchains. The ’self’ overhead
is simply calculated by adding all period values of the entry - usually
a function (symbol). This is the value that perf shows traditionally and
sum of all the ’self’ overhead values should be 100%.

The ’children’ overhead is calculated by adding all period values of
the child functions so that it can show the total overhead of the higher
level functions even if they don’t directly execute much. ’Children’
here means functions that are called from another (parent) function.

It might be confusing that the sum of all the ’children’ overhead
values exceeds 100% since each of them is already an accumulation of
’self’ overhead of its child functions. But with this enabled, users can
find which function has the most overhead even if samples are spread
over the children.

Consider the following example:

1 void foo(void)

2 {

3 int i=0,j=0;

4 for (i=0;i<10000000;i++)

5 j=i%13;

6 }

7

8 void bar(void)

9 {

10 int i=0,j=0;

11 for (i=0;i<10000000;i++)

12 j=i%13;

13 foo();

14 }

15

16 int main(void)

17 {

18 bar();

19 return 0;

20 }

In this case ’foo’ is a child of ’bar’, and ’bar’ is an immediate child
of ’main’ so ’foo’ also is a child of ’main’. In other words, ’main’ is a
parent of ’foo’ and ’bar’, and ’bar’ is a parent of ’foo’.

system performance tools: perf 15

Suppose all samples are recorded in ’foo’ and ’bar’ only. When it’s
recorded with callchains the output will show something like below in
the usual (self-overhead-only) output of perf report:

$ perf record -g ./overhead

$ perf report -g

Overhead Command Shared Object Symbol

........

#

53.93% overhead overhead [.] bar

|

--- bar

main
__libc_start_main

41.01% overhead overhead [.] foo

|

--- foo

bar

main
__libc_start_main

2.25% overhead [kernel.kallsyms] [k] context_tracking_user_enter

|

--- context_tracking_user_enter

|

|--50.00%-- syscall_trace_leave

| int_check_syscall_exit_work

| |

| |--50.00%-- mmap64

| |

| --50.00%-- open64

| _dl_map_object

|

|--25.00%-- do_page_fault

| page_fault

| __cxa_atexit

| 0x41d589495541f689

|

--25.00%-- do_notify_resume

int_signal

munmap
_dl_sysdep_start

	Profiling with perf

