

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

CS561 Spring 2023 - Systems Project

Title: Implementing a Bufferpool Manager of a DBMS

Background: The bufferpool of a DBMS always maintains in memory a set of pages,
and allows incoming page requests (writes or reads) to be served without accessing the
disk. The purpose of the bufferpool is to improve database system performance. Since
data can be accessed much faster from memory than from disk, the fewer times the
database manager needs to access disk, the better the performance.
When an application accesses a page, the database manager checks the bufferpool first.
If the requested page is in the bufferpool (page hit), the database manager does not need
to go out to the disk to fetch the requested data. However, if the requested page is not
found in the bufferpool, then a page miss occurs and the database manager needs to
access the disk to retrieve the corresponding page. If we have a page miss and there is
no space in the bufferpool, the page replacement policy selects a page to be evicted
from the bufferpool. If the page has not been updated (it is clean), it is just removed
from the bufferpool. Otherwise, if the page has been updated (dirty), it is written back
to the disk before being removed. In essence, the page replacement policy dictates the
order in which page access requests reach disk.

Popular Page Replacement Policies:
The goal of a page replacement algorithm is to select a victim page for eviction. An
ideal page replacement policy is supposed to minimize the number of disk access
(minimize page miss). However, it is impossible to select one best page replacement
policy because the workload dominates which page replacement policy will be best.
Here we list some popular page replacement policies used in Database and Operating
System communities.

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

• LRU is the most commonly used policy for page replacement because of its

simplicity and competitive performance in traditional hard disks. LRU
considers temporal locality, which means it assumes that a page accessed
(referenced) more recently is likely to be accessed (referenced) again in the near
future. LRU maintains the page list in the order of last access time and selects
the least recently accessed page as a victim.

• LFU keeps track of how many times each page has been accessed since the page
was brought in the bufferpool. The page that has been referenced the least is
selected for eviction

• FIFO as the name suggests maintains a FIFO (First In First Out) list and evicts
in that manner.

• CFLRU is optimized for flash-based storage. CFLRU maintains the LRU order
of the pages and divides the LRU list into two regions: working region and
clean-first region. The working region contains the recently accessed pages. In
order to minimize the number of writes, CFLRU evicts clean pages from the
clean-first region and when there are no clean pages in that region, it evicts dirty
pages following classical LRU. The size of the clean-first region is decided by
a parameter called the window size. Although, the optimal window size depends
on the workload characteristics, the rule-of-thumb is that if N is the size of the
bufferpool, then N/3 is a good window size.

• LRU-WSR or LRU with Write Sequence Reordering (LRU-WSR) is another
policy optimized for flash storage. It delays evicting cold dirty pages to reduce
the number of writes. Each page in LRU-WSR maintains a cold flag which is
cleared every time the page is referenced. If the candidate page for eviction is
dirty, it will be evicted only if its cold flag is set; otherwise the page is moved
to MRU position while setting the cold flag and another candidate page is
selected based on the LRU order. If the candidate page is clean, it is evicted
irrespectively of the status of its cold flag.

Objective: The objective of the project is to implement a Bufferpool Manager with at
least three page replacement policies: LRU, CFLRU, and LRU-WSR [1, 2, 3].

(a) Review and understand how bufferpool is used in DBMS to optimize performance.
(b) Understand the impact of different page replacement policies and how they play

out. Learn about various page replacement policies: LRU, LFU, CFLRU, LRU-
WSR. You should go over the CFLRU and LRU-WSR papers to understand how
they work.

(c) Develop a bufferpool and implement the three page replacement policies (LRU,
CFLRU, and LRU-WSR) by cloning the API available to you at:
https://github.com/BU-DiSC/cs561_templatebufferpool. By default, without
simulation on disk, you can just count the page miss/hit without performing real

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

reads and writes. However, you are also required to implement the simulation on
disk. With adding “--simulation_on_disk” flag, each read should go to the specific
page with a specific offset, and read the whole entry; each write should update one
entry within a specific page and offset using the input new entry. You must perform
a comparative analysis on the three page-replacement policies based on different
workloads with/without simulation on disk. Some useful metrics: #page misses,
#page hits, #total writes, execution latency, etc.

[1] E. J. O’Neil, P. E. O’Neil, G. Weikum, “The LRU-k Page Replacement Algorithm
for Database Disk Buffering”, Proc. ACM SIGMOD Conf., May, 1993.
[2] Seon-Yeong Park, Dawoon Jung, Jeong-Uk Kang, Jinsoo Kim, and Joonwon Lee.
2006. CFLRU: a replacement algorithm for flash memory. In Proceedings of the
International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES).234–241. https://doi.org/10.1145/1176760.1176789
[3] Hoyoung Jung, Hyoki Shim, Sungmin Park, Sooyong Kang, and Jaehyuk Cha.
2008. LRU-WSR: integration of LRU and writes sequence reordering for flash
memory. IEEE Trans. Consumer Electron. 54, 3(2008), 1215–1223. https://doi.org/
10.1109/TCE.2008.4637609

