
Systems Development Basics: Debugging and Perfor-
mance Tools
CS165: Data Systems — Fall 2015
September 15, 2015

This document provides a short introduction to tools commonly used
for systems development. We cover basic source code management with
Git as well as basic debugging with GDB and Valgrind.

Version Management with Git
Documentation
http://git-scm.com

Git Tutorials

CS61 Git Tutorial: http://cs61.seas.

harvard.edu/wiki/2015/Git

SEAS Git Tutorial: https://wiki.

harvard.edu/confluence/display/

USERDOCS/Introduction+To+GIT

Giteveryday: man giteveryday

Git is a distributed version control system that allows groups of peo-
ple to concurrently work on the same documents without stepping
on each other’s toes. It also allows single users to efficiently manage
source code changes, keeping track of all changes applied to a project
and encourages users to keep multiple branches that represent differ-
ent states of the same project.

Getting started

There are two main approaches to getting a Git repository. To import
an existing directory into Git, type the following command:

$ git init

This will initialize a new Git repository in the current working di-
rectory. A new .git/ subdirectory will be created that contains all
files necessary to manage the repository. At this point, none of the
files inside the project directory are tracked, even if the directory was
not empty.

If you want to copy an existing Git repository, such as your SEAS
Code Repository clone of the CS165 skeleton repository1, you can do 1 If you have not cloned the repository

yet, you can go to http://code.seas.

harvard.edu, search for the repository
cs165-2015-base and click clone reposi-
tory.

that by using the git clone command. This will create a full-fledged
Git repository that is completely isolated from the original repository,
with its own local change history and files (unlike just being a “work-
ing copy”).

To clone the CS165 repository, type:

$ git clone <repository_url>

This will create a copy of the repository in a directory named cs165-

2015-base. If you want to clone the repository into a repository named
differently, you can specify your preferred name as follows:

$ git clone <repository_url> <directory_name>

http://git-scm.com
http://cs61.seas.harvard.edu/wiki/2015/Git
http://cs61.seas.harvard.edu/wiki/2015/Git
https://wiki.harvard.edu/confluence/display/USERDOCS/Introduction+To+GIT
https://wiki.harvard.edu/confluence/display/USERDOCS/Introduction+To+GIT
https://wiki.harvard.edu/confluence/display/USERDOCS/Introduction+To+GIT
http://code.seas.harvard.edu
http://code.seas.harvard.edu

2 cs165: data systems — fall 2015

Checking the repository state

To keep track of committed and uncommitted changes, it is often nec-
essary to determine which files are in which state. This can be done
by the following command:

$ git status

This command displays both the state of the working directory and
the staging area (see Staging modified files). It lets you see which files are
and which aren’t tracked, as well as which changes have been staged
for commit.

When you run the command directly after cloning the CS165 repos-
itory, you will see that there are neither untracked nor modified files
in the directory. This will change once you add new files to or modify
existing files in your project.

Tracking new files

Once in an initialized Git repository, you can start tracking new files
by adding them to our repository:

$ git add <filename>

You can also add multiple files using the same command by either
providing multiple input files or by using wildcards such as:

$ git add ’*.c’

Staging modified files

Modified files that were already tracked need to be staged in order to
be part of the commit. To do that, you can use the git add command
just as you would do with untracked files. Running git status will
now show the file as being a modified change to be committed rather
than an unstaged change.

Committing your changes

When your staging area contains all the files you want, it is time
to commit your changes. Remember that any files that have been
changed but not added to the staging area will not go into this com-
mit. To make sure all files are tracked and staged correctly it is useful
to double check the repository state using the git status command.
To commit the changes type:

$ git commit

systems development basics: debugging and performance tools 3

This will display an editor that allows you to enter the commit mes-
sage for your changes. Alternatively, you can inline your commit mes-
sage using the -m flag:

$ git commit -m "Fixed memory leak in storage manager"

Syncing Git repositories

So far, all the changes have been committed to your local Git repos-
itory. This is fine as long as you are the only user of the repository.
However, when collaborating with other developers, when using mul-
tiple machines to access your code (for instance, to benchmark the
code on another machine) or even just when backing up the repository
on a second machine, it becomes necessary to share changes between
repositories.

In Git, local changes are published by pushing branches to other
repositories (such as your SEAS Code Repository, which was already
automatically set up as the origin branch, when you cloned the direc-
tory):

$ git push origin master

This will push the changes in the local master branch to the remote
branch origin.

To see what others have contributed you need to fetch the changes
from the remote branch and merge them into your local master branch
For this, we use the git pull command:

$ git pull

This will fetch and merge the changes from the origin remote
branch into the local master branch.

More features

Git supports many more useful features that we did not cover in this
short introduction, such as using the .gitignore file to ignore files
when tracking uncommitted files, which is especially useful for inter-
mediate files such as swap files, displaying a project history using git

log and highlighting changes between commits using the git diff

command. If you are interested in those features, we recommend read-
ing one of the more extensive tutorials that we link to in the margin.

4 cs165: data systems — fall 2015

Debugging code with GDB
Documentation
http://sourceware.org/gdb/current/

onlinedocs/gdb/

Quick Reference Card
http://web.stanford.edu/class/

cs107/gdb_refcard.pdf

Example Debug Session
http://www.cprogramming.com/gdb.

html

Ever wondered what caused that heinous segmentation fault or why
your program thinks 2+2 = 42 (which is not entirely wrong)? Wonder
no more, GDB (the Gnu project debugger) allows you to see what is
going inside your program while it executes. With GDB, you can:

• Start your program, specifying anything that might affect its behav-
ior.

• Make your program stop on specified conditions.

• Examine what has happened, when your program has stopped.

• Change things in your program, so you can experiment with cor-
recting the effects of one bug and go on to learn about another.

And here is how:

Pre-gdb instructions

Make sure to compile your program with -g3 to include full level 3

debugging information. Turning off optimization (-O0) will ensure
that line numbers in error messages are accurate.

Initial commands

A typical GDB debugging session, starts off like this:

gcc -Wall -Wextra -Werror -g3 program.cc -o prog

gdb prog

(gdb)

Setting breakpoints

Once you have started gdb with your program, you can specify break-
points. Breakpoints are locations within your code where your pro-
gram pauses mid-execution. You can specify these locations as fol-
lows:

break <filename>:<line_number>

break <filename>:<func_name>

break <func_name>

If you have one file or a unique function name, the filename is op-
tional.

Consider the code presented in Listing 1.
You can set a breakpoint at line 6 as break main.c:6 or at the func-

tion add as break main.c:add. You can also get information about
current breaks by using info break.

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://sourceware.org/gdb/current/onlinedocs/gdb/
http://web.stanford.edu/class/cs107/gdb_refcard.pdf
http://web.stanford.edu/class/cs107/gdb_refcard.pdf
http://www.cprogramming.com/gdb.html
http://www.cprogramming.com/gdb.html

systems development basics: debugging and performance tools 5

1 #include <stdio.h>

2

3 int add(int num1, int num2){

4 return num1+num2;

5 }

6

7 int main(int argc, char** argv){

8 int i, j;

9 i = 1;

10 j = 2;

11 int sum = add(i,j);

12 printf("%d\n", sum);

13 return 0;

14 }

Listing 1: A simple C-program to
demonstrate the usage of GDB

Using Watchpoints

Watchpoints are a useful concept in GDB that allows you to stop exe-
cution when the value of an expression changes. The expression can
be as simple as a variable (such as (watch i)) or as complex as many
variables combined by operators (such as (watch i + j < -1)).

watch <expression> / w <expression>

Watchpoints are pretty handy in tracking variables that should not
change. They are pretty handy when you realize that somewhere in
your code a variable has changed. You can then set a watchpoint for
that variable and see where that happened.

Running your code

Once you have set up your environment, you can use run <args> to
start executing your code. The code will execute until it reaches a
breakpoint or a watchpoint is triggered.

Navigating your code

Depending on the location of your breakpoint or watchpoint, the exe-
cution of your code is now stopped at a specific position. This could
be in the middle of a function, at the start of a loop or at the end of
conditional jump. GDB provides you a ton of functionality to move
through the execution of your code.

continue <count> / c <count> Continues execution, if count is speci-
fied, gdb ignores this breakpoint count times.

6 cs165: data systems — fall 2015

step <count> / s <count> Executes until the next line is reached. If
there is a function in the execution, this will step into the function.
If count is specified, it will step <count> times.

next <count> / n <count> Executes the next line including any func-
tion call. If there is a function in the execution, this will not step
into the function. If count is specified, it will next <count> times.

finish / f Continues execution until the current function returns.

Navigating the stack

If you set a breakpoint within a function, you will be in its stack frame.
GDB gives you the ability to navigate between different stack frames.

info frame Gives you information about the current frame.

frame n Selects the frame number n. If n is not specified, the current
frame is displayed.

up Selects a frame one frame up. For example, in the code snippet in
listing 1 if you set a breakpoint at the function add. The program
will pause execution at the start of the function. If you typed in up
at this time it will take you one frame up i.e., the location in the
program from where this function is called.

backtrace / bt / where Gives you information about all the frames in
the stack. For example, if you had a breakpoint at add and typed in
bt, you will get a message similar to Listing 1.

Listing 2: A simple backtrace as pro-
duced by GDB

#0 add (i=1, j=2) at program.c:4

#1 0x000000000040077c in main () at program.c:13

Printing

At a breakpoint, watchpoint or when you are navigating anywhere in
your code, you can print the values or addresses of variables. This can
help to identify uninitialized variables, unexpected values as well as
any errors in pointer arithmetic.

print <variable_name> Prints the value of the variable. For example, in
the code above, print i will print 1.

print *<pointer_name>/print *<address> Dereferences a pointer or ad-
dress and prints its content.

info locals Prints all variables that are in the local scope of the selected
frame.

systems development basics: debugging and performance tools 7

Now that you have a good idea of basic gdb functionality, time to
put them to the test. We will walk through use cases, where gdb can
and will save the day.

GDB use case 1: Segmentation fault

Consider the code snippet in Listing 3. When executing the code, you
should get a segmentation fault. This is because you are trying to
access values beyond the valid indices range of an array.

1 #include <stdio.h>

2

3 int main(int argc, char** argv) {

4 /* Stepping out of the bounds of an array */

5 int foo[1000];

6 for (int i = 0; i <= 1050 ; i++){

7 foo[i] = i;

8 }

9 return 0;

10 }

Listing 3: A short code snippet that ex-
emplifies the use of uninitialized vari-
ables

To debug the program with gdb, you can do the following:

gdb prog

(gdb) run

This will result in the gdb displaying the following message

Program received signal SIGSEGV, Segmentation fault

Now, you can type backtrace and gdb will display where in the
program you encountered the segmentation fault.

From here onwards, you can play with the breakpoints, watchpoints
and navigation commands to figure out what is going on.

GDB use case 2: Uninitialized variables

Consider the code snippet in Listing 4. On running, you won’t neces-
sary get a segmentation fault but you will get a wrong answer because
a variable j is uninitialized.

Now let us see what is going on.

gdb prog

(gdb) break 8

(gdb) run

The program pauses execution at the 8th line in the program. You
can now print values of the variables.

8 cs165: data systems — fall 2015

print i

print j

print num

Listing 4: A simple example of an unini-
tialized variable. 1 #include <stdio.h>

2

3 int main(){

4 int i, num, j; /* j is uninitialized */

5 printf ("Enter the number: ");

6 scanf ("%d", &num);

7

8 for (i=1; i<num; i++)

9 j=j*i;

10

11 printf("The factorial of %d is %d\n",num,j);

12 }

You will realize that the value of j is not set. It will either be 0 or
some random value. You have to set it to 1 for the code snippet to
work.

TUI mode

TUI mode will split the terminal into multiple sections and display the
source code, the assembly and the register values simultaneously as
you debug.

You can run gdb in TUI mode by using the -tui flag. The command
is as follows:

gdb -tui <filename>

systems development basics: debugging and performance tools 9

Memory Debugging and Profiling with Valgrind
Documentation
http://valgrind.org/docs/

Quick Start Guide
http://valgrind.org/docs/manual/

quick-start.html

While C is a useful and powerful language, dynamic memory man-
agement and pointer arithmetic make it very easy to get things wrong.
Memory errors are some of the most common bugs that occur in
low-level systems programs, and are, due to their nature, particularly
difficult to debug. We have already talked about GDB and how it
can be used to investigate program crashes and unexpected behavior.
However, many memory bugs cannot be easily debugged by stepping
through the code, because they let the program behave nondetermin-
istically or do not cause the program to return wrong results for the
given input.

Valgrind is a memory debugging tool that helps you find memory
bugs in your programs. Internally, Valgrind is essentially a virtual
machine that interprets the original program and monitors memory
accesses to detect memory bugs such as the use of uninitialized mem-
ory, accesses to memory that has already been free’d, accesses to ille-
gal memory addresses as well as memory leaks (i.e., memory that is
allocated but never released).

Preparing your code

In order to effectively use Valgrind, code needs to be compiled with
-g or -g3 to include debugging information. It is also recommended
to turn off optimizations (-O0) to ensure that line numbers in error
messages are accurate. Once compiled, Valgrind can be invoked using
valgrind <executable>.

Interpreting Valgrind output

After executing the process, Valgrind will generate a report of its anal-
ysis, that has a structure similar to Listing 5.

The number at the start of the line is the process id (in this example:
==29524==) and can usually be ignored.

The report is divided into three main sections:

Error messages The first and main part of the report contains a list of
all errors detected by Valgrind. The first line of an error message
tells you the type of the error that occurred. In this example the
program wrote to a memory address it was not allowed to write to.
Below that line, you will find a stack trace that tells you where in the
code the error occurred. The code address can usually be ignored,
but can sometimes be useful to tracking down complicated bugs.

Heap summary At the end of the report you will find two summaries.

http://valgrind.org/docs/
http://valgrind.org/docs/manual/quick-start.html
http://valgrind.org/docs/manual/quick-start.html

10 cs165: data systems — fall 2015

The Heap summary contains statistical values of the execution and
most importantly a list of allocation backtraces for each memory
leak Valgrind finds.

Leak summary Finally, a short leak summary shows you how and how
much memory was lost during execution. Definitely lost indicates
that no valid pointer to the respective allocated memory region is
available when the process ends. Indirectly lost means that all point-
ers that are pointing to that memory area are either directly or indi-
rectly lost.

==29524== Memcheck, a memory error detector

==29524== Copyright (C) 2002-2015, and GNU GPL’d, by Julian Seward et al.

==29524== Using Valgrind-3.11.0.SVN and LibVEX; rerun with -h for copyright info

==29524== Command: ./main

==29524==

==29524== Invalid write of size 4

==29524== at 0x100000F32: main (main.c:12)

==29524== Address 0x100802868 is 0 bytes after a block of size 40 alloc’d

==29524== at 0x1000072E1: malloc (vg_replace_malloc.c:303)

==29524== by 0x100000EF4: main (main.c:8)

==29524==

==29524==

==29524== HEAP SUMMARY:

==29524== in use at exit: 34,429 bytes in 414 blocks

==29524== total heap usage: 515 allocs, 101 frees, 41,445 bytes allocated

==29524==

==29524== LEAK SUMMARY:

==29524== definitely lost: 0 bytes in 0 blocks

==29524== indirectly lost: 0 bytes in 0 blocks

==29524== possibly lost: 0 bytes in 0 blocks

==29524== still reachable: 0 bytes in 0 blocks

==29524== suppressed: 34,429 bytes in 414 blocks

==29524==

==29524== For counts of detected and suppressed errors, rerun with: -v

==29524== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Listing 5: Example report generated by
Valgrind.

Example 1: Detecting use of uninitialized memory

A common mistake in low-level programs is forgetting to initialize
a variable. While this will normally cause you compiler to output
a warning, the code will usually compile fine and result in nondeter-
ministic behavior2. Uninitialized variables can be easily detected using2 Generally, it is recommended to set up

your compiler to treat warnings as er-
rors. That way, misuses of the memory
system can often be detected at compile
time.

Valgrind. Consider the code in Listing 6.

systems development basics: debugging and performance tools 11

1 #include <stdio.h>

2

3 int main(int argc, char** argv) {

4 int i; /* Declared but uninitialized */

5 printf("%d\n", i);

6 return 0;

7 }

Listing 6: A simple program that
demonstrates a common memory bug:
the use of uninitialized variables.

The code will generate a Valgrind report warning us of a function
call that depends on an uninitialized value:

==30023== Conditional jump or move depends on uninitialised value(s)

==30023== at 0x1001DA851: __vfprintf (in /usr/lib/system/libsystem_c.dylib)

==30023== by 0x10020280E: __v2printf (in /usr/lib/system/libsystem_c.dylib)

==30023== by 0x100202AE0: __xvprintf (in /usr/lib/system/libsystem_c.dylib)

==30023== by 0x1001D89D1: vfprintf_l (in /usr/lib/system/libsystem_c.dylib)

==30023== by 0x1001D6837: printf (in /usr/lib/system/libsystem_c.dylib)

==30023== by 0x100000F69: main (valgrind_uninit.c:9)

Listing 7: Valgrind reporting the usage
of an uninitialized variable.

If you run valgrind with --track-origins=yes, additional informa-
tion will be provided about where the unitialized values came from.

Example 2: Reading past end of array

Another common mistake is accessing elements past the end of an ar-
ray. Unlike managed programming languages like Java that run in a
virtual machine or managed environment, your C program will not
throw an exception when such accesses occur, but instead might seg-
fault or even continue running and returning the (possibly) correct
result. Especially in the case that the program continues execution,
such memory access violations become very difficult to debug.

Thankfully, Valgrind makes it easy to detect such problems and will
return an error message similar to Listing 8.

==30130== Invalid write of size 4

==30130== at 0x100000F32: main (valgrind_array.c:12)

==30130== Address 0x100802868 is 0 bytes after a block of size 40 alloc’d

==30130== at 0x1000072E1: malloc (vg_replace_malloc.c:303)

==30130== by 0x100000EF4: main (valgrind_array.c:8)

Listing 8: An invalid memory write as
reported by Valgrind.

12 cs165: data systems — fall 2015

Example 3: Detecting double frees

Valgrind automatically detects other improper use of dynamic mem-
ory. For instance, deallocating the same memory area twice (e.g., by
calling free() twice on the same pointer), will cause Valgrind to re-
port an error. Valgrind will also detect improperly chosen methods of
freeing allocated memory, such as using free to release the memory
allocated with new. The three basic allocation methods for dynamic
memory that are available in C++, malloc, new and new[], should only
be matched with their respective deallocation function: free, delete
and delete[].

Example 4: Checking for memory leaks

To check for memory leaks during the execution of an executable, try
running:

valgrind --leak-check=full <executable>

This will generate a complete report of memory leaks found in the
program.

Note that the leak summary is also generated when executing Val-
grind without the --leak-check=full option. However, this report
will normally not contain all memory leaks that exist in the program.
So, make sure you include the option when calling Valgrind.

Summary and limitations

Although Valgrind is a very useful program for finding memory errors
in your program, there are several limitation that you should keep in
mind. First, as errors in Valgrind are checked dynamically at runtime,
its outcome heavily depends on the input parameters. If you run pro-
gram that does not cause bad memory access behaviour, it will not
report any errors. It is therefore recommended to run valgrind on a
variety of inputs. Secondly, it is important to know that Valgrind’s
Memcheck is not able to detect all errors involving access of static and
stack-allocated data. Therefore, passing a Valgrind run without errors
does not guarantee that your program is free of memory bugs.

In addition, using Valgrind will consume more memory than the
original program. For memory intensive programs this can cause
many problems. It’s also going to take significantly longer to run a
program using Valgrind than it normally does. So, if you are running
an already slow program, this is something you might want to keep in
mind.

	Version Management with Git
	Debugging code with GDB
	Memory Debugging and Profiling with Valgrind
	Summary and limitations

